Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (519)

Search Parameters:
Keywords = ripening conditions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 522 KiB  
Article
High Humidity Storage Close to Saturation Reduces Kiwifruit Postharvest Rots and Maintains Quality
by Fabio Buonsenso, Simona Prencipe, Silvia Valente, Giulia Remolif, Jean de Barbeyrac, Alberto Sardo and Davide Spadaro
Horticulturae 2025, 11(8), 883; https://doi.org/10.3390/horticulturae11080883 (registering DOI) - 31 Jul 2025
Viewed by 38
Abstract
Postharvest storage of kiwifruit requires the implementation of precise environmental conditions to maintain fruit quality and reduce decay. In this research, conducted over two years, we examined whether the storage conditions, characterized by low temperature (1 ± 1 °C) and ultra-high relative humidity [...] Read more.
Postharvest storage of kiwifruit requires the implementation of precise environmental conditions to maintain fruit quality and reduce decay. In this research, conducted over two years, we examined whether the storage conditions, characterized by low temperature (1 ± 1 °C) and ultra-high relative humidity (higher than 99%, close to saturation), generated by the Xedavap® machine from Xeda International, were effective in maintaining the fruit quality and reducing postharvest rots compared to standard storage conditions, characterized by involved low temperature (1 ± 1 °C) and high relative humidity (98%). Kiwifruits preserved under the experimental conditions exhibited a significantly lower rot incidence after 60 days of storage, with the treated fruits showing 4.48% rot compared to 23.03% under the standard conditions in the first year, using inoculated fruits, and 6.30% versus 9.20% in the second year using naturally infected fruits, respectively. After shelf life (second year only), rot incidence remained significantly lower in the treated fruits (12.80%) compared to the control (42.30%). Additionally, quality analyses showed better parameters when using the Xedavap® system over standard methods. The ripening process was effectively slowed down, as indicated by changes in the total soluble solids, firmness, and titratable acidity compared to the control. These results highlight the potential of ultra-high relative humidity conditions to reduce postharvest rot, extend the shelf life, and enhance the marketability of kiwifruit, presenting a promising and innovative solution for the horticultural industry. Full article
Show Figures

Graphical abstract

20 pages, 2854 KiB  
Article
Trait-Based Modeling of Surface Cooling Dynamics in Olive Fruit Using Thermal Imaging and Mixed-Effects Analysis
by Eddy Plasquy, José M. Garcia, Maria C. Florido and Anneleen Verhasselt
Agriculture 2025, 15(15), 1647; https://doi.org/10.3390/agriculture15151647 - 30 Jul 2025
Viewed by 178
Abstract
Effective postharvest cooling of olive fruit is increasingly critical under rising harvest temperatures driven by climate change. This study models passive cooling dynamics using a trait-based, mixed-effects statistical framework. Ten olive groups—representing seven cultivars and different ripening or size stages—were subjected to controlled [...] Read more.
Effective postharvest cooling of olive fruit is increasingly critical under rising harvest temperatures driven by climate change. This study models passive cooling dynamics using a trait-based, mixed-effects statistical framework. Ten olive groups—representing seven cultivars and different ripening or size stages—were subjected to controlled cooling conditions. Surface temperature was recorded using infrared thermal imaging, and morphological and compositional traits were quantified. Temperature decay was modeled using Newton’s Law of Cooling, extended with a quadratic time term to capture nonlinear trajse thectories. A linear mixed-effects model was fitted to log-transformed, normalized temperature data, incorporating trait-by-time interactions and hierarchical random effects. The results confirmed that fruit weight, specific surface area (SSA), and specific heat capacity (SHC) are key drivers of cooling rate variability, consistent with theoretical expectations, but quantified here using a trait-based statistical model applied to olive fruit. The quadratic model consistently outperformed standard exponential models, revealing dynamic effects of traits on temperature decline. Residual variation at the group level pointed to additional unmeasured structural influences. This study demonstrates that olive fruit cooling behavior can be effectively predicted using interpretable, trait-dependent models. The findings offer a quantitative basis for optimizing postharvest cooling protocols and are particularly relevant for maintaining quality under high-temperature harvest conditions. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

