Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,055)

Search Parameters:
Keywords = risk early warning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1077 KiB  
Article
Research on Data-Driven Drilling Safety Grade Evaluation System
by Shuan Meng, Changhao Wang, Yingcao Zhou and Lidong Hou
Processes 2025, 13(8), 2469; https://doi.org/10.3390/pr13082469 - 4 Aug 2025
Abstract
With the in-depth application of digital transformation in the oil industry, data-driven methods provide a new technical path for drilling engineering safety evaluation. In this paper, a data-driven drilling safety level evaluation system is proposed. By integrating the three-dimensional visualization technology of wellbore [...] Read more.
With the in-depth application of digital transformation in the oil industry, data-driven methods provide a new technical path for drilling engineering safety evaluation. In this paper, a data-driven drilling safety level evaluation system is proposed. By integrating the three-dimensional visualization technology of wellbore trajectory and the prediction model of friction torque, a dynamic and intelligent drilling risk evaluation framework is constructed. The Python platform is used to integrate geomechanical parameters, real-time drilling data, and historical working condition records, and the machine learning algorithm is used to train the friction torque prediction model to improve prediction accuracy. Based on the K-means clustering evaluation method, a three-tier drilling safety classification standard is established: Grade I (low risk) for friction (0–100 kN) and torque (0–10 kN·m), Grade II (medium risk) for friction (100–200 kN) and torque (10–20 kN·m), and Grade III (high risk) for friction (>200 kN) and torque (>20 kN·m). This enables intelligent quantitative evaluation of drilling difficulty. The system not only dynamically optimizes bottom-hole assembly (BHA) and drilling parameters but also continuously refines the evaluation model’s accuracy through a data backtracking mechanism. This provides a reliable theoretical foundation and technical support for risk early warning, parameter optimization, and intelligent decision-making in drilling engineering. Full article
(This article belongs to the Section AI-Enabled Process Engineering)
14 pages, 2532 KiB  
Article
Machine Learning for Spatiotemporal Prediction of River Siltation in Typical Reach in Jiangxi, China
by Yong Fu, Jin Luo, Die Zhang, Lingjia Liu, Gan Luo and Xiaofang Zu
Appl. Sci. 2025, 15(15), 8628; https://doi.org/10.3390/app15158628 (registering DOI) - 4 Aug 2025
Abstract
Accurate forecasting of river siltation is essential for ensuring inland waterway navigability and guiding sustainable sediment management. This study investigates the downstream reach of the Shihutang navigation power hub along the Ganjiang River in Jiangxi Province, China, an area characterized by pronounced seasonal [...] Read more.
Accurate forecasting of river siltation is essential for ensuring inland waterway navigability and guiding sustainable sediment management. This study investigates the downstream reach of the Shihutang navigation power hub along the Ganjiang River in Jiangxi Province, China, an area characterized by pronounced seasonal sedimentation and hydrological variability. To enable fine-scale prediction, we developed a data-driven framework using a random forest regression model that integrates high-resolution bathymetric surveys with hydrological and meteorological observations. Based on the field data from April to July 2024, the model was trained to forecast monthly siltation volumes at a 30 m grid scale over a six-month horizon (July–December 2024). The results revealed a marked increase in siltation from July to September, followed by a decline during the winter months. The accumulation of sediment, combined with falling water levels, was found to significantly reduce the channel depth and width, particularly in the upstream sections, posing a potential risk to navigation safety. This study presents an initial, yet promising attempt to apply machine learning for spatially explicit siltation prediction in data-constrained river systems. The proposed framework provides a practical tool for early warning, targeted dredging, and adaptive channel management. Full article
Show Figures

