Simulation of Sediment Dynamics in a Large Floodplain of the Danube River
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Model Setup and Simulation Approach
2.2.1. Hydrodynamic Modeling
2.2.2. Sediment Transport Modeling
2.2.3. Computational Mesh and Numerical Scheme
2.2.4. Boundary and Initial Conditions
2.2.5. Model Calibration and Data Sources
3. Results and Discussion
3.1. Hydrodynamic Model Performance
3.1.1. Sensitivity Analysis of Roughness
3.1.2. Hydrodynamic Validation
3.2. Sediment Transport Simulation Outcomes
3.2.1. Suspended Sediment Dynamics
3.2.2. Sediment Deposition Patterns
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Habersack, H.; Baranya, S.; Holubová, K.; Vartolomei, F.; Skiba, H.; Babic-Mladenovic, M.; Cibilic, A.; Schwarz, U.; Krapesch, M.; Gmeiner, P.; et al. Danube Sediment Management Guidance. Interreg Danube Transnational Project Danube Sediment co-funded by the European Commission Vienna. 2019. Available online: https://dtp.interreg-danube.eu/uploads/media/approved_project_output/0001/39/ee566924f1764d4798dc7bb9b59537ce84d98101.pdf (accessed on 15 December 2024).
- Dadson, S.J.; Hall, J.W.; Murgatroyd, A.; Acreman, M.; Bates, P.; Beven, K.; Heathwaite, L.; Holden, J.; Holman, I.P.; Lane, S.N.; et al. A restatement of the natural science evidence concerning catchment-based ‘natural’ flood management in the UK. Proc. R. Soc. A Math. Phys. Eng. Sci. 2017, 473, 20160706. [Google Scholar] [CrossRef]
- Lenhart, C.F. A Preliminary Review of NOAA’s Community-Based Dam Removal and Fish Passage Projects. Coast. Manag. 2003, 31, 79–98. [Google Scholar] [CrossRef]
- Lorenz, A.W.; Jähnig, S.C.; Hering, D. Re-Meandering German Lowland Streams: Qualitative and Quantitative Effects of Restoration Measures on Hydromorphology and Macroinvertebrates. Environ. Manag. 2009, 44, 745–754. [Google Scholar] [CrossRef] [PubMed]
- Opperman, J.J.; Galloway, G.E.; Fargione, J.; Mount, J.F.; Richter, B.D.; Secchi, S. Sustainable Floodplains Through Large-Scale Reconnection to Rivers. Science 2009, 326, 1487–1488. [Google Scholar] [CrossRef] [PubMed]
- Roni, P.; Hanson, K.; Beechie, T. Global Review of the Physical and Biological Effectiveness of Stream Habitat Rehabilitation Techniques. N. Am. J. Fish. Manag. 2008, 28, 856–890. [Google Scholar] [CrossRef]
- Naiman, R.J.; Décamps, H. The Ecology of Interfaces: Riparian Zones. Annu. Rev. Ecol. Evol. Syst. 1997, 28, 621–658. [Google Scholar] [CrossRef]
- Zedler, J.B.; Kercher, S. Wetland Resources: Status, Trends, Ecosystem Services, and Restorability. Annu. Rev. Environ. Resour. 2005, 30, 39–74. [Google Scholar] [CrossRef]
- Anees, M.T.; Abdullah, K.; Nawawi, M.N.M.; Rahman, N.N.N.A.; Piah, A.R.M.; Zakaria, N.A.; Syakir, M.I.; Omar, A.K.M. Numerical modeling techniques for flood analysis. J. Afr. Earth Sci. 2016, 124, 478–486. [Google Scholar] [CrossRef]
- Dixon, S.J.; Sear, D.A.; Odoni, N.A.; Sykes, T.; Lane, S.N. The effects of river restoration on catchment scale flood risk and flood hydrology. Earth Surf. Process. Landf. 2016, 41, 997–1008. [Google Scholar] [CrossRef]