18 pages, 2563 KiB  
Article
Ripening Kinetics and Grape Chemistry of Virginia Petit Manseng
by Joy H. Ting, Alicia A. Surratt, Lauren E. Moccio, Ann M. Sandbrook, Elizabeth A. Chang and Dennis P. Cladis
Beverages 2025, 11(4), 108; https://doi.org/10.3390/beverages11040108 - 30 Jul 2025
Viewed by 157
Abstract
Petit Manseng is a variety of Vitis vinifera gaining popularity in Virginia, USA because it consistently produces high quality grapes under variable growing conditions. However, its high sugar and acid levels complicate dry wine production. The goal of this study was to characterize [...] Read more.
Petit Manseng is a variety of Vitis vinifera gaining popularity in Virginia, USA because it consistently produces high quality grapes under variable growing conditions. However, its high sugar and acid levels complicate dry wine production. The goal of this study was to characterize Petit Manseng ripening kinetics from veraison to harvest to identify optimal harvest timing for producing dry white wines, using Chardonnay as a comparator because of its popularity in Virginia, well-known ripening kinetics, and ability to produce high quality dry white wines. A total of 74 samples of Petit Manseng and Chardonnay grapes were collected from five commercial sites over 2 years and evaluated for berry weight, pH, titratable acidity (TA), malic acid, total soluble solids (TSS), glucose, and fructose, with ripening kinetics modeled using segmented regressions. Results indicated that harvest timing and grape variety were the primary factors influencing ripening kinetics. In contrast, growing location and vintage had limited impact. In Chardonnay grapes, TA declined from 21 to 7.1 g/L and TSS increased from 6.1 to 19.5 g/L. In Petit Manseng, TA declined from 25 to 10.8 g/L and TSS increased from 8.0 to 23.6 g/L. Acid depletion plateaued ~2 weeks after sugar accumulation plateaued in Petit Manseng grapes, though the plateaus were similar in Chardonnay grapes. Linear discriminant analysis (LDA) completely separated grapes based on pH or TA vs. sugars, but not malic acid vs. sugars, suggesting that tartaric acid is driving acidity differences between cultivars. These data indicate that regardless of when grapes are harvested, winemakers may need to employ targeted acid management strategies with Petit Manseng because of its ripening kinetics. Full article
Show Figures

Figure 1

15 pages, 4120 KiB  
Article
Unlocking the Potential of Lacticaseibacillus rhamnosus 73 as a Ripening Agent in Semi-Hard Cheese After Freeze-Drying and a Six-Month Storage Period
by Mara E. Batistela, Carina V. Bergamini, Elisa C. Ale and Guillermo H. Peralta
Fermentation 2025, 11(7), 409; https://doi.org/10.3390/fermentation11070409 - 16 Jul 2025
Viewed by 427
Abstract
Dehydration and storage conditions used to preserve dairy cultures in the industry may negatively impact their viability and functionality. This study investigated the effects of freeze-drying and storage on the metabolic activity of Lacticaseibacillus rhamnosus 73 (L73). The strain’s viability after freeze-drying and [...] Read more.
Dehydration and storage conditions used to preserve dairy cultures in the industry may negatively impact their viability and functionality. This study investigated the effects of freeze-drying and storage on the metabolic activity of Lacticaseibacillus rhamnosus 73 (L73). The strain’s viability after freeze-drying and storage, its metabolic activity in cultured milk, and its performance as a ripening agent in miniature cheeses were evaluated. Neither the freeze-drying process nor the storage conditions negatively affected its viability, as L73 maintained its initially high levels (>10 log cfu mL−1) throughout the storage period. L73 improved the overall quality of the cheeses, as a reduction in hydrophobic peptides (i.e., potential bitter peptides) was evidenced in cheese manufactured with L73. Furthermore, L73 exhibited protective properties, as evidenced by the decreased availability of compounds that could be used as energy sources by adventitious microorganisms (e.g., galactose, hippuric acid) and the increased production of lactic acid in both cultured milk and cheese. Full article
Show Figures