Figure 1

24 pages, 9190 KiB  
Article
Modeling the Historical and Future Potential Global Distribution of the Pepper Weevil Anthonomus eugenii Using the Ensemble Approach
by Kaitong Xiao, Lei Ling, Ruixiong Deng, Beibei Huang, Qiang Wu, Yu Cao, Hang Ning and Hui Chen
Insects 2025, 16(8), 803; https://doi.org/10.3390/insects16080803 (registering DOI) - 3 Aug 2025
Viewed by 42
Abstract
The pepper weevil Anthonomus eugenii is a devastating pest native to Central America that can cause severe damage to over 35 pepper varieties. Global trade in peppers has significantly increased the risk of its spread and expansion. Moreover, future climate change may add [...] Read more.
The pepper weevil Anthonomus eugenii is a devastating pest native to Central America that can cause severe damage to over 35 pepper varieties. Global trade in peppers has significantly increased the risk of its spread and expansion. Moreover, future climate change may add more uncertainty to its distribution, resulting in considerable ecological and economic damage globally. Therefore, we employed an ensemble model combining Random Forests and CLIMEX to predict the potential global distribution of A. eugenii in historical and future climate scenarios. The results indicated that the maximum temperature of the warmest month is an important variable affecting global A. eugenii distribution. Under the historical climate scenario, the potential global distribution of A. eugenii is concentrated in the Midwestern and Southern United States, Central America, the La Plata Plain, parts of the Brazilian Plateau, the Mediterranean and Black Sea coasts, sub-Saharan Africa, Northern and Southern China, Southern India, Indochina Peninsula, and coastal area in Eastern Australia. Under future climate scenarios, suitable areas in the Northern Hemisphere, including North America, Europe, and China, are projected to expand toward higher latitudes. In China, the number of highly suitable areas is expected to increase significantly, mainly in the south and north. Contrastingly, suitable areas in Central America, northern South America, the Brazilian Plateau, India, and the Indochina Peninsula will become less suitable. The total land area suitable for A. eugenii under historical and future low- and high-emission climate scenarios accounted for 73.12, 66.82, and 75.97% of the global land area (except for Antarctica), respectively. The high-suitability areas identified by both models decreased by 19.05 and 35.02% under low- and high-emission scenarios, respectively. Building on these findings, we inferred the future expansion trends of A. eugenii globally. Furthermore, we provide early warning of A. eugenii invasion and a scientific basis for its spread and outbreak, facilitating the development of effective quarantine and control measures. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Graphical abstract

22 pages, 3013 KiB  
Article
Determining Early Warning Thresholds to Detect Tree Mortality Risk in a Southeastern U.S. Bottomland Hardwood Wetland
by Maricar Aguilos, Jiayin Zhang, Miko Lorenzo Belgado, Ge Sun, Steve McNulty and John King
Forests 2025, 16(8), 1255; https://doi.org/10.3390/f16081255 - 1 Aug 2025
Viewed by 208
Abstract
Prolonged inundations are altering coastal forest ecosystems of the southeastern US, causing extensive tree die-offs and the development of ghost forests. This hydrological stressor also alters carbon fluxes, threatening the stability of coastal carbon sinks. This study was conducted to investigate the interactions [...] Read more.
Prolonged inundations are altering coastal forest ecosystems of the southeastern US, causing extensive tree die-offs and the development of ghost forests. This hydrological stressor also alters carbon fluxes, threatening the stability of coastal carbon sinks. This study was conducted to investigate the interactions between hydrological drivers and ecosystem responses by analyzing daily eddy covariance flux data from a wetland forest in North Carolina, USA, spanning 2009–2019. We analyzed temporal patterns of net ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (RE) under both flooded and non-flooded conditions and evaluated their relationships with observed tree mortality. Generalized Additive Modeling (GAM) revealed that groundwater table depth (GWT), leaf area index (LAI), NEE, and net radiation (Rn) were key predictors of mortality transitions (R2 = 0.98). Elevated GWT induces root anoxia; declining LAI reduces productivity; elevated NEE signals physiological breakdown; and higher Rn may amplify evapotranspiration stress. Receiver Operating Characteristic (ROC) analysis revealed critical early warning thresholds for tree mortality: GWT = 2.23 cm, LAI = 2.99, NEE = 1.27 g C m−2 d−1, and Rn = 167.54 W m−2. These values offer a basis for forecasting forest mortality risk and guiding early warning systems. Our findings highlight the dominant role of hydrological variability in ecosystem degradation and offer a threshold-based framework for early detection of mortality risks. This approach provides insights into managing coastal forest resilience amid accelerating sea level rise. Full article
(This article belongs to the Special Issue Water and Carbon Cycles and Their Coupling in Forest)
Show Figures

