Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (155)

Search Parameters:
Keywords = ripening in oil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1613 KiB  
Article
Olive Oil-Based Lipid Coating as a Precursor Organogel for Postharvest Preservation of Lychee: Efficacy Combined with Polyamide/Polyethylene Packaging Under Passive Atmosphere
by Alessandra Culmone, Roberta Passafiume, Pasquale Roppolo, Ilenia Tinebra, Vincenzo Naselli, Alfonso Collura, Antonino Pirrone, Luigi Botta, Alessandra Carrubba, Nicola Francesca, Raimondo Gaglio and Vittorio Farina
Gels 2025, 11(8), 608; https://doi.org/10.3390/gels11080608 - 2 Aug 2025
Viewed by 304
Abstract
Lychee (Lychee chinensis Sonn.) is a tropical fruit highly appreciated for its vivid red color, sweet flavor, and nutritional properties. However, it is highly perishable, with postharvest losses often due to oxidative browning and dehydration. This study evaluated the organic olive oil [...] Read more.
Lychee (Lychee chinensis Sonn.) is a tropical fruit highly appreciated for its vivid red color, sweet flavor, and nutritional properties. However, it is highly perishable, with postharvest losses often due to oxidative browning and dehydration. This study evaluated the organic olive oil coating (OC), a natural lipidic system with the potential to act as a precursor for organogel development, combined with polyamide/polyethylene (PA/PE) packaging under passive modified atmosphere. Fruits were harvested at commercial maturity and divided into two groups: OC-treated and untreated control (CTR). Both groups were stored at 5 ± 1 °C and 90 ± 5% relative humidity and analyzed on days 0, 3, 6, and 9. The OC-treated fruits showed significantly better retention of physical, chemical, microbiological, and sensory qualities. The coating reduced oxidative stress and enzymatic browning, preserving color and firmness. The PA/PE packaging regulated gas exchange, lowering oxygen levels and delaying respiration and ripening. As a result, OC fruits had lower weight loss, a slower increase in browning index and maturity index, and better visual and sensory scores than the CTR group. This dual strategy proved effective in extending shelf life while maintaining the fruit’s appearance, flavor, and nutritional value. It represents a sustainable and natural approach to enhancing the postharvest stability of lychee. Full article
(This article belongs to the Special Issue Edible Coatings and Film: Gel-Based Innovations)
Show Figures

Figure 1

17 pages, 2601 KiB  
Article
Tree Selection of Vernicia montana in a Representative Orchard Cluster Within Southern Hunan Province, China: A Comprehensive Evaluation Approach
by Juntao Liu, Zhexiu Yu, Xihui Li, Ling Zhou, Ruihui Wang and Weihua Zhang
Plants 2025, 14(15), 2351; https://doi.org/10.3390/plants14152351 - 30 Jul 2025
Viewed by 307
Abstract
With the objective of identifying superior Vernicia montana trees grounded in phenotypic and agronomic traits, this study sought to develop and implement a comprehensive evaluation method which would provide a practical foundation for future clonal breeding initiatives. Using the Vernicia montana propagated from [...] Read more.
With the objective of identifying superior Vernicia montana trees grounded in phenotypic and agronomic traits, this study sought to develop and implement a comprehensive evaluation method which would provide a practical foundation for future clonal breeding initiatives. Using the Vernicia montana propagated from seedling forests grown in the Suxian District of Chenzhou City in southern Hunan Province, we conducted pre-selection, primary selection, and re-selection of Vernicia montana forest stands and took the nine trait indices of single-plant fruiting quantity, single-plant fruit yield, disease and pest resistance, fruit ripening consistency, fruit aggregation, fresh fruit single-fruit weight, fresh fruit seed rate, dry seed kernel rate, and seed kernel oil content rate as the optimal evaluation indexes and carried out cluster analysis and a comprehensive evaluation in order to establish a comprehensive evaluation system for superior Vernicia montana trees. The results demonstrated that a three-stage selection process—consisting of pre-selection, primary selection, and re-selection—was conducted using a comprehensive analytical approach. The pre-selection phase relied primarily on sensory evaluation criteria, including fruit count per plant, tree size, tree morphology, and fruit clustering characteristics. Through this rigorous screening process, 60 elite plants were selected. The primary selection was based on phenotypic traits, including single-plant fruit yield, pest and disease resistance, and uniformity of fruit ripening. From this stage, 36 plants were selected. Twenty plants were then selected for re-selection based on key performance indicators, such as fresh fruit weight, fresh fruit seed yield, dry seed kernel yield, and oil content of the seed kernel. Then the re-selected optimal trees were clustered and analyzed into three classes, with 10 plants in class I, 7 plants in class II, and 3 plants in class III. In class I, the top three superior plants exhibited outstanding performance across key traits: their fresh fruit weight per fruit, fresh fruit seed yield, dry seed yield, and seed kernel oil content reached 41.61 g, 42.80%, 62.42%, and 57.72%, respectively. Compared with other groups, these figures showed significant advantages: 1.17, 1.09, 1.12, and 1.02 times the average values of the 20 reselected superior trees; 1.22, 1.19, 1.20, and 1.08 times those of the 36 primary-selected superior trees; and 1.24, 1.25, 1.26, and 1.19 times those of the 60 pre-selected trees. Fruits counts per plant and the number of fruits produced per plant of the best three plants in class I were 885 and 23.38 kg, respectively, which were 1.13 and 1.18 times higher than the average of 20 re-selected superior trees, 1.25 and 1.30 times higher than the average of 36 first-selected superior trees, and 1.51 and 1.58 times higher than the average of 60 pre-selected superior trees. Class I superior trees, especially the top three genotypes, are suitable for use as mother trees for scion collection in grafting. The findings of this study provide a crucial foundation for developing superior clonal varieties of Vernicia montana through selective breeding. Full article
Show Figures