Figure 1

15 pages, 1062 KiB  
Article
Prevalence of Biogenic Amines and Their Relation to the Bacterial Content in Ripened Cheeses on the Retail Market in Poland
by Marzena Pawul-Gruba, Edyta Denis, Tomasz Kiljanek and Jacek Osek
Foods 2025, 14(14), 2478; https://doi.org/10.3390/foods14142478 - 15 Jul 2025
Viewed by 386
Abstract
Biogenic amines (BA) are simple organic bases of low molecular weight, formed during decarboxylation of amino acids. Ripened cheeses provide suitable conditions for the development of bacteria and production of BAs. The aim of the present study was to investigate the presence of [...] Read more.
Biogenic amines (BA) are simple organic bases of low molecular weight, formed during decarboxylation of amino acids. Ripened cheeses provide suitable conditions for the development of bacteria and production of BAs. The aim of the present study was to investigate the presence of eight BAs in ripened cheese samples (n = 125) using a high-performance liquid chromatography with diode array detector (HPLC-DAD). Furthermore, microbiological analyses towards identification of bacteria using matrix-assisted laser desorption ionisation—time of flight mass spectrometry (MALDI-TOF MS) were performed. Cadaverine and putrescine were detected in 28.0% and 20.8% of cheese samples at concentrations ranging from 6.12 to 2871 mg/kg and 5.74 to 441 mg/kg, respectively. High amounts of putrescine and cadaverine in cheeses were associated with the presence of Hafnia alvei. Tyramine was identified in 28.0% of samples in the concentration range of 5.62–646 mg/kg. High concentrations of this amine was found in cheeses containing Enterococcus faecium and Enterococcus faecalis. Histamine content, the only BA restricted in food according to Regulation 2073/2005, was observed above 100 mg/kg in 11.2% of the cheeses. Ripened cheeses available on the local retail market may contain significant levels of biogenic amines and may pose a potential health hazard to consumers. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

18 pages, 1720 KiB  
Article
In Vitro Preliminary Characterization of Lactiplantibacillus plantarum BG112 for Use as a Starter Culture for Industrial Dry-Fermented Meats
by María Inés Palacio, María Julia Ruiz, María Fernanda Vega and Analía Inés Etcheverría
Fermentation 2025, 11(7), 403; https://doi.org/10.3390/fermentation11070403 - 14 Jul 2025
Viewed by 407
Abstract
The objective of this study was to perform a preliminary in vitro characterization of Lactiplantibacillus plantarum BG112, assessing its safety and technological features for potential application as a culture starter for an industrial fermented dry meat product. In vitro assays assessed its viability, [...] Read more.
The objective of this study was to perform a preliminary in vitro characterization of Lactiplantibacillus plantarum BG112, assessing its safety and technological features for potential application as a culture starter for an industrial fermented dry meat product. In vitro assays assessed its viability, probiotic properties, and safety for use in food formulations. The strain was characterized through morphological and biochemical tests, carbohydrate fermentation profiling, and various in vitro assays based on FAO/WHO criteria for probiotic selection. These included proteolytic activity, auto-aggregation capacity, tolerance to simulated gastric juice and bile salts, antimicrobial activity, and resistance to sodium chloride, nitrite, and low pH. Safety evaluations were also performed by testing antibiotic susceptibility, hemolytic activity, and DNAse production. The results showed that L. plantarum BG112 exhibited strong tolerance to adverse environmental conditions typically found during sausage fermentation and ripening, along with significant inhibitory activity against pathogenic bacteria, such as Escherichia coli O157:H7, Salmonella Typhimurium, and Staphylococcus aureus. The strain also demonstrated no hemolytic or DNAse activity and presented a favorable antibiotic sensitivity profile, meeting key safety requirements for probiotic use. Further studies using meat matrices and in vivo models are needed to validate these findings. This study contributes to the early-stage selection of safe and technologically suitable strains for use in fermented meat products. These findings support the potential application of L. plantarum BG112 as a safe and effective starter culture in the development of high-value, premium fermented meat products, aligned with current consumer demand for health-enhancing and natural foods. Full article
Show Figures