- Guan, M.; Ahilan, S.; Yu, D.; Peng, Y.; Wright, N. Numerical modelling of hydro-morphological processes dominated by fine suspended sediment in a stormwater pond. J. Hydrol. 2018, 556, 87–99. [Google Scholar] [CrossRef]
- Brennan, M.L.; May, C.L.; Danmeier, D.G.; Crooks, S.; Haltiner, J.H. Numerical Modeling of Restoration Alternatives in an Erosional Estuary. In Proceedings of the 10th International Conference on Estuarine and Coastal Modeling, Newport, RI, USA, 5–7 November 2007. [Google Scholar]
- Clilverd, H.M.; Thompson, J.R.; Heppell, C.M.; Sayer, C.D.; Axmacher, J.C. Coupled Hydrological/Hydraulic Modelling of River Restoration Impacts and Floodplain Hydrodynamics. River Res. Appl. 2016, 32, 1927–1948. [Google Scholar] [CrossRef]
- Acreman, M.C.; Riddington, R.; Booker, D.J. Hydrological impacts of floodplain restoration: A case study of the River Cherwell, UK. Hydrol. Earth Syst. Sci. 2003, 7, 75–85. [Google Scholar] [CrossRef]
- Willis, T.D.M.; Smith, M.W.; Cross, D.E.; Hardy, A.J.; Ettrich, G.E.; Malawo, H.; Chalo, C.; Sinkombo, M.; Thomas, C.J. Hydrodynamic Modeling of Inundation Patterns of a Large African Floodplain Indicates Sensitivity to Waterway Restoration. Water Resour. Res. 2022, 58, e2021WR030107. [Google Scholar] [CrossRef]
- Leyer, I.; Mosner, E.; Lehmann, B. Managing floodplain-forest restoration in European river landscapes combining ecological and flood-protection issues. Ecol. Appl. 2012, 22, 240–249. [Google Scholar] [CrossRef]
- Gourevitch, J.D.; Singh, N.K.; Minot, J.; Raub, K.B.; Rizzo, D.M.; Wemple, B.C.; Ricketts, T.H. Spatial targeting of floodplain restoration to equitably mitigate flood risk. Glob. Environ. Chang. 2020, 61, 102050. [Google Scholar] [CrossRef]
- Maaß, A.-L.; Schüttrumpf, H. Reactivation of Floodplains in River Restorations: Long-Term Implications on the Mobility of Floodplain Sediment Deposits. Water Resour. Res. 2019, 55, 8178–8196. [Google Scholar] [CrossRef]
- Ahilan, S.; Guan, M.; Sleigh, A.; Wright, N.; Chang, H. The influence of floodplain restoration on flow and sediment dynamics in an urban river. J. Flood Risk Manag. 2016, 11, S986–S1001. [Google Scholar] [CrossRef]
- González-Sanchis, M.; Murillo, J.; Latorre, B.; Comín, F.; García-Navarro, P. Transient Two-Dimensional Simulation of Real Flood Events in a Mediterranean Floodplain. J. Hydraul. Eng. 2012, 138, 629–641. [Google Scholar] [CrossRef]
- Poulsen, J.B.; Hansen, F.; Ovesen, N.B.; Larsen, S.E.; Kronvang, B. Linking floodplain hydraulics and sedimentation patterns along a restored river channel: River Odense, Denmark. Ecol. Eng. 2014, 66, 120–128. [Google Scholar] [CrossRef]
- Sabatine, S.M.; Niemann, J.D.; Greimann, B.P. Evaluation of Parameter and Model Uncertainty in Simple Applications of a 1D Sediment Transport Model. J. Hydraul. Eng. 2015, 141, 04015002. [Google Scholar] [CrossRef]
- Papanicolaou, A.T.N.; Elhakeem, M.; Krallis, G.; Prakash, S.; Edinger, J.; Papanicolaou, A.T.N.; Elhakeem, M.; Krallis, G.; Prakash, S.; Edinger, J. Sediment Transport Modeling Review—Current and Future Developments. J. Hydraul. Eng. 2008, 134, 1–14. [Google Scholar] [CrossRef]