Figure 1

24 pages, 3485 KiB  
Article
Effect of Natural Edible Oil Coatings and Storage Conditions on the Postharvest Quality of Bananas
by Laila Al-Yahyai, Rashid Al-Yahyai, Rhonda Janke, Mai Al-Dairi and Pankaj B. Pathare
AgriEngineering 2025, 7(7), 234; https://doi.org/10.3390/agriengineering7070234 - 12 Jul 2025
Viewed by 700
Abstract
Increasing the shelf-life of fruits and vegetables using edible natural substances after harvest is economically important and can be useful for human health. Postharvest techniques help maintain the quality of edible tissues resulting in extended marketing periods and reduced food waste. The edible [...] Read more.
Increasing the shelf-life of fruits and vegetables using edible natural substances after harvest is economically important and can be useful for human health. Postharvest techniques help maintain the quality of edible tissues resulting in extended marketing periods and reduced food waste. The edible coating on perishable commodities is a common technique used by the food industry during the postharvest supply chain. The objective of this research was to study the effect of edible oil to minimize the loss of postharvest physio-chemical and nutritional attributes of bananas. The study selected two banana cultivars (Musa, ‘Cavendish’ and ‘Milk’) to conduct this experiment, and two edible oils (olive oil (Olea europaea) and moringa oil (Moringa peregrina)) were applied as an edible coating under two different storage conditions (15 and 25 °C). The fruit’s physio-chemical properties including weight loss, firmness, color, total soluble solids (TSS), pH, titratable acidity (TA), TSS: TA ratio, and mineral content were assessed. The experiment lasted for 12 days. The physicochemical properties of the banana coated with olive and moringa oils were more controlled than the non-coated (control) banana under both storage temperatures (15 °C and 25 °C). Coated bananas with olive and moringa oils stored at 15 °C resulted in further inhibition in the ripening process. There was a decrease in weight loss, retained color, and firmness, and the changes in chemical parameters were slower in banana fruits during storage in the olive and moringa oil-coated bananas. Minerals were highly retained in coated Cavendish bananas. Overall, the coated samples visually maintained acceptable quality until the final day of storage. Our results indicated that olive and moringa oils in this study have the potential to extend the shelf-life and improve the physico-chemical quality of banana fruits. Full article
(This article belongs to the Special Issue Latest Research on Post-Harvest Technology to Reduce Food Loss)
Show Figures