Figure 1

24 pages, 3485 KiB  
Article
Effect of Natural Edible Oil Coatings and Storage Conditions on the Postharvest Quality of Bananas
by Laila Al-Yahyai, Rashid Al-Yahyai, Rhonda Janke, Mai Al-Dairi and Pankaj B. Pathare
AgriEngineering 2025, 7(7), 234; https://doi.org/10.3390/agriengineering7070234 - 12 Jul 2025
Viewed by 662
Abstract
Increasing the shelf-life of fruits and vegetables using edible natural substances after harvest is economically important and can be useful for human health. Postharvest techniques help maintain the quality of edible tissues resulting in extended marketing periods and reduced food waste. The edible [...] Read more.
Increasing the shelf-life of fruits and vegetables using edible natural substances after harvest is economically important and can be useful for human health. Postharvest techniques help maintain the quality of edible tissues resulting in extended marketing periods and reduced food waste. The edible coating on perishable commodities is a common technique used by the food industry during the postharvest supply chain. The objective of this research was to study the effect of edible oil to minimize the loss of postharvest physio-chemical and nutritional attributes of bananas. The study selected two banana cultivars (Musa, ‘Cavendish’ and ‘Milk’) to conduct this experiment, and two edible oils (olive oil (Olea europaea) and moringa oil (Moringa peregrina)) were applied as an edible coating under two different storage conditions (15 and 25 °C). The fruit’s physio-chemical properties including weight loss, firmness, color, total soluble solids (TSS), pH, titratable acidity (TA), TSS: TA ratio, and mineral content were assessed. The experiment lasted for 12 days. The physicochemical properties of the banana coated with olive and moringa oils were more controlled than the non-coated (control) banana under both storage temperatures (15 °C and 25 °C). Coated bananas with olive and moringa oils stored at 15 °C resulted in further inhibition in the ripening process. There was a decrease in weight loss, retained color, and firmness, and the changes in chemical parameters were slower in banana fruits during storage in the olive and moringa oil-coated bananas. Minerals were highly retained in coated Cavendish bananas. Overall, the coated samples visually maintained acceptable quality until the final day of storage. Our results indicated that olive and moringa oils in this study have the potential to extend the shelf-life and improve the physico-chemical quality of banana fruits. Full article
(This article belongs to the Special Issue Latest Research on Post-Harvest Technology to Reduce Food Loss)
Show Figures

Figure 1

24 pages, 3328 KiB  
Article
Biocontrol of Cheese Spoilage Moulds Using Native Yeasts
by Catalina M. Cabañas, Alejandro Hernández León, Santiago Ruiz-Moyano, Almudena V. Merchán, José Manuel Martínez Torres and Alberto Martín
Foods 2025, 14(14), 2446; https://doi.org/10.3390/foods14142446 - 11 Jul 2025
Viewed by 390
Abstract
Biocontrol is one of the most promising alternatives to chemical preservatives for food preservation. This study investigated the biocontrol potential of yeasts isolated from raw milk cheese against spoilage moulds. Eighty-four native yeast strains were screened for antagonistic activity against Penicillium commune, [...] Read more.
Biocontrol is one of the most promising alternatives to chemical preservatives for food preservation. This study investigated the biocontrol potential of yeasts isolated from raw milk cheese against spoilage moulds. Eighty-four native yeast strains were screened for antagonistic activity against Penicillium commune, Fusarium verticillioides, and Mucor plumbeus/racemosus via confrontation using a milk-based culture medium. Fifteen strains from the species Pichia jadinii, Kluyveromyces lactis, Kluyveromyces marxianus, and Geotrichum candidum exhibited significant antagonistic activity (inhibition zone > 2 mm) against M. plumbeus/racemosus and F. verticillioides. The modelling of the impact of ripening conditions revealed that temperature was the primary factor influencing yeast antagonism. In addition, notable variability at both species and strain levels was found. The antagonist activity was associated with different mechanisms depending on the species and strains. K. lactis stood out for its proteolytic activity and competition for iron and manganese. Additionally, two strains of this species (KL890 and KL904) were found to produce volatile organic compounds with antifungal properties (phenylethyl alcohol and 1-butanol-3-methyl propionate). G. candidum GC663 exhibited strong competition for space, as well as the ability to parasitise hyphae linked to its pectinase and β-glucanase activity. The latter enzymatic activity was detected in all P. jadinii strains, with P. jadinii PJ433 standing out due to its proteolytic activity. In a cheese matrix, the efficacy of eight yeast strains against three target moulds was assessed, highlighting the potential of G. candidum GC663 and P. jadinii PJ433 as biocontrol agents, exhibiting high and moderate efficacy, respectively, in controlling the growth of F. verticillioides and M. plumbeus/racemosus. Nonetheless, further research is necessary to elucidate their full spectrum of antifungal mechanisms and to validate their performance under industrial-scale conditions, including their impact on cheese quality. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

