Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (665)

Search Parameters:
Keywords = river boundaries

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3187 KiB  
Article
An Approach to Improve Land–Water Salt Flux Modeling in the San Francisco Estuary
by John S. Rath, Paul H. Hutton and Sujoy B. Roy
Water 2025, 17(15), 2278; https://doi.org/10.3390/w17152278 - 31 Jul 2025
Abstract
In this case study, we used the Delta Simulation Model II (DSM2) to study the salt balance at the land–water interface in the river delta of California’s San Francisco Estuary. Drainage, a source of water and salt for adjacent channels in the study [...] Read more.
In this case study, we used the Delta Simulation Model II (DSM2) to study the salt balance at the land–water interface in the river delta of California’s San Francisco Estuary. Drainage, a source of water and salt for adjacent channels in the study area, is affected by channel salinity. The DSM2 approach has been adopted by several hydrodynamic models of the estuary to enforce water volume balance between diversions, evapotranspiration and drainage at the land–water interface, but does not explicitly enforce salt balance. We found deviations from salt balance to be quite large, albeit variable in magnitude due to the heterogeneity of hydrodynamic and salinity conditions across the study area. We implemented a procedure that approximately enforces salt balance through iterative updates of the baseline drain salinity boundary conditions (termed loose coupling). We found a reasonable comparison with field measurements of drainage salinity. In particular, the adjusted boundary conditions appear to capture the range of observed interannual variability better than the baseline periodic estimates. The effect of the iterative adjustment procedure on channel salinity showed substantial spatial variability: locations dominated by large flows were minimally impacted, and in lower flow channels, deviations between baseline and adjusted channel salinity series were notable, particularly during the irrigation season. This approach, which has the potential to enhance the simulation of extreme salinity intrusion events (when high channel salinity significantly impacts drainage salinity), is essential for robustly modeling hydrodynamic conditions that pre-date contemporary water management infrastructure. We discuss limitations associated with this approach and recommend that—for this case study—further improvements could best be accomplished through code modification rather than coupling of transport and island water balance models. Full article
(This article belongs to the Special Issue Advances in Coastal Hydrological and Geological Processes)
Show Figures

Figure 1

29 pages, 3259 KiB  
Review
The Role of the Environment (Water, Air, Soil) in the Emergence and Dissemination of Antimicrobial Resistance: A One Health Perspective
by Asma Sassi, Nosiba S. Basher, Hassina Kirat, Sameh Meradji, Nasir Adam Ibrahim, Takfarinas Idres and Abdelaziz Touati
Antibiotics 2025, 14(8), 764; https://doi.org/10.3390/antibiotics14080764 - 29 Jul 2025
Viewed by 247
Abstract
Antimicrobial resistance (AMR) has emerged as a planetary health emergency, driven not only by the clinical misuse of antibiotics but also by diverse environmental dissemination pathways. This review critically examines the role of environmental compartments—water, soil, and air—as dynamic reservoirs and transmission routes [...] Read more.
Antimicrobial resistance (AMR) has emerged as a planetary health emergency, driven not only by the clinical misuse of antibiotics but also by diverse environmental dissemination pathways. This review critically examines the role of environmental compartments—water, soil, and air—as dynamic reservoirs and transmission routes for antibiotic-resistant bacteria (ARB) and resistance genes (ARGs). Recent metagenomic, epidemiological, and mechanistic evidence demonstrates that anthropogenic pressures—including pharmaceutical effluents, agricultural runoff, untreated sewage, and airborne emissions—amplify resistance evolution and interspecies gene transfer via horizontal gene transfer mechanisms, biofilms, and mobile genetic elements. Importantly, it is not only highly polluted rivers such as the Ganges that contribute to the spread of AMR; even low concentrations of antibiotics and their metabolites, formed during or after treatment, can significantly promote the selection and dissemination of resistance. Environmental hotspots such as European agricultural soils and airborne particulate zones near wastewater treatment plants further illustrate the complexity and global scope of pollution-driven AMR. The synergistic roles of co-selective agents, including heavy metals, disinfectants, and microplastics, are highlighted for their impact in exacerbating resistance gene propagation across ecological and geographical boundaries. The efficacy and limitations of current mitigation strategies, including advanced wastewater treatments, thermophilic composting, biosensor-based surveillance, and emerging regulatory frameworks, are evaluated. By integrating a One Health perspective, this review underscores the imperative of including environmental considerations in global AMR containment policies and proposes a multidisciplinary roadmap to mitigate resistance spread across interconnected human, animal, and environmental domains. Full article
(This article belongs to the Special Issue The Spread of Antibiotic Resistance in Natural Environments)
Show Figures