Figure 1

13 pages, 243 KiB  
Article
A Study of NEWS Vital Signs in the Emergency Department for Predicting Short- and Medium-Term Mortality Using Decision Tree Analysis
by Serena Sibilio, Gianni Turcato, Bastiaan Van Grootven, Marta Ziller, Francesco Brigo and Arian Zaboli
Appl. Sci. 2025, 15(15), 8528; https://doi.org/10.3390/app15158528 (registering DOI) - 31 Jul 2025
Viewed by 99
Abstract
Early detection of clinical deterioration in emergency department (ED) patients is critical for timely interventions. This study evaluated the predictive performance of the National Early Warning Score (NEWS) parameters using machine learning. We conducted a single-center retrospective observational study including 27,238 adult ED [...] Read more.
Early detection of clinical deterioration in emergency department (ED) patients is critical for timely interventions. This study evaluated the predictive performance of the National Early Warning Score (NEWS) parameters using machine learning. We conducted a single-center retrospective observational study including 27,238 adult ED patients admitted to Merano Hospital (Italy) between June 2022 and June 2023. NEWS vital signs were collected at triage, and mortality at 48 h, 7 days, and 30 days was obtained from ED database. Decision tree analysis (CHAID algorithm) was used to identify predictors of mortality; 10-fold cross-validation was applied to avoid overfitting. Mortality was 0.4% at 48 h, 1% at 7 days, and 2.45% at 30 days. For 48-h mortality, oxygen supplementation (FiO2 >21%) and AVPU = “U” were the strongest predictors, with a maximum risk of 31.6%. For 7-day mortality, SpO2 was the key predictor, with mortality up to 48.1%. At 30 days, patients with AVPU ≠ A, FiO2 > 21%, and SpO2 ≤ 94% had a mortality risk of 66.7%. Decision trees revealed different cut-offs compared to the standard NEWS. This study demonstrated that for ED patients, the NEWS may require some adjustments in both the cut-offs for vital parameters and the methods of collecting these parameters. Full article
(This article belongs to the Special Issue Machine Learning Applications in Healthcare)
22 pages, 34153 KiB  
Article
Study on Lithospheric Tectonic Features of Tianshan and Adjacent Regions and the Genesis Mechanism of the Wushi Ms7.1 Earthquake
by Kai Han, Daiqin Liu, Ailixiati Yushan, Wen Shi, Jie Li, Xiangkui Kong and Hao He
Remote Sens. 2025, 17(15), 2655; https://doi.org/10.3390/rs17152655 - 31 Jul 2025
Viewed by 164
Abstract
In this study, we analyzed the lithospheric seismic background of the Tianshan and adjacent areas by combining various geophysical methods (effective elastic thickness, time-varying gravity, apparent density, and InSAR), and explored the genesis mechanism of the Wushi Ms7.1 earthquake as an example, which [...] Read more.
In this study, we analyzed the lithospheric seismic background of the Tianshan and adjacent areas by combining various geophysical methods (effective elastic thickness, time-varying gravity, apparent density, and InSAR), and explored the genesis mechanism of the Wushi Ms7.1 earthquake as an example, which led to the following conclusions: (1) The effective elastic thickness (Te) of the Tianshan lithosphere is low (13–28 km) and weak, while the Tarim and Junggar basins have Te > 30 km with high intensity, and the loads are all mainly from the surface (F < 0.5). Earthquakes occur mostly in areas with low values of Te. (2) Medium and strong earthquakes are prone to occur in regions with alternating positive and negative changes in the gravity field during the stage of large-scale reverse adjustment. It is expected that the risk of a moderate-to-strong earthquake occurring again in the vicinity of the survey area between 2025 and 2026 is relatively high. (3) Before the Wushi earthquake, the positive and negative boundaries of the apparent density of the crust at 12 km shifted to be approximately parallel to the seismic fault, and the earthquake was triggered after undergoing a “solidification” process. (4) The Wushi earthquake is a leptokurtic strike-slip backwash type of earthquake; coseismic deformation shows that subsidence occurs in the high-visual-density zone, and vice versa for uplift. The results of this study reveal the lithosphere-conceiving environment of the Tianshan and adjacent areas and provide a basis for regional earthquake monitoring, early warning, and post-disaster disposal. Full article
Show Figures

