Effects of Protective Lacticaseibacillus casei VC201 Culture on Late Blowing Prevention, Lipid Profile, and Sensory Characteristics of Valtellina Casera PDO Cheese During Ripening
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions
2.2. Anti-Clostridium Activity and Safety Assessment
2.3. Autochthonous Anti-Clostridium Culture Preparation
2.4. Cheese Manufacture and Sampling
2.5. Microbiological Analysis
2.6. Chemical Analysis
2.7. Free Fatty Acid Extraction and Analysis
2.8. Sensory Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Screening for LAB Strains with Antimicrobial Activity Against Clostridia
LAB Strains | Cl. sporogenes (9 Strains) | Cl. tyrobutyricum (9 Strains) | Total (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
- | + | ++ | +++ | - | + | ++ | +++ | ++ | +++ | |
Lb. delbrueckii | ||||||||||
VC208 | 6 | 3 | - | - | 4 | 5 | - | - | 0.0 | 0.0 |
Lcb. casei | ||||||||||
BT147 | - | - | 4 | 5 | - | 4 | 2 | 3 | 33.4 | 44.4 |
VC201 | - | - | 4 | 5 | - | 1 | 4 | 4 | 44.4 | 50.0 |
Lcb. paracasei | ||||||||||
BT202 | 7 | 1 | 1 | - | 5 | 4 | - | - | 5.6 | 0.0 |
VC213 | 5 | 3 | 1 | - | 5 | 1 | 3 | - | 22.2 | 0.0 |
Lcb. rhamnosus | ||||||||||
VC220 | 2 | 2 | 4 | 1 | 1 | 3 | 5 | - | 50.0 | 5.6 |
3.2. Statistical Analysis
RIPENING TIME (Days) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
70 | 180 | ||||||||||||||||||||
Culture | Culture | ||||||||||||||||||||
CAS | PRO | CAS | PRO | ||||||||||||||||||
rT (°C) | rT (°C) | rT (°C) | rT (°C) | ||||||||||||||||||
8 | 12 | 8 | 12 | 8 | 12 | 8 | 12 | Probability | |||||||||||||
Variables | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | rT | C | CxR | CxrT | RxrT |
Enterococci_log10 | 4.62 | 0.52 | 5.10 | 1.19 | 5.08 | 1.06 | 5.39 | 1.07 | 3.83 | 0.82 | 3.16 | 0.47 | 2.98 | 0.27 | 3.19 | 0.97 | |||||
Heterofermentative_log10 | 4.29 | 0.52 | 3.95 | 0.00 | 4.29 | 0.52 | 4.18 | 0.55 | 2.95 | 0.00 | 2.96 | 0.02 | 2.95 | 0.00 | 2.95 | 0.00 | |||||
Cocci_LAB_log10 | 6.93 | 0.77 | 7.56 | 0.51 | 8.01 | 1.03 | 8.45 | 0.48 | 6.54 | 0.42 | 6.47 | 0.93 | 5.84 | 1.02 | 6.24 | 0.72 | *** | ||||
Rods_LAB_log10 | 6.35 | 0.61 | 7.29 | 0.97 | 8.14 | 1.08 | 8.35 | 0.6 | 6.04 | 1.23 | 6.82 | 0.97 | 8.24 | 0.18 | 7.93 | 0.54 | † | *** | |||
Dry matter (%) | 63.25 | 2.60 | 64.84 | 3.37 | 63.22 | 2.47 | 64.98 | 3.07 | 66.12 | 2.65 | 66.84 | 3.15 | 66.44 | 2.01 | 67.14 | 2.71 | |||||
Protein (%) | 26.24 | 1.62 | 27.30 | 2.17 | 26.31 | 1.44 | 27.32 | 1.79 | 28.34 | 1.30 | 29.08 | 1.57 | 28.48 | 1.06 | 29.35 | 1.59 | † | ||||
pH 4.4-SN (% TN) | 12.47 | 0.91 | 14.80 | 1.28 | 12.38 | 1.22 | 15.4 | 1.80 | 19.08 | 1.42 | 21.93 | 2.12 | 17.63 | 2.61 | 21.35 | 2.17 | *** | ||||