Figure 1

27 pages, 6584 KiB  
Article
Evaluating Geostatistical and Statistical Merging Methods for Radar–Gauge Rainfall Integration: A Multi-Method Comparative Study
by Xuan-Hien Le, Naoki Koyama, Kei Kikuchi, Yoshihisa Yamanouchi, Akiyoshi Fukaya and Tadashi Yamada
Remote Sens. 2025, 17(15), 2622; https://doi.org/10.3390/rs17152622 - 28 Jul 2025
Viewed by 157
Abstract
Accurate and spatially consistent rainfall estimation is essential for hydrological modeling and flood risk mitigation, especially in mountainous tropical regions with sparse observational networks and highly heterogeneous rainfall. This study presents a comparative analysis of six radar–gauge merging methods, including three statistical approaches—Quantile [...] Read more.
Accurate and spatially consistent rainfall estimation is essential for hydrological modeling and flood risk mitigation, especially in mountainous tropical regions with sparse observational networks and highly heterogeneous rainfall. This study presents a comparative analysis of six radar–gauge merging methods, including three statistical approaches—Quantile Adaptive Gaussian (QAG), Empirical Quantile Mapping (EQM), and radial basis function (RBF)—and three geostatistical approaches—external drift kriging (EDK), Bayesian Kriging (BAK), and Residual Kriging (REK). The evaluation was conducted over the Huong River Basin in Central Vietnam, a region characterized by steep terrain, monsoonal climate, and frequent hydrometeorological extremes. Two observational scenarios were established: Scenario S1 utilized 13 gauges for merging and 7 for independent validation, while Scenario S2 employed all 20 stations. Hourly radar and gauge data from peak rainy months were used for the evaluation. Each method was assessed using continuous metrics (RMSE, MAE, CC, NSE, and KGE), categorical metrics (POD and CSI), and spatial consistency indicators. Results indicate that all merging methods significantly improved the accuracy of rainfall estimates compared to raw radar data. Among them, RBF consistently achieved the highest accuracy, with the lowest RMSE (1.24 mm/h), highest NSE (0.954), and strongest spatial correlation (CC = 0.978) in Scenario S2. RBF also maintained high classification skills across all rainfall categories, including very heavy rain. EDK and BAK performed better with denser gauge input but required recalibration of variogram parameters. EQM and REK yielded moderate performance and had limitations near basin boundaries where gauge coverage was sparse. The results highlight trade-offs between method complexity, spatial accuracy, and robustness. While complex methods like EDK and BAK offer detailed spatial outputs, they require more calibration. Simpler methods are easier to apply across different conditions. RBF emerged as the most practical and transferable option, offering strong generalization, minimal calibration needs, and computational efficiency. These findings provide useful guidance for integrating radar and gauge data in flood-prone, data-scarce regions. Full article
Show Figures

Figure 1

25 pages, 8105 KiB  
Article
Monitoring Critical Mountain Vertical Zonation in the Surkhan River Basin Based on a Comparative Analysis of Multi-Source Remote Sensing Features
by Wenhao Liu, Hong Wan, Peng Guo and Xinyuan Wang
Remote Sens. 2025, 17(15), 2612; https://doi.org/10.3390/rs17152612 - 27 Jul 2025
Viewed by 271
Abstract
Amidst the intensification of global climate change and the increasing impacts of human activities, ecosystem patterns and processes have undergone substantial transformations. The distribution and evolutionary dynamics of mountain ecosystems have become a focal point in ecological research. The Surkhan River Basin is [...] Read more.
Amidst the intensification of global climate change and the increasing impacts of human activities, ecosystem patterns and processes have undergone substantial transformations. The distribution and evolutionary dynamics of mountain ecosystems have become a focal point in ecological research. The Surkhan River Basin is located in the transitional zone between the arid inland regions of Central Asia and the mountain systems, where its unique physical and geographical conditions have shaped distinct patterns of vertical zonation. Utilizing Landsat imagery, this study applies a hierarchical classification approach to derive land cover classifications within the Surkhan River Basin. By integrating the NDVI (normalized difference vegetation index) and DEM (digital elevation model (30 m SRTM)), an “NDVI-DEM-Land Cover” scatterplot is constructed to analyze zonation characteristics from 1980 to 2020. The 2020 results indicate that the elevation boundary between the temperate desert and mountain grassland zones is 1100 m, while the boundary between the alpine cushion vegetation zone and the ice/snow zone is 3770 m. Furthermore, leveraging DEM and LST (land surface temperature) data, a potential energy analysis model is employed to quantify potential energy differentials between adjacent zones, enabling the identification of ecological transition areas. The potential energy analysis further refines the transition zone characteristics, indicating that the transition zone between the temperate desert and mountain grassland zones spans 1078–1139 m with a boundary at 1110 m, while the transition between the alpine cushion vegetation and ice/snow zones spans 3729–3824 m with a boundary at 3768 m. Cross-validation with scatterplot results confirms that the scatterplot analysis effectively delineates stable zonation boundaries with strong spatiotemporal consistency. Moreover, the potential energy analysis offers deeper insights into ecological transition zones, providing refined boundary identification. The integration of these two approaches addresses the dimensional limitations of traditional vertical zonation studies, offering a transferable methodological framework for mountain ecosystem research. Full article
(This article belongs to the Special Issue Temporal and Spatial Analysis of Multi-Source Remote Sensing Images)
Show Figures