Graphical abstract

14 pages, 355 KiB  
Article
Driver Behavior-Driven Evacuation Strategy with Dynamic Risk Propagation Modeling for Road Disruption Incidents
by Yanbin Hu, Wenhui Zhou and Hongzhi Miao
Eng 2025, 6(8), 173; https://doi.org/10.3390/eng6080173 - 31 Jul 2025
Viewed by 145
Abstract
When emergency incidents, such as bridge damage, abruptly occur on highways and lead to traffic disruptions, the multidimensionality and complexity of driver behaviors present significant challenges to the design of effective emergency response mechanisms. This study introduces a multi-level collaborative emergency mechanism grounded [...] Read more.
When emergency incidents, such as bridge damage, abruptly occur on highways and lead to traffic disruptions, the multidimensionality and complexity of driver behaviors present significant challenges to the design of effective emergency response mechanisms. This study introduces a multi-level collaborative emergency mechanism grounded in driver behavior characteristics, aiming to enhance both traffic safety and emergency response efficiency through hierarchical collaboration and dynamic optimization strategies. By capitalizing on human drivers’ perception and decision-making attributes, a driver behavior classification model is developed to quantitatively assess the risk response capabilities of distinct behavioral patterns (conservative, risk-taking, and conformist) under emergency scenarios. A multi-tiered collaborative framework, comprising an early warning layer, a guidance layer, and an interception layer, is devised to implement tailored emergency strategies. Additionally, a rear-end collision risk propagation model is constructed by integrating the risk field model with probabilistic risk assessment, enabling dynamic adjustments to interception range thresholds for precise and real-time emergency management. The efficacy of this mechanism is substantiated through empirical case studies, which underscore its capacity to substantially reduce the occurrence of secondary accidents and furnish scientific evidence and technical underpinnings for emergency management pertaining to highway bridge damage. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

21 pages, 3996 KiB  
Technical Note
Design of a Standards-Based Cloud Platform to Enhance the Practicality of Agrometeorological Countermeasures
by Sejin Han, Minju Baek, Jin-Ho Lee, Sang-Hyun Park, Seung-Gil Hong, Yong-Kyu Han and Yong-Soon Shin
Atmosphere 2025, 16(8), 924; https://doi.org/10.3390/atmos16080924 - 30 Jul 2025
Viewed by 161
Abstract
The need for systems that forecast and respond proactively to meteorological disasters is growing amid climate variability. Although the early warning system in South Korea includes countermeasure information, it remains limited in terms of data recency, granularity, and regional adaptability. Additionally, its closed [...] Read more.
The need for systems that forecast and respond proactively to meteorological disasters is growing amid climate variability. Although the early warning system in South Korea includes countermeasure information, it remains limited in terms of data recency, granularity, and regional adaptability. Additionally, its closed architecture hinders interoperability with external systems. This study aims to redesign the countermeasure function as an independent cloud-based platform grounded in the common standard terminology framework in South Korea. A multi-dimensional data model was developed using attributes such as crop type, cultivation characteristics, growth stage, disaster type, and risk level. The platform incorporates user-specific customization features and history tracking capabilities, and it is structured using a microservices architecture to ensure modularity and scalability. The proposed system enables real-time management and dissemination of localized countermeasure suggestions tailored to various user types, including central and local governments and farmers. This study offers a practical model for enhancing the precision and applicability of agrometeorological response information. It is expected to serve as a scalable reference platform for future integration with external agricultural information systems. Full article
Show Figures