Fat in dry matter (%) | 46.67 | 2.15 | 45.60 | 2.52 | 46.19 | 1.80 | 46.39 | 1.45 | 47.47 | 2.20 | 47.24 | 2.80 | 46.74 | 2.26 | 47.49 | 1.84 | |||||
FFAs (mg/100 g of cheese) | |||||||||||||||||||||
C2:0 | 6.16 | 1.02 | 7.97 | 1.77 | 7.02 | 1.07 | 8.32 | 4.00 | 6.77 | 1.42 | 11.32 | 3.30 | 8.11 | 2.55 | 10.92 | 4.44 | ** | ||||
C3:0 | 0.26 | 0.07 | 0.52 | 0.35 | 0.30 | 0.10 | 0.23 | 0.07 | 0.24 | 0.17 | 1.18 | 1.24 | 0.15 | 0.05 | 1.24 | 2.11 | * | † | |||
C4:0 | 2.20 | 0.20 | 3.40 | 1.03 | 1.86 | 0.43 | 3.30 | 2.02 | 3.34 | 0.63 | 15.74 | 10.46 | 3.39 | 0.78 | 15.5 | 16.03 | ** | ** | |||
C6:0 | 0.89 | 0.14 | 1.18 | 0.24 | 0.77 | 0.29 | 1.30 | 0.40 | 1.03 | 0.56 | 5.32 | 1.46 | 1.52 | 0.72 | 4.35 | 0.71 | *** | *** | |||
C8:0 | 0.38 | 0.20 | 0.80 | 0.11 | 0.24 | 0.11 | 0.80 | 0.11 | 0.39 | 0.13 | 3.39 | 0.97 | 0.42 | 0.15 | 2.64 | 0.57 | *** | *** | |||
C10:0 | 1.35 | 0.69 | 2.81 | 0.20 | 0.89 | 0.44 | 2.73 | 0.32 | 1.20 | 0.32 | 8.11 | 2.38 | 1.28 | 0.4 | 6.35 | 0.98 | *** | *** | |||
C10:1 | 0.15 | 0.08 | 0.31 | 0.03 | 0.10 | 0.05 | 0.30 | 0.06 | 0.14 | 0.03 | 1.05 | 0.31 | 0.15 | 0.04 | 0.82 | 0.16 | *** | *** | |||
C12:0 | 2.00 | 0.87 | 3.25 | 0.27 | 1.17 | 0.80 | 3.25 | 0.38 | 1.67 | 0.42 | 9.73 | 2.33 | 1.80 | 0.56 | 7.52 | 0.96 | *** | *** | |||
C12:1c | 0.01 | 0.00 | 0.02 | 0.01 | 0.01 | 0.01 | 0.03 | 0.03 | 0.02 | 0.01 | 0.04 | 0.01 | 0.02 | 0.01 | 0.03 | 0.01 | ** | ||||
Ci14:0 | 0.05 | 0.03 | 0.08 | 0.02 | 0.02 | 0.02 | 0.06 | 0.02 | 0.04 | 0.02 | 0.21 | 0.06 | 0.04 | 0.01 | 0.21 | 0.07 | *** | *** | |||
C14:0 | 4.38 | 1.85 | 8.55 | 0.72 | 3.22 | 1.23 | 8.21 | 1.07 | 4.33 | 1.03 | 23.56 | 7.52 | 4.39 | 1.14 | 18.46 | 3.01 | *** | *** | |||
C15:0 | 0.41 | 0.19 | 0.79 | 0.09 | 0.32 | 0.13 | 0.82 | 0.12 | 0.42 | 0.10 | 2.45 | 0.82 | 0.39 | 0.08 | 2.02 | 0.33 | *** | *** | |||
C16:0 | 15.25 | 5.29 | 28.93 | 4.70 | 12.01 | 3.33 | 27.89 | 3.31 | 14.42 | 2.62 | 75.93 | 15.86 | 15.97 | 4.63 | 59.76 | 9.78 | *** | † | *** | ||
C16:1 | 1.92 | 0.67 | 3.84 | 0.70 | 1.50 | 0.56 | 3.57 | 0.55 | 1.86 | 0.22 | 9.12 | 0.84 | 2.43 | 1.07 | 7.06 | 1.10 | *** | * | *** | ||
C18:0 | 4.67 | 1.17 | 7.61 | 2.26 | 3.80 | 0.83 | 7.04 | 0.83 | 3.92 | 0.72 | 18.64 | 5.48 | 4.13 | 0.73 | 14.91 | 2.23 | *** | *** | |||
C18:1c9 | 12.99 | 4.59 | 25.07 | 2.61 | 9.10 | 2.94 | 21.63 | 2.45 | 13.00 | 2.79 | 73.49 | 25.18 | 11.51 | 3.41 | 57.85 | 7.33 | *** | *** | |||
C18:2 | 1.84 | 0.78 | 3.49 | 0.72 | 1.39 | 0.47 | 3.19 | 0.34 | 1.84 | 0.21 | 10.85 | 2.45 | 2.08 | 0.45 | 7.07 | 2.46 | *** | * | *** | ||
C18:3 | 0.14 | 0.08 | 0.36 | 0.08 | 0.10 | 0.04 | 0.34 | 0.05 | 0.16 | 0.06 | 1.22 | 0.85 | 0.12 | 0.03 | 1.09 | 0.36 | *** | *** | |||
C18:2c9t11 | 0.10 | 0.04 | 0.22 | 0.07 | 0.07 | 0.03 | 0.21 | 0.05 | 0.10 | 0.03 | 0.67 | 0.49 | 0.08 | 0.04 | 0.62 | 0.22 | *** | *** |