Figure 1

26 pages, 3278 KiB  
Article
Marine Highways and Barriers: A Case Study of Limacina helicina Phylogeography Across the Siberian Arctic Shelf Seas
by Galina A. Abyzova, Tatiana V. Neretina, Mikhail A. Nikitin, Anna O. Shapkina and Alexander L. Vereshchaka
Diversity 2025, 17(8), 522; https://doi.org/10.3390/d17080522 - 27 Jul 2025
Viewed by 320
Abstract
The planktonic pteropod Limacina helicina is increasingly studied as a bioindicator of climate-driven changes in polar marine ecosystems. Although broadly distributed across the Arctic Basin and the North Pacific, its population structure and dispersal pathways remain poorly understood, especially in the Siberian Arctic. [...] Read more.
The planktonic pteropod Limacina helicina is increasingly studied as a bioindicator of climate-driven changes in polar marine ecosystems. Although broadly distributed across the Arctic Basin and the North Pacific, its population structure and dispersal pathways remain poorly understood, especially in the Siberian Arctic. We analyzed mitochondrial COI sequences from populations sampled in the Barents, Kara, Laptev, East Siberian, and White Seas, as well as adjacent Pacific regions. Three major haplogroups (H1, H2, H3) were identified with distinct spatial patterns. H1 is widespread, occurring across the Pacific and most Arctic seas except the White Sea. H2 is confined to the western Arctic shelves (Barents–Kara–Laptev), and H3 is unique to the White Sea. We found a pronounced genetic discontinuity corresponding to hydrographic barriers, particularly the strong freshwater inflow from the Lena River, which restricts eastward dispersal of H2 from the Laptev to the East Siberian Sea. These patterns suggest postglacial expansions from geographically separated populations that survived the Last Glacial Maximum in isolated marine regions. The White Sea population is highly isolated and genetically distinct. Our results highlight how both glacial history and modern oceanography shape Arctic plankton diversity and define biogeographic boundaries in a rapidly changing climate. Full article
(This article belongs to the Special Issue 2025 Feature Papers by Diversity’s Editorial Board Members)
Show Figures

Figure 1

24 pages, 4139 KiB  
Article
Multidimensional Identification of County-Level Shrinkage by Improved Mapping of Urban Entities Based on Time-Series Remote Sensing Data: A Case Study of Yangtze River Delta Urban Agglomerations
by Lin Chen, Mingyue Liu and Weidong Man
Remote Sens. 2025, 17(14), 2536; https://doi.org/10.3390/rs17142536 - 21 Jul 2025
Viewed by 354
Abstract
Although measurements of urban shrinkage in China have received much attention, most have relied on statistical yearbook data based on political–administrative city boundaries, and remote-sensing-based quantification is mainly one-dimensional. This has caused problems in incorporating rural areas and spatiotemporal inconsistencies, as well as [...] Read more.
Although measurements of urban shrinkage in China have received much attention, most have relied on statistical yearbook data based on political–administrative city boundaries, and remote-sensing-based quantification is mainly one-dimensional. This has caused problems in incorporating rural areas and spatiotemporal inconsistencies, as well as an inadequate understanding, which has subsequently resulted in an inaccurate shrinkage identification. This study merely utilized the latest multisensory and time-series remote sensing data, including nighttime light, land use, and population grids, to quantify the spatiotemporal patterns of multidimensional shrinkage based on the county-level urban entity mapping of Yangtze River Delta urban agglomerations (YRD-UAs) from 2003 to 2023. County-level urban entities were acquired from a pioneering mapping effort that utilized city-specific commuting distance and land use maps. The results demonstrated that urban entities in 215 counties grew at a generally slowing pace. The degree of economic, population, and space shrinkage was mainly slight, and the shrinking trajectory was dominated by temporary shrinkage. Most counties experienced population shrinkage in their coastal-oriented distribution, whereas economic shrinkage affected the fewest counties, with the lowest spatial clustering occurring northward. Population shrinkage also displayed the highest spatial autocorrelation, but its agglomeration weakened against space shrinkage clustering. This study concluded that the exclusive utilization of remote sensing products to measure urban-entity-based multidimensional shrinkage reduced the uncertainty associated with rural area inclusion and resulted in satisfactory assessment accuracy. The spatiotemporal patterns of multidimensional shrinkage suggested strengthening ecological land allocation within urban entities across the entire region, implementing polycentric development strategies in the north, as well as enhancing county-level economic governance in the northwest. This study presents a spatiotemporally comparable methodology for quantifying the multidimensional shrinking of county-level urban entities at a large scale and contributes to further optimizing the developments of YRD-UAs. Full article
Show Figures