Figure 1

9 pages, 528 KiB  
Article
Evaluation of the Modified Early Warning Score (MEWS) in In-Hospital Cardiac Arrest in a Tertiary Healthcare Facility
by Osakpolor Ogbebor, Sitara Niranjan, Vikram Saini, Deeksha Ramanujam, Briana DiSilvio and Tariq Cheema
J. Clin. Med. 2025, 14(15), 5384; https://doi.org/10.3390/jcm14155384 - 30 Jul 2025
Viewed by 268
Abstract
Background/Objective: In-hospital cardiac arrest has high incidence and poor survival rates, posing a significant healthcare challenge. It is important to intervene in the hours before the cardiac arrest to prevent poor outcomes. The modified early warning score (MEWS) is a validated tool [...] Read more.
Background/Objective: In-hospital cardiac arrest has high incidence and poor survival rates, posing a significant healthcare challenge. It is important to intervene in the hours before the cardiac arrest to prevent poor outcomes. The modified early warning score (MEWS) is a validated tool for identifying a deteriorating patient. It is an aggregate of vital signs and level of consciousness. We retrospectively evaluated MEWS for trends that might predict patient outcomes. Methods: We performed a single-center, one-year, retrospective study. A comprehensive review was conducted for patients aged 18 years and above who experienced a cardiac arrest. Cases that occurred within an intensive care unit, emergency department, during a procedure, or outside the hospital were excluded. A total of 87 cases met our predefined inclusion criteria. We collected data at 12 h, 6 h and 1 h time periods prior to the cardiac arrest. A trend analysis using a linear model with analysis of variance with Bonferroni correction was performed. Results: Out of 87 patients included in the study, 59 (67.8%) had an immediate return of spontaneous circulation (ROSC). Among those who achieved ROSC, 41 (69.5%) died during the admission. Only 20.7% of the patients that sustained a cardiac arrest survived to discharge. A significant increase in the average MEWS was noted from the 12 h period (MEWS = 3.95 ± 2.4) to the 1 h period (MEWS = 5.98 ± 3.5) (p ≤ 0.001) and the 6 h period (4.65 ± 2.6) to the 1 h period (5.98 ± 3.5) (p = 0.023) prior to cardiac arrest. Conclusions: An increase in the MEWS may be a valuable tool in identifying at-risk patients and provides an opportunity to intervene at least 6 h before a cardiac arrest event. Further research is needed to validate the results of our study. Full article
(This article belongs to the Special Issue New Diagnostic and Therapeutic Trends in Sepsis and Septic Shock)
Show Figures

Figure 1

28 pages, 6962 KiB  
Article
Mapping Drought Incidents in the Mediterranean Region with Remote Sensing: A Step Toward Climate Adaptation
by Aikaterini Stamou, Aikaterini Bakousi, Anna Dosiou, Zoi-Eirini Tsifodimou, Eleni Karachaliou, Ioannis Tavantzis and Efstratios Stylianidis
Land 2025, 14(8), 1564; https://doi.org/10.3390/land14081564 - 30 Jul 2025
Viewed by 240
Abstract
The Mediterranean region, identified by scientists as a ‘climate hot spot’, is experiencing warmer and drier conditions, along with an increase in the intensity and frequency of extreme weather events. One such extreme phenomena is droughts. The recent wildfires in this region are [...] Read more.
The Mediterranean region, identified by scientists as a ‘climate hot spot’, is experiencing warmer and drier conditions, along with an increase in the intensity and frequency of extreme weather events. One such extreme phenomena is droughts. The recent wildfires in this region are a concerning consequence of this phenomenon, causing severe environmental damage and transforming natural landscapes. However, droughts involve a two-way interaction: On the one hand, climate change and various human activities, such as urbanization and deforestation, influence the development and severity of droughts. On the other hand, droughts have a significant impact on various sectors, including ecology, agriculture, and the local economy. This study investigates drought dynamics in four Mediterranean countries, Greece, France, Italy, and Spain, each of which has experienced severe wildfire events in recent years. Using satellite-based Earth observation data, we monitored drought conditions across these regions over a five-year period that includes the dates of major wildfires. To support this analysis, we derived and assessed key indices: the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Normalized Difference Drought Index (NDDI). High-resolution satellite imagery processed within the Google Earth Engine (GEE) platform enabled the spatial and temporal analysis of these indicators. Our findings reveal that, in all four study areas, peak drought conditions, as reflected in elevated NDDI values, were observed in the months leading up to wildfire outbreaks. This pattern underscores the potential of satellite-derived indices for identifying regional drought patterns and providing early signals of heightened fire risk. The application of GEE offered significant advantages, as it allows efficient handling of long-term and large-scale datasets and facilitates comprehensive spatial analysis. Our methodological framework contributes to a deeper understanding of regional drought variability and its links to extreme events; thus, it could be a valuable tool for supporting the development of adaptive management strategies. Ultimately, such approaches are vital for enhancing resilience, guiding water resource planning, and implementing early warning systems in fire-prone Mediterranean landscapes. Full article
(This article belongs to the Special Issue Land and Drought: An Environmental Assessment Through Remote Sensing)
Show Figures