- Roni, P.; Hall, J.E.; Drenner, S.M.; Arterburn, D. Monitoring the effectiveness of floodplain habitat restoration: A review of methods and recommendations for future monitoring. WIRESs Water 2019, 6, e1355. [Google Scholar] [CrossRef]
- Clare, M.C.A.; Kramer, S.C.; Cotter, C.J.; Piggott, M.D. Calibration, inversion and sensitivity analysis for hydro-morphodynamic models through the application of adjoint methods. Comput. Geosci. 2022, 163, 105104. [Google Scholar] [CrossRef]
- Simons, R.K.; Canali, G.E.; Anderson-Newton, G.T.; Cotton, G.K. Sediment Transport Modeling: Calibration, Verification, and Evaluation. Soil Sediment Contam. 2000, 9, 427–434. [Google Scholar] [CrossRef]
- Pomázi, F.; Baranya, S. Comparative Assessment of Fluvial Suspended Sediment Concentration Analysis Methods. Water 2020, 12, 873. [Google Scholar] [CrossRef]
- Williams, J.J.; Esteves, L.S. Guidance on Setup, Calibration, and Validation of Hydrodynamic, Wave, and Sediment Models for Shelf Seas and Estuaries. Adv. Civ. Eng. 2017, 2017, 5251902. [Google Scholar] [CrossRef]
- Guti, G. Water bodies in the Gemenc floodplain of the Danube, Hungary (A theoretical basis for their typology). Opusc. Zool. 2001, 33, 49–60. [Google Scholar]
- Loczy, D. The Changing Geomorphology of Danubian Floodplains in Hungary. Hrvat. Geogr. Glas. 2007, 69, 5–19. [Google Scholar] [CrossRef]
- Berczik, Á.; Buzetzky, G. Realistic restoration of the Gemenc region of the Danubian floodplain based on hydroecological priorities. Int. Ver. Theor. Angew. Limnol. Verhandlungen 2006, 29, 1595–1599. [Google Scholar] [CrossRef]
- Tamás, E.A.; Kovács, P. Changes in the Water Regime of the River Danube and their Implications on the Safe Operation of Water Management Installations and the Sustainable Management of Floodplains. In Környezeti Biztonság; Ludovika Egyetemi Kiadó: Budapest, Hungary, 2020; Available online: https://www.researchgate.net/publication/349088955_Changes_in_the_Water_Regime_of_the_River_Danube_and_their_Implications_on_the_Safe_Operation_of_Water_Management_Installations_and_the_Sustainable_Management_of_Floodplains (accessed on 15 December 2024).
- Tamás, E.A.; Djordjević, D.; Kalocsa, B.; Vujanović, A. Hydrological indicators of the riverbed incision along the free-flowing Danube River reach from Budapest to Slankamen relevant for the lateral connectivity between the river channel and floodplains. In Proceedings of the Conference: Rivers and Floodplains in the Anthropocene—Upcoming Challenges in the Danube River Basin: 43rd IAD Conference, Neuburg an der Donau, Germany, 9–11 June 2021. [Google Scholar]
- Füstös, V.; Baranya, S.; Kutassy, E.; Tamás, E.A.; Erős, T.; Józsa, J. Validating a Two-dimensional Sediment Transport Model on a Large Danubian Floodplain. Period. Polytech. Civ. Eng. 2024, 68, 812–820. [Google Scholar] [CrossRef]
- Józsa, J.; Gáspár, C.; Szél, S. Numerical modelling of flow patterns to assist the revitalization of secondary river branches in Gemenc area. Period. Polytech. Civ. Eng. 1994, 38, 187–203. [Google Scholar]
- Schöll, K.; Kiss, A. Checklist of the planktonic rotifer fauna in the active floodplain area of the Danube (1843–1806, 1669 and 1437–1489 rkm). Opusc. Zool. 2009, 40, 63–73. [Google Scholar]