Figure 1

44 pages, 15871 KiB  
Article
Space Gene Quantification and Mapping of Traditional Settlements in Jiangnan Water Town: Evidence from Yubei Village in the Nanxi River Basin
by Yuhao Huang, Zibin Ye, Qian Zhang, Yile Chen and Wenkun Wu
Buildings 2025, 15(14), 2571; https://doi.org/10.3390/buildings15142571 - 21 Jul 2025
Viewed by 290
Abstract
The spatial genes of rural settlements show a lot of different traditional settlement traits, which makes them a great starting point for studying rural spatial morphology. However, qualitative and macro-regional statistical indicators are usually used to find and extract rural settlement spatial genes. [...] Read more.
The spatial genes of rural settlements show a lot of different traditional settlement traits, which makes them a great starting point for studying rural spatial morphology. However, qualitative and macro-regional statistical indicators are usually used to find and extract rural settlement spatial genes. Taking Yubei Village in the Nanxi River Basin as an example, this study combined remote sensing images, real-time drone mapping, GIS (geographic information system), and space syntax, extracted 12 key indicators from five dimensions (landform and water features (environment), boundary morphology, spatial structure, street scale, and building scale), and quantitatively “decoded” the spatial genes of the settlement. The results showed that (1) the settlement is a “three mountains and one water” pattern, with cultivated land accounting for 37.4% and forest land accounting for 34.3% of the area within the 500 m buffer zone, while the landscape spatial diversity index (LSDI) is 0.708. (2) The boundary morphology is compact and agglomerated, and locally complex but overall orderly, with an aspect ratio of 1.04, a comprehensive morphological index of 1.53, and a comprehensive fractal dimension of 1.31. (3) The settlement is a “clan core–radial lane” network: the global integration degree of the axis to the holy hall is the highest (0.707), and the local integration degree R3 peak of the six-room ancestral hall reaches 2.255. Most lane widths are concentrated between 1.2 and 2.8 m, and the eaves are mostly higher than 4 m, forming a typical “narrow lanes and high houses” water town streetscape. (4) The architectural style is a combination of black bricks and gray tiles, gable roofs and horsehead walls, and “I”-shaped planes (63.95%). This study ultimately constructed a settlement space gene map and digital library, providing a replicable quantitative process for the diagnosis of Jiangnan water town settlements and heritage protection planning. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

19 pages, 8978 KiB  
Article
Integration of Space and Hydrological Data into System of Monitoring Natural Emergencies (Flood Hazards)
by Natalya Denissova, Ruslan Chettykbayev, Irina Dyomina, Olga Petrova and Nurbek Saparkhojayev
Appl. Sci. 2025, 15(14), 8050; https://doi.org/10.3390/app15148050 - 19 Jul 2025
Viewed by 272
Abstract
Flood hazards have increasingly threatened the East Kazakhstan region in recent decades due to climate change and growing anthropogenic pressures, leading to more frequent and severe flooding events. This article considers an approach to modeling and forecasting river runoff using the example of [...] Read more.
Flood hazards have increasingly threatened the East Kazakhstan region in recent decades due to climate change and growing anthropogenic pressures, leading to more frequent and severe flooding events. This article considers an approach to modeling and forecasting river runoff using the example of the small Kurchum River in the East Kazakhstan region. The main objective of this study was to evaluate the numerical performance of the flood hazard model by comparing simulated flood extents with observed flood data. Two types of data were used as initial data: topographic data (digital elevation models and topographic maps) and hydrological data, including streamflow time series from stream gauges (hourly time steps) and lateral inflows along the river course. Spatially distributed rainfall forcing was not applied. To build the model, we used the software packages of HEC-RAS version 5.0.5 and MIKE version 11. Using retrospective data for 3 years (2019–2021), modeling was performed, the calculated boundaries of possible flooding were obtained, and the highest risk zones were identified. A dynamic map of depth changes in the river system is presented, showing the process of flood wave propagation, the dynamics of depth changes, and the expansion of the flood zone. Temporal flood inundation mapping and performance metrics were evaluated for each individual flood event (2019, 2020, and 2021). The simulation outcomes closely correlate with actual flood events. The assessment showed that the model data coincide with the real ones by 91.89% (2019), 89.09% (2020), and 95.91% (2021). The obtained results allow for a clarification of potential flood zones and can be used in planning measures to reduce flood risks. This study demonstrates the importance of an integrated approach to modeling, combining various software packages and data sources. Full article
Show Figures