Figure 1

18 pages, 10854 KiB  
Article
A Novel Method for Predicting Landslide-Induced Displacement of Building Monitoring Points Based on Time Convolution and Gaussian Process
by Jianhu Wang, Xianglin Zeng, Yingbo Shi, Jiayi Liu, Liangfu Xie, Yan Xu and Jie Liu
Electronics 2025, 14(15), 3037; https://doi.org/10.3390/electronics14153037 - 30 Jul 2025
Viewed by 175
Abstract
Accurate prediction of landslide-induced displacement is essential for the structural integrity and operational safety of buildings and infrastructure situated in geologically unstable regions. This study introduces a novel hybrid predictive framework that synergistically integrates Gaussian Process Regression (GPR) with Temporal Convolutional Neural Networks [...] Read more.
Accurate prediction of landslide-induced displacement is essential for the structural integrity and operational safety of buildings and infrastructure situated in geologically unstable regions. This study introduces a novel hybrid predictive framework that synergistically integrates Gaussian Process Regression (GPR) with Temporal Convolutional Neural Networks (TCNs), herein referred to as the GTCN model, to forecast displacement at building monitoring points subject to landslide activity. The proposed methodology is validated using time-series monitoring data collected from the slope adjacent to the Zhongliang Reservoir in Wuxi County, Chongqing, an area where slope instability poses a significant threat to nearby structural assets. Experimental results demonstrate the GTCN model’s superior predictive performance, particularly under challenging conditions of incomplete or sparsely sampled data. The model proves highly effective in accurately characterizing both abrupt fluctuations within the displacement time series and capturing long-term deformation trends. Furthermore, the GTCN framework outperforms comparative hybrid models based on Gated Recurrent Units (GRUs) and GPR, with its advantage being especially pronounced in data-limited scenarios. It also exhibits enhanced capability for temporal feature extraction relative to conventional imputation-based forecasting strategies like forward-filling. By effectively modeling both nonlinear trends and uncertainty within displacement sequences, the GTCN framework offers a robust and scalable solution for landslide-related risk assessment and early warning applications. Its applicability to building safety monitoring underscores its potential contribution to geotechnical hazard mitigation and resilient infrastructure management. Full article
Show Figures