- Kiss, A.; Ágoston-Szabó, E.; Dinka, M.; Berczik, Á. Microcrustacean diversity in the Gemenc-Béda-Karapancsa Floodplains (Danube-Drava National Park, Hungary): Rare and alien species. Opusc. Zool. 2015, 46, 183–197. [Google Scholar] [CrossRef]
- Schoor, M.M. The Relation between Vegetation and Hydrology/Geomorphology in the Gemenc Floodplain Forest, Hungary. Water Sci. Technol. 1994, 29, 289–291. [Google Scholar] [CrossRef]
- Tadić, L.; Tamás, E.A.; Mihaljević, M.; Janjić, J. Potential Climate Impacts of Hydrological Alterations and Discharge Variabilities of the Mura, Drava, and Danube Rivers on the Natural Resources of the MDD UNESCO Biosphere Reserve. Climate 2022, 10, 139. [Google Scholar] [CrossRef]
- Kalcheva, H.; Dinka, M.; Ágoston-Szabó, E.; Berczik, Á.; Kalchev, R.; Tarjanyi, N.; Kiss, A. Bacterioplankton from Two Hungarian Danube River Wetlands (Beda-Karapancsa, Danube-Drava National Park) and its Relations to Environmental Variables. Transylv. Rev. Syst. Ecol. Res. 2016, 18, 1–12. [Google Scholar] [CrossRef]
- Wu, W.; Wang, S.S.Y.; Jia, Y. Nonuniform sediment transport in alluvial rivers. J. Hydraul. Res. 2000, 38, 427–434. [Google Scholar] [CrossRef]
- Brocchini, M.; Dodd, N. Nonlinear Shallow Water Equation Modeling for Coastal Engineering. J. Waterw. Port Coast. Ocean Eng. 2008, 134, 104–120. [Google Scholar] [CrossRef]
- Xing, Y. Numerical Methods for the Nonlinear Shallow Water Equations. Handb. Numer. Anal. 2017, 18, 361–384. [Google Scholar] [CrossRef]
- Sanchez, A.; Gibson, S. HEC-RAS 2D Sediment Technical Reference Manual; U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center: Davis, CA, USA, 2023. [Google Scholar]
- Shabani, A.; Woznicki, S.A.; Mehaffey, M.; Butcher, J.; Wool, T.A.; Whung, P.Y. A coupled hydrodynamic (HEC-RAS 2D) and water quality model (WASP) for simulating flood-induced soil, sediment, and contaminant transport. J. Flood Risk Manag. 2021, 14, e12747. [Google Scholar] [CrossRef]
- Pratama, F.; Wulandari, S.; Rohmat, F.I.W. Modeling sediment accumulation in Pare Reservoir using HEC-RAS 2D: Assessing storage capacity over a 10-year period. Results Eng. 2025, 25, 104333. [Google Scholar] [CrossRef]
- Samaga, B.R.; Raju, K.G.R.; Garde, R.J. Bed Load Transport of Sediment Mixtures. J. Hydraul. Eng. 1986, 112, 1003–1017. [Google Scholar] [CrossRef]
- Kuhnle, R.A. Fluvial transport of sand and gravel mixtures with bimodal size distributions. Sediment. Geol. 1993, 85, 17–24. [Google Scholar] [CrossRef]
- Wilcock, P.R.; McArdell, B.W. Surface-based fractional transport rates: Mobilization thresholds and partial transport of a sand-gravel sediment. Water Resour. Res. 1993, 29, 1297–1312. [Google Scholar] [CrossRef]
- Domhof, B.C.A.; Berends, K.D.; Spruyt, A.; Warmink, J.J.; Hulscher, S.J.M.H. Discharge and location dependency of calibrated main channel roughness: Case study on the River Waal. In Proceedings of the River Flow 2018: 9th International Conference on Fluvial Hydraulics, Lyon, France, 5–8 September 2018. [Google Scholar]