Figure 1

24 pages, 2363 KiB  
Article
Influence of Environmental Conditions Associated with Low and High Altitudes on Economic and Quality Characteristics of Fruit Ripening of Camellia chekiangoleosa Hu
by Teng Wei, Shengyue Zhong, Bin Huang, Kang Zha, Jing Li and Qiang Wen
Foods 2025, 14(13), 2266; https://doi.org/10.3390/foods14132266 - 26 Jun 2025
Cited by 1 | Viewed by 332
Abstract
Camellia chekiangoleosa Hu. (C. chekiangoleosa) is a typical high-altitude oil-tea Camellia species. Due to altitude being an important factor affecting crop growth and quality, the influence of environmental conditions associated with low (60 m) and high (600 m) altitudes on the [...] Read more.
Camellia chekiangoleosa Hu. (C. chekiangoleosa) is a typical high-altitude oil-tea Camellia species. Due to altitude being an important factor affecting crop growth and quality, the influence of environmental conditions associated with low (60 m) and high (600 m) altitudes on the economic and quality characteristics of fruit ripening was assessed in this study. Our investigations showed that altitude has no influence on the growth pattern of C. chekiangoleosa fruit shells and seed oils, and the differences in samples between different altitudes gradually decreased with the ripening of C. chekiangoleosa. Nevertheless, mature C. chekiangoleosa fruit shells and seed oils from low and high altitudes showed some differences. Specifically, the fruit shells of C. chekiangoleosa cultivated in low-altitude areas contained more soluble sugar, protein, total polyphenols, total flavonoids, and tea saponin. Meanwhile, low-altitude cultivation elevated the abundance of α-tocopherol, β-sitosterol, β-amyrinol, flavonoids, and polyphenols in mature seed oils but decreased the oil yield. Moreover, few effects of altitude on fatty acid composition were observed in mature seed oils. Cluster and receiver operating characteristic (ROC) analysis indicated that the influence of altitude on the quality of mature seed oils was strongly associated with oil yield and α-tocopherol. Taken together, the present study suggests that when cultivating C. chekiangoleosa in low-altitude regions, more energy should be devoted to improving oil yield. The results of the fruiting process and quality trait variation in C. chekiangoleosa during the low-altitude introduction process can provide an important theoretical basis for the introduction and cultivation of this oil-tea species. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

27 pages, 2897 KiB  
Article
Blackseed Oil Supplemented Caseinate–Carboxymethyl Chitosan Film Membrane for Improving Shelf Life of Grape Tomato
by Amal M. A. Mohamed and Hosahalli S. Ramaswamy
Materials 2025, 18(11), 2653; https://doi.org/10.3390/ma18112653 - 5 Jun 2025
Viewed by 546
Abstract
Blackseed oil supplemented with caseinate (CA)–carboxymethyl chitosan (CMCH) composite membranes were evaluated for their functional properties and as edible coating for extending the shelf life of grape tomatoes. Composite films were prepared from equal parts of (CaCa or NaCa) and (CMCH) with or [...] Read more.
Blackseed oil supplemented with caseinate (CA)–carboxymethyl chitosan (CMCH) composite membranes were evaluated for their functional properties and as edible coating for extending the shelf life of grape tomatoes. Composite films were prepared from equal parts of (CaCa or NaCa) and (CMCH) with or without supplemented 3% blackseed oil (BO) and evaluated for their functional properties. Subsequently, the edible membrane coating was evaluated to extend the shelf life of grape tomatoes (Solanum lycopersicum L.). The water vapor permeability (WVP) of the films was the lowest for the calcium caseinate–carboxymethyl chitosan–blackseed oil (CaCa-CMCH-BO) film (3.01 g kPa−1 h−1 m−2). Adding blackseed oil to the edible film matrix also led to a significant increase in its mechanical properties, resulting in tensile strength values of 12.5 MPa and 10.2 MPa and elongation at break values of 90.5% and 100% for NaCa-CMCH-BO and CaCa-CMCH-BO, respectively. The composite films also exhibited good compatibility through hydrogen bonding and hydrophobic interactions, as confirmed by FTIR spectroscopy. The particle size and zeta potential of CaCa-CMCM-BO were 117 nm and −40.73 mV, respectively, while for NaCa-CMCH-BO, they were 294.70 nm and −25.10 mV, respectively. The incorporation of BO into the films resulted in greater antioxidant activity. When applied as an edible film membrane on grape tomatoes, the coating effectively delayed the deterioration of tomatoes by reducing weight loss, microbial spoilage, and oxidative degradation. Compared to the control, the coated fruits had delayed ripening, with a shelf life of up to 30 days, and reduced microbial growth over the entire storage period. Full article
Show Figures