Figure 1

26 pages, 23038 KiB  
Article
Geometry and Kinematics of the North Karlik Tagh Fault: Implications for the Transpressional Tectonics of Easternmost Tian Shan
by Guangxue Ren, Chuanyou Li, Chuanyong Wu, Kai Sun, Quanxing Luo, Xuanyu Zhang and Bowen Zou
Remote Sens. 2025, 17(14), 2498; https://doi.org/10.3390/rs17142498 - 18 Jul 2025
Viewed by 345
Abstract
Quantifying the slip rate along geometrically complex strike-slip faults is essential for understanding kinematics and strain partitioning in orogenic systems. The Karlik Tagh forms the easternmost terminus of Tian Shan and represents a critical restraining bend along the sinistral strike-slip Gobi-Tian Shan Fault [...] Read more.
Quantifying the slip rate along geometrically complex strike-slip faults is essential for understanding kinematics and strain partitioning in orogenic systems. The Karlik Tagh forms the easternmost terminus of Tian Shan and represents a critical restraining bend along the sinistral strike-slip Gobi-Tian Shan Fault System. The North Karlik Tagh Fault (NKTF) is an important fault demarcating the north boundary of the Karlik Tagh. While structurally significant, it is poorly understood in terms of its late Quaternary tectonic activity. In this study, we analyze the offset geomorphology based on interpretations of satellite imagery, field survey, and digital elevation models derived from structure-from-motion (SfM), and we provide the first quantitative constraints on the late-Quaternary slip rate using the abandonment age of deformed fan surfaces and river terraces constrained by the 10Be cosmogenic dating method. Our results reveal that the NKTF can be divided into the Yanchi and Xiamaya segments based on along-strike variations. The NW-striking Yanchi segment exhibits thrust faulting with a 0.07–0.09 mm/yr vertical slip, while the NE-NEE-striking Xiamaya segment displays left-lateral slip at 1.1–1.4 mm/yr since 180 ka. In easternmost Tian Shan, the interaction between thrust and sinistral strike-slip faults forms a transpressional regime. These left-lateral faults, together with those in the Gobi Altai, collectively facilitate eastward crustal escape in response to ongoing Indian indentation. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

26 pages, 39229 KiB  
Article
Local–Linear Two-Stage Estimation of Local Autoregressive Geographically and Temporally Weighted Regression Model
by Dan Xiang and Zhimin Hong
ISPRS Int. J. Geo-Inf. 2025, 14(7), 276; https://doi.org/10.3390/ijgi14070276 - 16 Jul 2025
Viewed by 175
Abstract
A geographically and temporally weighted regression (GTWR) model is an effective tool for dealing with spatial heterogeneity and temporal non-stationarity simultaneously. As an important characteristic of spatiotemporal data, spatiotemporal autocorrelation should be considered when constructing spatiotemporally varying coefficient models. The proposed local autoregressive [...] Read more.
A geographically and temporally weighted regression (GTWR) model is an effective tool for dealing with spatial heterogeneity and temporal non-stationarity simultaneously. As an important characteristic of spatiotemporal data, spatiotemporal autocorrelation should be considered when constructing spatiotemporally varying coefficient models. The proposed local autoregressive geographically and temporally weighted regression (GTWRLAR) model can simultaneously handle spatiotemporal autocorrelations among response variables and the spatiotemporal heterogeneity of regression relationships. The two-stage weighted least squares (2SLS) estimation can effectively reduce computational complexity. However, the weighted least squares estimation is essentially a Nadaraya–Watson kernel-smoothing approach for nonparametric regression models, and it suffers from a boundary effect. For spatiotemporally varying coefficient models, the three-dimensional spatiotemporal coefficients (longitude, latitude, and time) inherently exhibit larger boundaries than one-dimensional intervals. Therefore, the boundary effect of the 2SLS estimation of GTWRLAR will be more serious. A local–linear geographically and temporally weighted 2SLS (GTWRLAR-L) estimation is proposed to correct the boundary effect in both the spatial and temporal dimensions of GTWRLAR and simultaneously improve parameter estimation accuracy. The simulation experiment shows that the GTWRLAR-L method reduces the root mean square error (RMSE) of parameter estimates compared to the standard GTWRLAR approach. Empirical analyses of carbon emissions in China’s Yellow River Basin (2017–2021) show that GTWRLAR-L enhances the adjusted R2 from 0.888 to 0.893. Full article
Show Figures