11 pages, 344 KiB  
Communication
Lactic Acid Bacteria Succession, Identification and Antilisterial Capacity in Traditionally Produced Dry-Fermented Chicken Sausage
by Nevijo Zdolec, Marta Kiš, Mladenka Vukšić, Hrvoje Mazija, Ivana Bazina and Snježana Kazazić
Processes 2025, 13(7), 2216; https://doi.org/10.3390/pr13072216 - 11 Jul 2025
Viewed by 347
Abstract
The production of fermented sausages from poultry meat using traditional technologies and natural maturation conditions is a major challenge. The aim of this study was to identify indigenous microbiota with antilisterial activity from an innovative, additive-free, traditionally fermented chicken sausage. Isolates (n [...] Read more.
The production of fermented sausages from poultry meat using traditional technologies and natural maturation conditions is a major challenge. The aim of this study was to identify indigenous microbiota with antilisterial activity from an innovative, additive-free, traditionally fermented chicken sausage. Isolates (n = 88) of lactic acid bacteria (LAB) were collected during maturation and subjected to MALDI-TOF mass spectrometry identification. The capacity to combat Listeria was screened against five strains using the agar well diffusion method in 63 selected LAB isolates. MALDI-TOF mass spectrometry identified four different LAB genera, namely Enterococcus, Lactococcus, Leuconostoc and Lactobacillus, the proportions of which differed significantly during the production phases (p < 0.001). Enterococcus faecalis was the most prevalent LAB species in the initial sausage dough. The presence of lactococci (Lactococcus lactis) and enterococci was detected during the 14- and 30-day ripening period and was gradually displaced by leuconostocs and lactobacilli. Lactobacilli appeared to be abundant during the central and late maturation phases, and consisted of only two species—Latilactobacillus sakei and Latilactobacillus curvatus. In total, 38 LAB isolates (60%) showed antilisterial activity toward at least one Listeria indicator strain. The proportions of antilisterial LAB differed significantly during sausage maturation. Inhibitory activity against all indicator Listeria was detected in the neutralized cell-free supernatants of five strains of Enterococcus faecalis, two L. sakei strains and one Leuconostoc mesenteroides strain. The antilisterial activity observed in the indigenous LAB revealed the possible role of L. sakei as a bioprotective culture, as well as the role of Ln. mesenteroides and E. faecalis as bacteriocin producers, for practical applications. Full article
Show Figures

Figure 1

18 pages, 11863 KiB  
Article
Storage and Ripening Monitoring of Pecorino Cheese Through 2D 1H-NMR Relaxation and ANOVA Simultaneous Component Analysis (ASCA): A Comparison with DSC and ATR-FTIR Characterization
by Francesca Di Donato, Francesco Gabriele, Alessandra Biancolillo, Cinzia Casieri, Angelo Antonio D’Archivio and Nicoletta Spreti
Molecules 2025, 30(14), 2916; https://doi.org/10.3390/molecules30142916 - 10 Jul 2025
Viewed by 223
Abstract
In food processing, non-destructive and non-invasive characterization is a powerful tool for monitoring processes and controlling quality. Cheeses consist of a large variety of products whose nutritional and sensory properties depend on the source materials, cheesemaking procedures, and biochemical transformations occurring during maturation [...] Read more.
In food processing, non-destructive and non-invasive characterization is a powerful tool for monitoring processes and controlling quality. Cheeses consist of a large variety of products whose nutritional and sensory properties depend on the source materials, cheesemaking procedures, and biochemical transformations occurring during maturation and storage. In this study, proton magnetic resonance relaxation time correlation maps (2D 1H-NMR T1–T2) are used to investigate the effect of the ripening degree on Pecorino cheese and evaluate its evolution during storage in a refrigerator under vacuum-packaging conditions. NMR relaxometry has allowed for non-invasive monitoring of packaged Pecorino cheese slices, and the results were compared with those obtained with the two widely used techniques, i.e., Differential Scanning Calorimetry (DSC) and Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy (ATR-FTIR). The analysis of variance and simultaneous component analysis (ASCA), separately applied to 2D 1H-NMR T1–T2 correlation maps, DSC, and ATR-FTIR data, suggests that the results obtained with the NMR approach are consistent with those obtained using the two benchmark techniques. In addition, it can distinguish cheeses stored for different durations (storage time) irrespective of their original moisture content (ripening degree), and vice versa, without opening the vacuum-package, which could compromise the integrity of the samples. Full article
Show Figures