Figure 1

18 pages, 4825 KiB  
Article
Development of D-Limonene Nanoemulsions for Oral Cancer Inhibition: Investigating the Role of Ostwald Ripening Inhibitors and Cell Death Mechanisms
by Suwisit Manmuan, Yotsanan Weerapol, Tiraniti Chuenbarn, Sontaya Limmatvapirat, Chutima Limmatvapirat and Sukannika Tubtimsri
Int. J. Mol. Sci. 2025, 26(11), 5279; https://doi.org/10.3390/ijms26115279 - 30 May 2025
Cited by 1 | Viewed by 564
Abstract
The aim of this study was to investigate the effect of Ostwald ripening inhibitors on D-limonene (D-LMN) nanoemulsions and to elucidate their impact on oral cancer cells. Various inhibitors, including olive oil, soybean oil, and perilla oil, were incorporated into [...] Read more.
The aim of this study was to investigate the effect of Ostwald ripening inhibitors on D-limonene (D-LMN) nanoemulsions and to elucidate their impact on oral cancer cells. Various inhibitors, including olive oil, soybean oil, and perilla oil, were incorporated into D-LMN nanoemulsions at different ratios (25:75–75:25, D-LMN to inhibitor). The resulting nanoemulsions were evaluated for droplet size, size distribution, zeta potential, stability, droplet morphology, cytotoxicity, antimetastatic and anti-invasive activities, apoptosis induction, and cell cycle arrest. Results showed that the 75:25 D-LMN to inhibitor ratio produced the smallest droplet size and exhibited great stability, particularly with perilla oil. Notably, D-LMN nanoemulsions displayed strong anti-oral cancer effects by reducing cell viability, metastasis, and invasion. Apoptosis was induced, as evidenced by nuclear fragmentation, Annexin V binding, and altered expression of BAX, BCL-XL, Cytochrome c, and Caspase-9. Additionally, the nanoemulsions caused cell cycle arrest via downregulation of Cyclin D1, CDK2, CDK4, and CDK6. These findings highlight the potential of D-LMN nanoemulsions as a promising alternative therapeutic strategy for oral cancer treatment. Full article
(This article belongs to the Special Issue New Agents and Novel Drugs Use for the Oncological Diseases Treatment)
Show Figures

Figure 1

18 pages, 805 KiB  
Article
Formulation and Evaluation of Liposome-Encapsulated Phenolic Compounds from Olive Mill Waste: Insights into Encapsulation Efficiency, Antioxidant, and Cytotoxic Activities
by David Camilleri, Karen Attard and Frederick Lia
Molecules 2025, 30(11), 2351; https://doi.org/10.3390/molecules30112351 - 28 May 2025
Viewed by 1389
Abstract
Phenolic extracts obtained from the solid by-products of olive oil production (collectively referred to as “olive mill waste”) were encapsulated in phosphatidylcholine/cholesterol liposomes using the thin-film hydration method. This study examines how lipid composition, cholesterol content, and two different approaches to introducing phenolics [...] Read more.
Phenolic extracts obtained from the solid by-products of olive oil production (collectively referred to as “olive mill waste”) were encapsulated in phosphatidylcholine/cholesterol liposomes using the thin-film hydration method. This study examines how lipid composition, cholesterol content, and two different approaches to introducing phenolics affect the efficiency with which these bioactive compounds are encapsulated. ‘Bidni’ and ‘Bajda’ cultivars are two main olive cultivars found in Malta. ‘Bajda’ is an example of a variety exhibiting leucocarpa. Unlike typical olives, leucocarpa drupes remain white during ripening due to silenced anthocyanin-producing genes. These two extracts were tested for encapsulation efficiency and then evaluated for in vitro cytotoxicity against human leukemia cells. Our results show that increasing the amount of cholesterol in the liposomes generally improved the retention of phenolic compounds, whereas the encapsulation route (i.e., inclusion with the lipids versus hydration medium) had differential effects on specific phenolics. Additionally, liposomal encapsulation provided more potent cytotoxic activity over 48 h compared to the free extract, suggesting that liposomes can enhance and prolong the delivery of bioactive compounds from this agri-food waste. Full article
Show Figures