Figure 1

17 pages, 5004 KiB  
Article
Local Emissions Drive Summer PM2.5 Pollution Under Adverse Meteorological Conditions: A Quantitative Case Study in Suzhou, Yangtze River Delta
by Minyan Wu, Ningning Cai, Jiong Fang, Ling Huang, Xurong Shi, Yezheng Wu, Li Li and Hongbing Qin
Atmosphere 2025, 16(7), 867; https://doi.org/10.3390/atmos16070867 - 16 Jul 2025
Viewed by 288
Abstract
Accurately identifying the sources of fine particulate matter (PM2.5) pollution is crucial for pollution control and public health protection. Taking the PM2.5 pollution event that occurred in Suzhou in June 2023 as a typical case, this study analyzed the characteristics [...] Read more.
Accurately identifying the sources of fine particulate matter (PM2.5) pollution is crucial for pollution control and public health protection. Taking the PM2.5 pollution event that occurred in Suzhou in June 2023 as a typical case, this study analyzed the characteristics and components of PM2.5, and quantified the contributions of meteorological conditions, regional transport, and local emissions to the summertime PM2.5 surge in a typical Yangtze River Delta (YRD) city. Chemical composition analysis highlighted a sharp increase in nitrate ions (NO3, contributing up to 49% during peak pollution), with calcium ion (Ca2+) and sulfate ion (SO42−) concentrations rising to 2 times and 7.5 times those of clean periods, respectively. Results from the random forest model demonstrated that emission sources (74%) dominated this pollution episode, significantly surpassing the meteorological contribution (26%). The Weather Research and Forecasting model combined with the Community Multiscale Air Quality model (WRF–CMAQ) further revealed that local emissions contributed the most to PM2.5 concentrations in Suzhou (46.3%), while external transport primarily originated from upwind cities such as Shanghai and Jiaxing. The findings indicate synergistic effects from dust sources, industrial emissions, and mobile sources. Validation using electricity consumption and key enterprise emission data confirmed that intensive local industrial activities exacerbated PM2.5 accumulation. Recommendations include strengthening regulations on local industrial and mobile source emissions, and enhancing regional joint prevention and control mechanisms to mitigate cross-boundary transport impacts. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