- Vas, L.; Tamás, E.A. Surrogate Method for Suspended Sediment Concentration Monitoring on the Alluvial Reach of the River Danube (Baja, Hungary). Appl. Sci. 2023, 13, 5826. [Google Scholar] [CrossRef]
- Erikson, L.H.; Wright, S.A.; Elias, E.; Hanes, D.M.; Schoellhamer, D.H.; Largier, J. The use of modeling and suspended sediment concentration measurements for quantifying net suspended sediment transport through a large tidally dominated inlet. Mar. Geol. 2013, 345, 96–112. [Google Scholar] [CrossRef]
- Stajnko, J.K.; Jecl, R.; Perc, M.N. Advances in Monitoring and Understanding the Dynamics of Suspended-Sediment Transport in the River Drava, Slovenia: An Analysis More than a Decade-Long. Appl. Sci. 2023, 13, 9036. [Google Scholar] [CrossRef]
- Haimann, M.; Hauer, C.; Tritthart, M.; Prenner, D.; Leitner, P.; Moog, O.; Habersack, H.; Haimann, M.; Hauer, C.; Tritthart, M.; et al. Monitoring and modelling concept for ecological optimized harbour dredging and fine sediment disposal in large rivers. Hydrobiologia 2016, 814, 89–107. [Google Scholar] [CrossRef]
- Varvani, J.; Khaleghi, M.R.; Gholami, V. Investigation of the Relationship between Sediment Graph and Hydrograph of Flood Events (Case Study: Gharachay River Tributaries, Arak, Iran). Water Resour. 2019, 46, 883–893. [Google Scholar] [CrossRef]
- Rosen, T.; Xu, Y.J. A Hydrograph-Based Sediment Availability Assessment: Implications for Mississippi River Sediment Diversion. Water 2014, 6, 564–583. [Google Scholar] [CrossRef]
- Conroy, E.; Turner, J.N.; Rymszewicz, A.; Bruen, M.; O׳Sullivan, J.J.; Kelly-Quinn, M. An evaluation of visual and measurement-based methods for estimating deposited fine sediment. Int. J. Sediment Res. 2016, 31, 368–375. [Google Scholar] [CrossRef]
- Asselman, N.E.M. Suspended sediment dynamics in a large drainage basin: The River Rhine. Hydrol. Process. 1999, 13, 1437–1450. [Google Scholar] [CrossRef]
- Walling, D.E.; He, Q. The spatial variability of overbank sedimentation on river floodplains. Geomorphology 1998, 24, 209–223. [Google Scholar] [CrossRef]
- Nicholas, A.P.; Walling, D.E. Modelling flood hydraulics and overbank deposition on river floodplains. Earth Surf. Process. Landf. 1997, 22, 59–77. [Google Scholar] [CrossRef]
- Pizzuto, J.E. Sediment diffusion during overbank flows. Sedimentology 1987, 34, 301–317. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hawez, D.M.; Füstös, V.; Pomázi, F.; Tamás, E.A.; Baranya, S. Simulation of Sediment Dynamics in a Large Floodplain of the Danube River. Water 2025, 17, 2399. https://doi.org/10.3390/w17162399
Hawez DM, Füstös V, Pomázi F, Tamás EA, Baranya S. Simulation of Sediment Dynamics in a Large Floodplain of the Danube River. Water. 2025; 17(16):2399. https://doi.org/10.3390/w17162399
Chicago/Turabian StyleHawez, Dara Muhammad, Vivien Füstös, Flóra Pomázi, Enikő Anna Tamás, and Sándor Baranya. 2025. "Simulation of Sediment Dynamics in a Large Floodplain of the Danube River" Water 17, no. 16: 2399. https://doi.org/10.3390/w17162399
APA StyleHawez, D. M., Füstös, V., Pomázi, F., Tamás, E. A., & Baranya, S. (2025). Simulation of Sediment Dynamics in a Large Floodplain of the Danube River. Water, 17(16), 2399. https://doi.org/10.3390/w17162399