Figure 1

16 pages, 1709 KiB  
Article
Biochemical and Physiological Performance of Seeds of Pentaclethra macroloba (Willd.) Kuntz (Leguminosae, Caesalpinioideae) at Different Phases of Maturation
by Olívia Domingues Ribeiro, Reynaldo Azevedo Santos, Mário Augusto Gonçalves Jardim, Jaisielle Kelem França Benjamim, Thiara Luana Mamoré Rodrigues Hirosue, Eloisa Helena de Aguiar Andrade, Mozaniel Santana de Oliveira and Ely Simone Cajueiro Gurgel
Plants 2025, 14(7), 1112; https://doi.org/10.3390/plants14071112 - 2 Apr 2025
Viewed by 578
Abstract
Determining the optimal harvest time for Pentaclethra macroloba seeds is essential to preserve germination potential and ensure high-quality oil production, valued in the pharmaceutical and cosmetic industries. This study aimed to identify the maturation phase that maximizes seed physiological quality and oil yield. [...] Read more.
Determining the optimal harvest time for Pentaclethra macroloba seeds is essential to preserve germination potential and ensure high-quality oil production, valued in the pharmaceutical and cosmetic industries. This study aimed to identify the maturation phase that maximizes seed physiological quality and oil yield. Fruits and seeds were collected from 44 mother plants in Belém and São Domingos do Capim, Brazil, during three final maturation phases: P1 (dark green pericarp, beige seeds), P2 (yellowish-green pericarp, light-brown seeds), and P3 (black pericarp, dark brown seeds). Germination, vigor tests, and gas chromatography analyses revealed that seeds from P3 exhibited the highest vigor (93–99% germination) and oil yield (up to 13.1%). Major fatty acids were oleic (up to 65.23%), linoleic (up to 8.45%), and behenic acids (up to 17.22%). The ripening period ranged from 7 to 8 months, influenced by environmental factors. Optimal seed quality and oil yield are achieved when harvesting occurs before dispersal, targeting fruits with yellowish-green pericarp transitioning to black. Post-harvest drying enhances oil extraction efficiency. These findings support the conservation of P. macroloba through viable seeds and promote economic sustainability by optimizing oil production, benefiting biodiversity and local extractive communities. Full article
Show Figures

Figure 1

18 pages, 9628 KiB  
Article
Determining the Optimum Harvest Point in Oil Palm Interspecific Hybrids (O × G) to Maximize Oil Content
by Hernán Mauricio Romero, Rodrigo Ruiz-Romero, Arley Fernando Caicedo-Zambrano, Iván Ayala-Diaz and Jenny Liset Rodríguez
Agronomy 2025, 15(4), 887; https://doi.org/10.3390/agronomy15040887 - 1 Apr 2025
Viewed by 914
Abstract
Elaeis oleifera and Elaeis guineensis, two oil palm species capable of intercrossing to produce interspecific Elaeis oleifera × Elaeis guineensis (O × G) hybrids, exhibit genetic variability in key agronomic traits such as fruit development, oil accumulation, and bunch composition. This variability [...] Read more.
Elaeis oleifera and Elaeis guineensis, two oil palm species capable of intercrossing to produce interspecific Elaeis oleifera × Elaeis guineensis (O × G) hybrids, exhibit genetic variability in key agronomic traits such as fruit development, oil accumulation, and bunch composition. This variability influences the productivity and oil quality of the resulting hybrids. Harvesting, a critical practice in oil palm production, significantly impacts oil yield and quality. Therefore, this study aimed to ascertain the optimum harvest point (OHP) in widely cultivated O × G hybrids and its correlation with genetic backgrounds. The O × G cultivars, “Coari × La Mé” (C × LM), “Manaos × Compacta” (M × C), and “Brazil × Djongo” (B × DJ), were examined to identify notable changes during various phenological stages of bunch ripening using the O × G BBCH scale, a standardized system for describing plant growth stages based on phenological development. The research was conducted in the Southwest Colombian oil palm zone during dry and rainy seasons. Observations revealed distinctive fruit coloration patterns and increased bunch weights throughout the maturation process. However, final fruit coloration did not consistently align with maximum oil rates, indicating it as an unsuitable descriptor for OHP. The C × LM cultivar exhibited the shortest ripening period (173 days after anthesis, DAA), while M × C showed the longest at 207 DAA, followed by B × DJ at 187 DAA. Pollination efficiency varied among cultivars, with C × LM and M × C displaying higher proportions of parthenocarpic fruits. Findings suggest harvesting can occur for all cultivars between phenological stages 807 and 809—corresponding to late maturity stages in fruit development—regardless of the time of year, when maximum oil per bunch is attained. Fruit opacity, fruit cracking, and fruit detachment at stages 807 and 809 were identified as pivotal descriptors for determining the right OHP, albeit unique to each cultivar. Implementing two of these three descriptors by field workers will likely result in the highest oil yields for O × G cultivars. In conclusion, this research provides valuable insights into optimizing oil palm harvest practices, emphasizing the importance of considering genetic variability and phenological indicators for determining the optimum harvest point in interspecific O × G hybrids. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