28 pages, 10262 KiB  
Article
Driving Forces and Future Scenario Simulation of Urban Agglomeration Expansion in China: A Case Study of the Pearl River Delta Urban Agglomeration
by Zeduo Zou, Xiuyan Zhao, Shuyuan Liu and Chunshan Zhou
Remote Sens. 2025, 17(14), 2455; https://doi.org/10.3390/rs17142455 - 15 Jul 2025
Viewed by 533
Abstract
The remote sensing monitoring of land use changes and future scenario simulation hold crucial significance for accurately characterizing urban expansion patterns, optimizing urban land use configurations, and thereby promoting coordinated regional development. Through the integration of multi-source data, this study systematically analyzes the [...] Read more.
The remote sensing monitoring of land use changes and future scenario simulation hold crucial significance for accurately characterizing urban expansion patterns, optimizing urban land use configurations, and thereby promoting coordinated regional development. Through the integration of multi-source data, this study systematically analyzes the spatiotemporal trajectories and driving forces of land use changes in the Pearl River Delta urban agglomeration (PRD) from 1990 to 2020 and further simulates the spatial patterns of urban land use under diverse development scenarios from 2025 to 2035. The results indicate the following: (1) During 1990–2020, urban expansion in the Pearl River Delta urban agglomeration exhibited a “stepwise growth” pattern, with an annual expansion rate of 3.7%. Regional land use remained dominated by forest (accounting for over 50%), while construction land surged from 6.5% to 21.8% of total land cover. The gravity center trajectory shifted southeastward. Concurrently, cropland fragmentation has intensified, accompanied by deteriorating connectivity of ecological lands. (2) Urban expansion in the PRD arises from synergistic interactions between natural and socioeconomic drivers. The Geographically and Temporally Weighted Regression (GTWR) model revealed that natural constraints—elevation (regression coefficients ranging −0.35 to −0.05) and river network density (−0.47 to −0.15)—exhibited significant spatial heterogeneity. Socioeconomic drivers dominated by year-end paved road area (0.26–0.28) and foreign direct investment (0.03–0.11) emerged as core expansion catalysts. Geographic detector analysis demonstrated pronounced interaction effects: all factor pairs exhibited either two-factor enhancement or nonlinear enhancement effects, with interaction explanatory power surpassing individual factors. (3) Validation of the Patch-generating Land Use Simulation (PLUS) model showed high reliability (Kappa coefficient = 0.9205, overall accuracy = 95.9%). Under the Natural Development Scenario, construction land would exceed the ecological security baseline, causing 408.60 km2 of ecological space loss; Under the Ecological Protection Scenario, mandatory control boundaries could reduce cropland and forest loss by 3.04%, albeit with unused land development intensity rising to 24.09%; Under the Economic Development Scenario, cross-city contiguous development zones along the Pearl River Estuary would emerge, with land development intensity peaking in Guangzhou–Foshan and Shenzhen–Dongguan border areas. This study deciphers the spatiotemporal dynamics, driving mechanisms, and scenario outcomes of urban agglomeration expansion, providing critical insights for formulating regionally differentiated policies. Full article
Show Figures

Figure 1

20 pages, 11158 KiB  
Article
Fine-Grained Land Use Remote Sensing Mapping in Karst Mountain Areas Using Deep Learning with Geographical Zoning and Stratified Object Extraction
by Bo Li, Zhongfa Zhou, Tianjun Wu and Jiancheng Luo
Remote Sens. 2025, 17(14), 2368; https://doi.org/10.3390/rs17142368 - 10 Jul 2025
Viewed by 341
Abstract
Karst mountain areas, as complex geological systems formed by carbonate rock development, possess unique three-dimensional spatial structures and hydrogeological processes that fundamentally influence regional ecosystem evolution, land resource assessment, and sustainable development strategy formulation. In recent years, through the implementation of systematic ecological [...] Read more.
Karst mountain areas, as complex geological systems formed by carbonate rock development, possess unique three-dimensional spatial structures and hydrogeological processes that fundamentally influence regional ecosystem evolution, land resource assessment, and sustainable development strategy formulation. In recent years, through the implementation of systematic ecological restoration projects, the ecological degradation of karst mountain areas in Southwest China has been significantly curbed. However, the research on the fine-grained land use mapping and quantitative characterization of spatial heterogeneity in karst mountain areas is still insufficient. This knowledge gap impedes scientific decision-making and precise policy formulation for regional ecological environment management. Hence, this paper proposes a novel methodology for land use mapping in karst mountain areas using very high resolution (VHR) remote sensing (RS) images. The innovation of this method lies in the introduction of strategies of geographical zoning and stratified object extraction. The former divides the complex mountain areas into manageable subregions to provide computational units and introduces a priori data for providing constraint boundaries, while the latter implements a processing mechanism with a deep learning (DL) of hierarchical semantic boundary-guided network (HBGNet) for different geographic objects of building, water, cropland, orchard, forest-grassland, and other land use features. Guanling and Zhenfeng counties in the Huajiang section of the Beipanjiang River Basin, China, are selected to conduct the experimental validation. The proposed method achieved notable accuracy metrics with an overall accuracy (OA) of 0.815 and a mean intersection over union (mIoU) of 0.688. Comparative analysis demonstrated the superior performance of advanced DL networks when augmented with priori knowledge in geographical zoning and stratified object extraction. The approach provides a robust mapping framework for generating fine-grained land use data in karst landscapes, which is beneficial for supporting academic research, governmental analysis, and related applications. Full article
Show Figures