Figure 1

22 pages, 1066 KiB  
Article
Effects of Protective Lacticaseibacillus casei VC201 Culture on Late Blowing Prevention, Lipid Profile, and Sensory Characteristics of Valtellina Casera PDO Cheese During Ripening
by Francesca Bonazza, Stefano Morandi, Tiziana Silvetti, Alberto Tamburini, Ivano De Noni, Fabio Masotti and Milena Brasca
Foods 2025, 14(14), 2433; https://doi.org/10.3390/foods14142433 - 10 Jul 2025
Viewed by 341
Abstract
This study aimed to verify, under real operating conditions, the effectiveness of protective lactic acid bacteria (LAB) culture in counteracting the development of late blowing defects in Valtellina Casera PDO cheese and its impact on product sensory characteristics. Thirty-four LAB isolated from Bitto [...] Read more.
This study aimed to verify, under real operating conditions, the effectiveness of protective lactic acid bacteria (LAB) culture in counteracting the development of late blowing defects in Valtellina Casera PDO cheese and its impact on product sensory characteristics. Thirty-four LAB isolated from Bitto and Valtellina Casera PDO cheeses were screened for anti-Clostridium activity. Lacticaseibacillus casei VC201 was able to inhibit all the indicator strains through organic acid production. Valtellina Casera PDO cheese-making was performed twice in three dairy farms using a commercial autochthonous starter culture with and without the addition of the protective culture VC201. Cheese was ripened both at 8 °C and 12 °C and analyzed after 70 and 180 days for LAB population, proteolysis, and lipolysis evolution as well as sensory impact. Cheeses with the addition of the VC201 strain showed higher contents of rod-shaped LAB throughout the ripening at both temperatures. The protective culture decreased the production of butyric acid at 70 days, especially at 8 °C (−15.4%), while butyric fermentation was occasionally lightly observed at 12 °C. The sensory profile was favorably impacted by the higher relative proportion of short-chain fatty acids (SCFFAs, C2–C8), which was especially pronounced at 8 °C and persisted for 180-day ripening (23.91% vs. 18.84% at 70 days and 23.84 vs. 21.71 at 180 days of ripening). The temperature and time of ripening had a significant effect on the free fatty acid content of the cheese samples in all three classes (SCFFA, MCFFA, and LCFFA). The cheese made with Lcb. casei VC201 was preferred, according to the sensory evaluation, being perceived as less acidic, less bitter, tastier, and with more intense flavor. Protective cultures can represent a practical way to reduce late blowing defects in Valtellina Casera cheese production while maintaining adherence to its PDO regulatory requirements. Full article
Show Figures

Figure 1

21 pages, 1558 KiB  
Article
In Vitro Germination of the Mediterranean Xerophytes Thymelaea hirsuta and Thymelaea tartonraira ssp. tartonraira as Affected by Scarification, Temperature, Photoperiod and Storage
by Aikaterini N. Martini and Maria Papafotiou
Seeds 2025, 4(3), 31; https://doi.org/10.3390/seeds4030031 - 4 Jul 2025
Viewed by 426
Abstract
With the aim of developing an efficient propagation method for the exploitation of Thymelaea hirsuta and T. artonraira ssp. tartonraira in the xeriscaping and pharmaceutical industry, the effects of the following were examined on the in vitro germination of their seeds: (i) pretreatment [...] Read more.
With the aim of developing an efficient propagation method for the exploitation of Thymelaea hirsuta and T. artonraira ssp. tartonraira in the xeriscaping and pharmaceutical industry, the effects of the following were examined on the in vitro germination of their seeds: (i) pretreatment (mechanical and chemical scarification or immersion in hot water; (ii) incubation temperature (5–30 °C); (iii) incubation light conditions (16 h photoperiod or continuous darkness); (iv) storage period at room temperature and darkness (up to 24 months). Seeds collected for two years from the same wild plants in Greece were surface-sterilized with a 15% commercial bleach solution for 15 min after the abovementioned treatments and placed for germination in Petri dishes containing a half-strength MS medium in growth chambers. The rate and final percentage of germination were recorded. For both species, scarification after immersion in concentrated H2SO4, preferably for 20 min, was necessary for seed germination, which indicates coat dormancy. Higher germination percentages were observed at temperatures of 10–20 °C, under continuous darkness for T. hirsuta (79–100%) and regardless of photoperiod for T. tartonraira (73–90%). Long storage reduced germination of only T. tartonraira (54–68% at optimum temperatures, 23 months after harvest), while T. hirsuta seeds stored for 5 months germinated at significantly lower percentages (40% maximum) compared to seeds stored for 9–24 months, revealing a dry after-ripening process. Seeds of both species harvested at different years showed stable behavior in terms of germination. For both species, an effective seed propagation protocol suitable for their exploitation as ornamental and landscape plants was developed. Full article
Show Figures