24 pages, 3887 KiB  
Article
Ripening Dynamics and Optimal Harvest Timing of ‘Fantastico’ and ‘Femminello’ Bergamot Fruit
by Rocco Mafrica, Alessandra De Bruno, Davide Leo Mafrica, Cristina Merlo, Antonio Gattuso and Marco Poiana
Agriculture 2025, 15(7), 737; https://doi.org/10.3390/agriculture15070737 - 29 Mar 2025
Cited by 2 | Viewed by 622
Abstract
Bergamot was traditionally grown for its essential oil, but recently, the juice’s health benefits have increased consumer demand. The need to understand how fruit characteristics change during growth and ripening is essential for optimizing the yield and market attractiveness in order to select [...] Read more.
Bergamot was traditionally grown for its essential oil, but recently, the juice’s health benefits have increased consumer demand. The need to understand how fruit characteristics change during growth and ripening is essential for optimizing the yield and market attractiveness in order to select the best harvest time, understanding when the fruits have reached the best quality and carpometric characteristics. Currently, the knowledge on this topic is very limited. The aim of this study was to evaluate the ripening changes in Fantastico and Femminello bergamot cultivars in the traditional bergamot growing area in the province of Reggio Calabria (Southern Italy). Physico-chemical changes in fruits were evaluated from 200 to 410 days after full flowering (DAFB) through field observations and laboratory evaluations. The fruit drop remained low up to 290 DAFB, while the fruit weight increased to 350 DAFB. By mid-December, the peel of both cultivars had turned completely yellow. The juice yield progressively increased up to 260 DAFB, maintained levels higher than 50% for another two months and then decreased. To maximize quantitative production, the harvest should not occur before 260 DAFB for the Femminello cultivar and 290 DAFB for the Fantastico cultivar. However, delaying the harvest beyond 350 DAFB is not recommended, as it results in significantly reduced yields. The period between 260 and 320 DAFB also appears to be the ideal time for enhancing the qualitative characteristics of bergamot fruits. Full article
(This article belongs to the Special Issue Fruit Quality Formation and Regulation in Fruit Trees)
Show Figures

Figure 1

14 pages, 2508 KiB  
Review
Fatty Acid and Lipid Metabolism in Oil Palm: From Biochemistry to Molecular Mechanisms
by Eman H. Afifi, Jerome Jeyakumar John Martin, Qi Wang, Xinyu Li, Xiaoyu Liu, Lixia Zhou, Rui Li, Dengqiang Fu, Qihong Li, Jianqiu Ye and Hongxing Cao
Int. J. Mol. Sci. 2025, 26(6), 2531; https://doi.org/10.3390/ijms26062531 - 12 Mar 2025
Cited by 2 | Viewed by 1420
Abstract
Oil palm (Elaeis guineensis) is a cornerstone of the economy in many countries due to its unparalleled ability to produce high yields of oil, making it a critical crop among oil-producing fruits. This review aims to elucidate the processes involved in [...] Read more.
Oil palm (Elaeis guineensis) is a cornerstone of the economy in many countries due to its unparalleled ability to produce high yields of oil, making it a critical crop among oil-producing fruits. This review aims to elucidate the processes involved in fatty acid formation and synthesis, which are essential components of palm oil, and to examine the changes these fatty acids undergo during fruit growth and ripening. Additionally, we highlight the genes and molecular mechanisms governing fatty acid metabolism, which hold significant potential for influencing oil composition and quality. Understanding these pathways is vital, as fatty acid profiles have profound implications for both human health and industrial applications. While palm oil contains beneficial compounds, such as polyphenols and vitamin E, concerns arise from its high palmitic acid content and the formation of potentially harmful byproducts during industrial refining, such as 3-monochloropropane-1,2-diol (3-MCPD) esters and glycidyl esters. We also explore advanced breeding methods and modern strategies to enhance oil quality and productivity, including the application of genomic tools to transfer desirable traits and expand genetic diversity in breeding programs. By integrating biochemical, genetic, and biotechnological insights, this review provides a foundation for improving palm oil production and addressing the growing demand for healthier, sustainable oil solutions. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