Figure 1

18 pages, 22954 KiB  
Article
Spatiotemporal Analysis of Drought Variation from 2001 to 2023 in the China–Mongolia–Russia Transboundary Heilongjiang River Basin Based on ITVDI
by Weihao Zou, Juanle Wang, Congrong Li, Keming Yang, Denis Fetisov, Jiawei Jiang, Meng Liu and Yaping Liu
Remote Sens. 2025, 17(14), 2366; https://doi.org/10.3390/rs17142366 - 9 Jul 2025
Viewed by 347
Abstract
Drought impacts agricultural production and regional sustainable development. Accordingly, timely and accurate drought monitoring is essential for ensuring food security in rain-fed agricultural regions. Alternating drought and flood events frequently occur in the Heilongjiang River Basin, the largest grain-producing area in Far East [...] Read more.
Drought impacts agricultural production and regional sustainable development. Accordingly, timely and accurate drought monitoring is essential for ensuring food security in rain-fed agricultural regions. Alternating drought and flood events frequently occur in the Heilongjiang River Basin, the largest grain-producing area in Far East Asia. However, spatiotemporal variability in drought is not well understood, in part owing to the limitations of the traditional Temperature Vegetation Dryness Index (TVDI). In this study, an Improved Temperature Vegetation Dryness Index (ITVDI) was developed by incorporating Digital Elevation Model data to correct land surface temperatures and introducing a constraint line method to replace the traditional linear regression for fitting dry–wet boundaries. Based on MODIS (Moderate-resolution Imaging Spectroradiometer) normalized vegetation index and land surface temperature products, the Heilongjiang River Basin, a cross-border basin between China, Mongolia, and Russia, exhibited pronounced spatiotemporal variability in drought conditions of the growing season from 2001 to 2023. Drought severity demonstrated clear geographical zonation, with a higher intensity in the western region and lower intensity in the eastern region. The Mongolian Plateau and grasslands were identified as drought hotspots. The Far East Asia forest belt was relatively humid, with an overall lower drought risk. The central region exhibited variation in drought characteristics. From the perspective of cross-national differences, the drought severity distribution in Northeast China and Inner Mongolia exhibits marked spatial heterogeneity. In Mongolia, regional drought levels exhibited a notable trend toward homogenization, with a higher proportion of extreme drought than in other areas. The overall drought risk in the Russian part of the basin was relatively low. A trend analysis indicated a general pattern of drought alleviation in western regions and intensification in eastern areas. Most regions showed relatively stable patterns, with few areas exhibiting significant changes, mainly surrounding cities such as Qiqihar, Daqing, Harbin, Changchun, and Amur Oblast. Regions with aggravation accounted for 52.29% of the total study area, while regions showing slight alleviation account for 35.58%. This study provides a scientific basis and data infrastructure for drought monitoring in transboundary watersheds and for ensuring agricultural production security. Full article
Show Figures

Figure 1

27 pages, 6244 KiB  
Article
The Characteristics of Spatial Genetic Diversity in Traditional Township Neighborhoods in the Xiangjiang River Basin: A Case Study of the Changsha Suburbs
by Peishan Cai, Yan Gao and Mingjing Xie
Sustainability 2025, 17(13), 6129; https://doi.org/10.3390/su17136129 - 4 Jul 2025
Viewed by 363
Abstract
An important historical and cultural region in southern China, the Xiangjiang River Basin, has formed a unique spatial pattern and regional cultural characteristics in its long-term development. In recent years, the acceleration of urbanization has led to the historical texture and cultural elements [...] Read more.
An important historical and cultural region in southern China, the Xiangjiang River Basin, has formed a unique spatial pattern and regional cultural characteristics in its long-term development. In recent years, the acceleration of urbanization has led to the historical texture and cultural elements of Changsha’s suburban blocks facing deconstruction pressure. How to identify and protect their cultural value at the spatial structure level has become an urgent issue. Taking three typical traditional township blocks in the suburbs of Changsha as the research object, this paper constructs a trinity research framework of “spatial gene identification–diversity analysis–strategy optimization.” It systematically discusses the makeup of the types, quantity, distribution, relative importance ranking, and diversity characteristics of their spatial genes. The results show that (1) the distribution and quantity of spatial genes are affected by multiple driving forces such as historical function, geographic environment, and settlement evolution mechanisms, and that architectural spatial genes have significant advantages in type richness and importance indicators; (2) spatial gene diversity shows the structural characteristics of “enriched artificial space and sparse natural space,” and different blocks show clear differences in node space and boundary space; (3) spatial genetic diversity not only reflects the complexity of the spatial evolution of a block but is also directly related to its cultural inheritance and the feasibility of renewal strategies. Based on this, this paper proposes strategies such as building a spatial gene database, improving the diversity evaluation system, and implementing differentiated protection mechanisms. These strategies provide theoretical support and methods for the protection and sustainable development of cultural heritage in traditional blocks. Full article
Show Figures

Figure 1

Back to TopTop