Figure 1

36 pages, 15335 KiB  
Article
An Application of Deep Learning Models for the Detection of Cocoa Pods at Different Ripening Stages: An Approach with Faster R-CNN and Mask R-CNN
by Juan Felipe Restrepo-Arias, María José Montoya-Castaño, María Fernanda Moreno-De La Espriella and John W. Branch-Bedoya
Computation 2025, 13(7), 159; https://doi.org/10.3390/computation13070159 - 2 Jul 2025
Viewed by 645
Abstract
The accurate classification of cocoa pod ripeness is critical for optimizing harvest timing, improving post-harvest processing, and ensuring consistent quality in chocolate production. Traditional ripeness assessment methods are often subjective, labor-intensive, or destructive, highlighting the need for automated, non-invasive solutions. This study evaluates [...] Read more.
The accurate classification of cocoa pod ripeness is critical for optimizing harvest timing, improving post-harvest processing, and ensuring consistent quality in chocolate production. Traditional ripeness assessment methods are often subjective, labor-intensive, or destructive, highlighting the need for automated, non-invasive solutions. This study evaluates the performance of R-CNN-based deep learning models—Faster R-CNN and Mask R-CNN—for the detection and segmentation of cocoa pods across four ripening stages (0–2 months, 2–4 months, 4–6 months, and >6 months) using the RipSetCocoaCNCH12 dataset, which is publicly accessible, comprising 4116 labeled images collected under real-world field conditions, in the context of precision agriculture. Initial experiments using pretrained weights and standard configurations on a custom COCO-format dataset yielded promising baseline results. Faster R-CNN achieved a mean average precision (mAP) of 64.15%, while Mask R-CNN reached 60.81%, with the highest per-class precision in mature pods (C4) but weaker detection in early stages (C1). To improve model robustness, the dataset was subsequently augmented and balanced, followed by targeted hyperparameter optimization for both architectures. The refined models were then benchmarked against state-of-the-art YOLOv8 networks (YOLOv8x and YOLOv8l-seg). Results showed that YOLOv8x achieved the highest mAP of 86.36%, outperforming YOLOv8l-seg (83.85%), Mask R-CNN (73.20%), and Faster R-CNN (67.75%) in overall detection accuracy. However, the R-CNN models offered valuable instance-level segmentation insights, particularly in complex backgrounds. Furthermore, a qualitative evaluation using confidence heatmaps and error analysis revealed that R-CNN architectures occasionally missed small or partially occluded pods. These findings highlight the complementary strengths of region-based and real-time detectors in precision agriculture and emphasize the need for class-specific enhancements and interpretability tools in real-world deployments. Full article
Show Figures