18 pages, 1377 KiB  
Article
One-Year Seasonal Variation in the Content of Volatile Compounds in Bay Laurel Leaves
by Dario Kremer, Valerija Dunkić, Srđan Milovac, Suzana Inić, Lea Juretić, Iva Rechner Dika and Marinko Petrović
Horticulturae 2025, 11(3), 241; https://doi.org/10.3390/horticulturae11030241 - 24 Feb 2025
Cited by 1 | Viewed by 663
Abstract
The composition of an essential oil (EO) depends on both the plant’s genetic constitution and environmental factors. In this study, the leaves of female bay laurel (Laurus nobilis L., family Lauraceae) plants were collected each month in the period from 15 January [...] Read more.
The composition of an essential oil (EO) depends on both the plant’s genetic constitution and environmental factors. In this study, the leaves of female bay laurel (Laurus nobilis L., family Lauraceae) plants were collected each month in the period from 15 January to 15 December 2022. Twelve obtained leaf samples were hydrodistilled in a Clevenger apparatus and analyzed using gas chromatography–mass spectrometry (GC-MS). A total of 44 compounds were detected in EO and 39 compounds were identified based on MS spectra and RIs (retention indices), accounting for 99.44–99.94% of the oil. The EO consisted almost entirely of monoterpenes (95.56–99.28%) and small quantities of phenylpropanoids, sesquiterpenes and other compounds. The major volatile compound was 1,8-cineole (49.79–64.94%), followed by α-terpinyl acetate (7.14–11.96%), sabinene (3.16–9.01%), linalool (1.77–8.03%), α-pinene (1.46–4.49%), β-pinene (1.55–3.69%) and α-terpineol (0.99–4.77%). The ANOVA indicated statistically significant changes in the composition of the EO over one year. The contents of eugenol, methyl eugenol and elemicin, which are responsible for the spicy aroma of the leaves, were highest during flowering (March) and at the time of fruit ripening (October, November). The harvest time of the leaves can be adjusted to obtain leaves rich in the desired compounds according to whether they are to be used as a spice, medicine or repellent. Full article
(This article belongs to the Topic Nutritional and Phytochemical Composition of Plants)
Show Figures

Figure 1

27 pages, 3467 KiB  
Article
Study of Formulation, Physical Properties, and Instability Process and In Vitro Evaluation of Transparent Nanoemulsions Containing Sesame Seed Oil (SO) and Raspberry Seed Oil (RO)
by Pedro Alves Rocha-Filho and Monica Maruno
Cosmetics 2025, 12(2), 32; https://doi.org/10.3390/cosmetics12020032 - 20 Feb 2025
Cited by 2 | Viewed by 1423
Abstract
Nanoemulsions are significant for cosmetic products intended for skin care and for health products due to the reduced size (range 20 to 500 nm) of the globules, which avoids processes of instability. They present transparency, fluidity, wettability, and spreadability; increase skin penetration; and [...] Read more.
Nanoemulsions are significant for cosmetic products intended for skin care and for health products due to the reduced size (range 20 to 500 nm) of the globules, which avoids processes of instability. They present transparency, fluidity, wettability, and spreadability; increase skin penetration; and have good sensation. The main instability mechanism of nanoemulsions is called Ostwald ripening, responsible for increasing the average diameter of emulsion globules. Sesame Seed Oil (SO) and Raspberry Seed Oil (RO) are indicated as moisturizing agents recently used in the cosmetic industry and for reducing transepidermal water loss, preventing damage to the skin barrier. They contain specific compounds with common properties such as antioxidant, moisturizing, emollient, and photoprotective actions, making them attractive alternative and complementary treatments to soften the process of skin aging. Below, we present the results of this research on the development of nanoemulsions containing Sesame Seed Oil added with Raspberry Seed Oil by the low-energy method. SO nanoemulsions at HLB = 8.0 were obtained with PEG 15 castor oil (A) and PEG 30 castor oil (F.80) and had globule sizes of 50 nm and 200 nm, respectively, along with pH values considered suitable for skin care products and lower viscosity values allowing for the easy application of nanoemulsions to the skin. Nanoemulsions A and F.80 showed antioxidant activities of 68.71% and 67.75%, respectively. SO nanoemulsions with PEG 15 and PEG 30 castor oil were obtained at 85 °C and 75 °C, respectively, and have the lowest Ostwald ripening index (1.33 × 1022 m3 s−1). The in vitro evaluation conducted using the HET-CAM method for nanoemulsions and PEG 15 and PEG 30 castor oils showed that they were slightly irritating and could be used in cosmetic products. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Graphical abstract