Figure 1

17 pages, 1207 KiB  
Article
Assessing Critical Risk Factors to Sustainable Housing in Urban Areas: Based on the NK-SNA Model
by Guangyu Sun and Hui Zeng
Sustainability 2025, 17(15), 6918; https://doi.org/10.3390/su17156918 - 30 Jul 2025
Viewed by 207
Abstract
Housing sustainability is a cornerstone element of sustainable economic and social development. This is particularly true for China, where high-rise residential buildings are the primary form of housing. In recent years, China has experienced frequent housing-related accidents, resulting in a significant loss of [...] Read more.
Housing sustainability is a cornerstone element of sustainable economic and social development. This is particularly true for China, where high-rise residential buildings are the primary form of housing. In recent years, China has experienced frequent housing-related accidents, resulting in a significant loss of life and property damage. This study aims to identify the key factors influencing housing sustainability and provide a basis for the prevention and control of housing-related safety risks. This study has developed a housing sustainability evaluation indicator system comprising three primary indicators and 16 secondary indicators. This system is based on an analysis of the causes of over 500 typical housing accidents that occurred in China over the past 10 years, employing research methods such as literature reviews and expert consultations, and drawing on the analytical frameworks of risk management theory and system safety theory. Subsequently, the NK-SNA model, which significantly outperforms traditional models in terms of adaptive learning and optimization, as well as the explicit modeling of complex nonlinear relationships, was used to identify the key risk factors affecting housing sustainability. The empirical results indicate that the risk coupling value is correlated with the number of risk coupling factors; the greater the number of risk coupling factors, the larger the coupling value. Human misconduct is prone to forming two-factor risk coupling with housing, and the physical risk factors are prone to coupling with other factors. The environmental factors easily trigger ‘physical–environmental’ two-factor risk coupling. The key factors influencing housing sustainability are poor supervision, building facilities, the main structure, the housing height, foundation settlement, and natural disasters. On this basis, recommendations are made to make full use of modern information technologies such as the Internet of Things, big data, and artificial intelligence to strengthen the supervision of housing safety and avoid multi-factor coupling, and to improve upon early warnings of natural disasters and the design of emergency response programs to control the coupling between physical and environmental factors. Full article
Show Figures

Figure 1

12 pages, 517 KiB  
Article
Tick-Borne Pathogens in Companion Animals and Zoonotic Risk in Portugal: A One Health Surveillance Approach
by Rita Calouro, Telma de Sousa, Sónia Saraiva, Diana Fernandes, Ana V. Mourão, Gilberto Igrejas, José Eduardo Pereira and Patrícia Poeta
Microorganisms 2025, 13(8), 1774; https://doi.org/10.3390/microorganisms13081774 - 30 Jul 2025
Viewed by 256
Abstract
This study aimed to assess the emergence and/or re-emergence of Tick-borne Diseases (TBD) in Portugal by linking the hemoparasite burden in companion animals to vector-borne disease dynamics through a One Health approach. Between 2015 and 2024, 1169 clinically suspected animals with hemoparasite infections, [...] Read more.
This study aimed to assess the emergence and/or re-emergence of Tick-borne Diseases (TBD) in Portugal by linking the hemoparasite burden in companion animals to vector-borne disease dynamics through a One Health approach. Between 2015 and 2024, 1169 clinically suspected animals with hemoparasite infections, treated at the Hospital Veterinário de Santarém (HVS), underwent serological confirmation for Rickettsia conorii, Babesia canis, Ehrlichia spp., and Haemobartonella spp. A total of 3791 serological tests (3.2 tests per animal) were performed and 437 animals tested positive for at least one of the four hemoparasites under investigation. From 2020 to 2024, tests nearly tripled from 894 to 2883, raising positive cases and prevalence from 29.5% to 39.9%, especially for rickettsiosis and hemobartonellosis, indicating an increased circulation of their vectors. A national vector surveillance initiative identified Hyalomma spp., Rhipicephalus sanguineus, Ixodes ricinus, and Dermacentor sp. as primary tick vectors in Portugal for the hemoparasites mentioned above and for other agents like arbovirus, such as Crimean-Congo Hemorrhagic Fever Virus (CCHFV) and tick-borne encephalitis virus (TBEV). This study found that the vectors responsible for transmitting hemoparasitosis, given the high number of serologically positive cases detected in the HVS, represent an increasing risk for TBD. These findings highlight the relevance of companion animal monitoring as an early-warning component within a One Health surveillance approach. Full article
Show Figures