Figure 1

24 pages, 2363 KiB  
Article
Influence of Environmental Conditions Associated with Low and High Altitudes on Economic and Quality Characteristics of Fruit Ripening of Camellia chekiangoleosa Hu
by Teng Wei, Shengyue Zhong, Bin Huang, Kang Zha, Jing Li and Qiang Wen
Foods 2025, 14(13), 2266; https://doi.org/10.3390/foods14132266 - 26 Jun 2025
Cited by 1 | Viewed by 326
Abstract
Camellia chekiangoleosa Hu. (C. chekiangoleosa) is a typical high-altitude oil-tea Camellia species. Due to altitude being an important factor affecting crop growth and quality, the influence of environmental conditions associated with low (60 m) and high (600 m) altitudes on the [...] Read more.
Camellia chekiangoleosa Hu. (C. chekiangoleosa) is a typical high-altitude oil-tea Camellia species. Due to altitude being an important factor affecting crop growth and quality, the influence of environmental conditions associated with low (60 m) and high (600 m) altitudes on the economic and quality characteristics of fruit ripening was assessed in this study. Our investigations showed that altitude has no influence on the growth pattern of C. chekiangoleosa fruit shells and seed oils, and the differences in samples between different altitudes gradually decreased with the ripening of C. chekiangoleosa. Nevertheless, mature C. chekiangoleosa fruit shells and seed oils from low and high altitudes showed some differences. Specifically, the fruit shells of C. chekiangoleosa cultivated in low-altitude areas contained more soluble sugar, protein, total polyphenols, total flavonoids, and tea saponin. Meanwhile, low-altitude cultivation elevated the abundance of α-tocopherol, β-sitosterol, β-amyrinol, flavonoids, and polyphenols in mature seed oils but decreased the oil yield. Moreover, few effects of altitude on fatty acid composition were observed in mature seed oils. Cluster and receiver operating characteristic (ROC) analysis indicated that the influence of altitude on the quality of mature seed oils was strongly associated with oil yield and α-tocopherol. Taken together, the present study suggests that when cultivating C. chekiangoleosa in low-altitude regions, more energy should be devoted to improving oil yield. The results of the fruiting process and quality trait variation in C. chekiangoleosa during the low-altitude introduction process can provide an important theoretical basis for the introduction and cultivation of this oil-tea species. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

26 pages, 11510 KiB  
Article
Beyond Color: Phenomic and Physiological Tomato Harvest Maturity Assessment in an NFT Hydroponic Growing System
by Dugan Um, Chandana Koram, Prasad Nethala, Prashant Reddy Kasu, Shawana Tabassum, A. K. M. Sarwar Inam and Elvis D. Sangmen
Agronomy 2025, 15(7), 1524; https://doi.org/10.3390/agronomy15071524 - 23 Jun 2025
Viewed by 513
Abstract
Current tomato harvesters rely primarily on external color as the sole indicator of ripeness. However, this approach often results in premature harvesting, leading to insufficient lycopene accumulation and a suboptimal nutritional content for human consumption. Such limitations are especially critical in controlled-environment agriculture [...] Read more.
Current tomato harvesters rely primarily on external color as the sole indicator of ripeness. However, this approach often results in premature harvesting, leading to insufficient lycopene accumulation and a suboptimal nutritional content for human consumption. Such limitations are especially critical in controlled-environment agriculture (CEA) systems, where maximizing fruit quality and nutrient density is essential for both the yield and consumer health. To address that challenge, this study introduces a novel, multimodal harvest readiness framework tailored to nutrient film technology (NFT)-based smart farms. The proposed approach integrates plant-level stress diagnostics and fruit-level phenotyping using wearable biosensors, AI-assisted computer vision, and non-invasive physiological sensing. Key physiological markers—including the volatile organic compound (VOC) methanol, phytohormones salicylic acid (SA) and indole-3-acetic acid (IAA), and nutrients nitrate and ammonium concentrations—are combined with phenomic traits such as fruit color (a*), size, chlorophyll index (rGb), and water status. The innovation lies in a four-stage decision-making pipeline that filters physiologically stressed plants before selecting ripened fruits based on internal and external quality indicators. Experimental validation across four plant conditions (control, water-stressed, light-stressed, and wounded) demonstrated the efficacy of VOC and hormone sensors in identifying optimal harvest candidates. Additionally, the integration of low-cost electrochemical ion sensors provides scalable nutrient monitoring within NFT systems. This research delivers a robust, sensor-driven framework for autonomous, data-informed harvesting decisions in smart indoor agriculture. By fusing real-time physiological feedback with AI-enhanced phenotyping, the system advances precision harvest timing, improves fruit nutritional quality, and sets the foundation for resilient, feedback-controlled farming platforms suited to meeting global food security and sustainability demands. Full article
(This article belongs to the Collection AI, Sensors and Robotics for Smart Agriculture)
Show Figures

Figure 1

Back to TopTop