19 pages, 8622 KiB  
Article
Selection of Key Genes for Apricot Kernel Oil Synthesis Based on Transcriptome Analysis
by Dan Zhang and Zhong Zhao
Foods 2025, 14(4), 568; https://doi.org/10.3390/foods14040568 - 8 Feb 2025
Viewed by 1042
Abstract
The purpose of this study was to identify the key genes regulating apricot kernel oil (AKO) biosynthesis and understand the molecular pathways of AKO synthesis and accumulation. This study used two varieties of apricot kernel to determine the oil contents and primary fatty [...] Read more.
The purpose of this study was to identify the key genes regulating apricot kernel oil (AKO) biosynthesis and understand the molecular pathways of AKO synthesis and accumulation. This study used two varieties of apricot kernel to determine the oil contents and primary fatty acid compositions at different developmental stages. Candidate genes for AKO biosynthesis were selected through transcriptome sequencing technology and weighted gene co-expression network analysis (WGCNA), and these genes were verified by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The results indicate that during apricot ripening, the content of AKO exhibits an ‘S’-shaped accumulation pattern. The primary fatty acid components are C18:1 and C18:2. The transcriptome sequencing produced 164.19 Gb of clean data and 17,411 differentially expressed genes. The WGCNA results indicate that significantly differentially expressed genes cluster into seven modules—gene clusters (module)—with the strongest correlations to AKO indicated in pink. Nineteen candidate genes were selected from the oil synthesis pathway and WGCNA results. The qRT-PCR results indicate that six key enzyme genes and three transcription factors play significant regulatory roles in AKO biosynthesis. This study elucidates the molecular pathways involved in AKO biosynthesis and explains the difference in oil content between bitter and sweet apricot kernels. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

15 pages, 4437 KiB  
Article
Using Commercial Bio-Functional Fungal Polysaccharides to Construct Emulsion Systems by Associating with SPI
by Laixin Dai, Qingfu Wang, Lining Wang, Qinghua Huang and Biao Hu
Foods 2025, 14(2), 215; https://doi.org/10.3390/foods14020215 - 12 Jan 2025
Cited by 1 | Viewed by 1037
Abstract
Fungi polysaccharides are nutraceutical-rich compounds with bioactive properties, offering promising applications in food formulation. This study examined the non-covalent complexation of commercial polysaccharides derived from the fruiting bodies of Auricularia auricula-judae (AA) and Ganoderma lucidum (GL) and soy protein isolate to enhance emulsifying [...] Read more.
Fungi polysaccharides are nutraceutical-rich compounds with bioactive properties, offering promising applications in food formulation. This study examined the non-covalent complexation of commercial polysaccharides derived from the fruiting bodies of Auricularia auricula-judae (AA) and Ganoderma lucidum (GL) and soy protein isolate to enhance emulsifying properties. Complexes were examined across protein-to-polysaccharide ratios (0:1 to 1:0), pH levels (3 to 7), and heat treatment conditions. Results indicated a maximum insoluble association at pH 4 for both SPI-AAP and SPI-GLP complexes, with SPI-AAP complexes remaining soluble at pH 3, while SPI-GLP complexes exhibited insolubility. Heat treatment had a limited effect on electrostatically driven complexation but resulted in larger particles through a protein-denaturation-induced increase of hydrophobic interactions. In terms of emulsifying properties, individual GLPs demonstrated superior performance compared to individual AAPs. The GLPs engaged in competitive adsorption at the oil–water interface alongside SPI, resulting in larger emulsion droplet sizes compared to either component alone. The association of either AAPs or GLPs with SPI enhanced the emulsion stability against coalescence and Ostwald ripening. Commercial fungal polysaccharides demonstrate substantial potential for incorporation into manufactured food products, particularly in colloidal formulations. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Graphical abstract

Back to TopTop