Figure 1

26 pages, 8762 KiB  
Article
Clustered Rainfall-Induced Landslides in Jiangwan Town, Guangdong, China During April 2024: Characteristics and Controlling Factors
by Ruizeng Wei, Yunfeng Shan, Lei Wang, Dawei Peng, Ge Qu, Jiasong Qin, Guoqing He, Luzhen Fan and Weile Li
Remote Sens. 2025, 17(15), 2635; https://doi.org/10.3390/rs17152635 - 29 Jul 2025
Viewed by 215
Abstract
On 20 April 2024, an extreme rainfall event occurred in Jiangwan Town Shaoguan City, Guangdong Province, China, where a historic 24 h precipitation of 206 mm was recorded. This triggered extensive landslides that destroyed residential buildings, severed roads, and drew significant societal attention. [...] Read more.
On 20 April 2024, an extreme rainfall event occurred in Jiangwan Town Shaoguan City, Guangdong Province, China, where a historic 24 h precipitation of 206 mm was recorded. This triggered extensive landslides that destroyed residential buildings, severed roads, and drew significant societal attention. Rapid acquisition of landslide inventories, distribution patterns, and key controlling factors is critical for post-disaster emergency response and reconstruction. Based on high-resolution Planet satellite imagery, landslide areas in Jiangwan Town were automatically extracted using the Normalized Difference Vegetation Index (NDVI) differential method, and a detailed landslide inventory was compiled. Combined with terrain, rainfall, and geological environmental factors, the spatial distribution and causes of landslides were analyzed. Results indicate that the extreme rainfall induced 1426 landslides with a total area of 4.56 km2, predominantly small-to-medium scale. Landslides exhibited pronounced clustering and linear distribution along river valleys in a NE–SW orientation. Spatial analysis revealed concentrations on slopes between 200–300 m elevation with gradients of 20–30°. Four machine learning models—Logistic Regression, Support Vector Machine (SVM), Random Forest (RF), and Extreme Gradient Boosting (XGBoost)—were employed to assess landslide susceptibility mapping (LSM) accuracy. RF and XGBoost demonstrated superior performance, identifying high-susceptibility zones primarily on valley-side slopes in Jiangwan Town. Shapley Additive Explanations (SHAP) value analysis quantified key drivers, highlighting elevation, rainfall intensity, profile curvature, and topographic wetness index as dominant controlling factors. This study provides an effective methodology and data support for rapid rainfall-induced landslide identification and deep learning-based susceptibility assessment. Full article
(This article belongs to the Special Issue Study on Hydrological Hazards Based on Multi-Source Remote Sensing)
Show Figures

Figure 1

27 pages, 2966 KiB  
Article
Identifying Weekly Student Engagement Patterns in E-Learning via K-Means Clustering and Label-Based Validation
by Nisreen Alzahrani, Maram Meccawy, Halima Samra and Hassan A. El-Sabagh
Electronics 2025, 14(15), 3018; https://doi.org/10.3390/electronics14153018 - 29 Jul 2025
Viewed by 218
Abstract
While prior work has explored learner behavior using learning management systems (LMS) data, few studies provide week-level clustering validated against external engagement labels. To understand and assist students in online learning platforms and environments, this study presents a week-level engagement profiling framework for [...] Read more.
While prior work has explored learner behavior using learning management systems (LMS) data, few studies provide week-level clustering validated against external engagement labels. To understand and assist students in online learning platforms and environments, this study presents a week-level engagement profiling framework for e-learning environments, utilizing K-means clustering and label-based validation. Leveraging log data from 127 students over a 13-week course, 44 activity-based features were engineered to classify student engagement into high, moderate, and low levels. The optimal number of clusters (k = 3) was identified using the elbow method and assessed through internal metrics, including a silhouette score of 0.493 and R2 of 0.80. External validation confirmed strong alignment with pre-labeled engagement levels based on activity frequency and weighting. The clustering approach successfully revealed distinct behavioral patterns across engagement tiers, enabling a nuanced understanding of student interaction dynamics over time. Regression analysis further demonstrated a significant association between engagement levels and academic performance, underscoring the model’s potential as an early warning system for identifying at-risk learners. These findings suggest that clustering based on LMS behavior offers a scalable, data-driven strategy for improving learner support, personalizing instruction, and enhancing retention and academic outcomes in digital education settings such as MOOCs. Full article
Show Figures

Figure 1

Back to TopTop