3.3. LAB Population in Experimental Valtellina Casera PDO Cheese During Ripening
Ripening | Sample | M17 (cocci LAB) | MRS pH 5.4 (rods LAB) | ||
---|---|---|---|---|---|
Temperature (°C) | 70 days | 180 days | 70 days | 180 days | |
8 | CAS | 6.9 ± 0.7 | 6.3 ± 0.6 | 6.3 ± 0.5 | 6.0 ± 0.8 |
PRO | 7.9 ± 0.9 A | 5.8 ± 0.9 B | 8.0 ± 0.9 | 8.3 ± 0.5 | |
12 | CAS | 7.2 ± 0.5 | 6.5 ± 0.8 | 7.7 ± 1.0 | 7.0 ± 0.9 |
PRO | 8.5 ± 0.4 A | 6.3 ± 0.6 B | 8.4 ± 0.2 | 8.0 ± 0.5 | |
Probability RT | 0.097 | 0.496 | 0.094 | 0.599 | |
Probability Sample | 0.0001 | 0.0001 | 0.003 | 0.143 |
3.4. Chemical Composition and Proteolysis of Valtellina Casera PDO Samples
3.5. Free Fatty Acid (FFA) Content in Valtellina Casera PDO Cheese
Dairy | Ripening Temperature (°C) | Ripening Time (Days) | Culture | FFAs Mean Values (mg/100 g) | |||
---|---|---|---|---|---|---|---|
SCFFA | MCFFA | LCFFA | Total | ||||
A | 8 | 70 | CAS | 10.51 ± 1.28 | 9.26 ± 0.95 | 36.42 ± 2.00 | 56.18 ± 1.67 |
PRO | 10.64 ± 3.18 | 8.21 ± 3.24 | 37.83 ± 0.95 | 56.68 ± 7.37 | |||
180 | CAS | 11.90 ± 1.50 | 9.52 ± 0.11 | 39.66 ± 1.01 | 61.09 ± 2.62 | ||
PRO | 12.33 ± 1.90 | 8.92 ± 3.16 | 36.96 ± 13.93 | 58.22 ± 18.99 | |||
B | 8 | 70 | CAS | 8.84± 0.58 | 11.25 ± 4.22 | 47.84 ± 17.41 | 67.94 ± 22.21 |
PRO | 9.42 ± 1.20 | 4.11 ± 0.27 | 22.01± 0.04 | 35.55 ± 1.52 | |||
180 | CAS | 11.13 ± 1.61 | 5.64 ± 1.42 | 30.10 ± 5.52 | 46.88 ± 5.33 | ||
PRO | 14.65 ± 3.92 | 7.77 ± 2.64 | 39.07 ± 15.50 | 61.43 ± 22.07 | |||
C | 8 | 70 | CAS | 10.30 ± 1.19 | 4.51 ± 0.29 | 26.43 ± 2.75 | 41.25 ± 1.27 |
PRO | 10.52 ± 0.20 | 4.88 ± 0.64 | 24.10 ± 3.16 | 39.50 ± 4.00 | |||
180 | CAS | 12.27 ± 2.22 | 8.32 ± 0.46 | 36.11 ± 0.74 | 56.70 ± 1.02 | ||
PRO | 13.78 ± 2.59 | 7.52 ± 2.26 | 33.01 ± 6.77 | 54.32 ± 11.62 | |||
A | 12 | 70 | CAS | 16.38 ± 3.77 | 16.10 ± 1.41 | 70.34 ± 6.30 | 102.82 ± 3.95 |
PRO | 14.12 ± 5.20 | 15.48 ± 3.66 | 62.55 ± 11.01 | 92.16 ± 19.88 | |||
180 | CAS | 49.28 ± 17.27 | 45.74 ± 9.50 | 183.96 ± 72.98 | 279.00 ± 99.75 | ||
PRO | 48.82 ± 31.04 | 33.47 ± 6.84 | 142.40 ± 12.99 | 224.70 ± 50.87 | |||
B | 12 | 70 | CAS | 11.75 ± 0.24 | 14.83 ± 0.95 | 64.71 ± 4.69 | 91.30 ± 5.87 |
PRO | 13.81 ± 6.78 | 14.58 ± 0.52 | 63.09 ± 4.47 | 91.49 ± 2.83 | |||
180 | CAS | 25.11 ± 2.15 | 33.63 ± 0.74 | 162.45 ± 4.50 | 221.20 ± 5.90 | ||
PRO | 25.62 ± 12.20 | 33.49 ± 3.93 | 145.85 ± 13.34 | 204.96 ± 29.47 | |||
C | 12 | 70 | CAS | 13.52 ± 2.77 | 16.48 ± 0.11 | 73.50 ± 2.66 | 103.51 ± 0.0 |
PRO | 13.93 ± 2.99 | 16.15 ± 0.33 | 65.95 ± 0.81 | 96.04 ± 4.13 | |||
180 | CAS | 36.46 ± 14.03 | 56.04 ± 16.20 | 223.34 ± 39.59 | 315.84 ± 69.82 | ||
PRO | 29.52 ± 1.51 | 39.25 ± 5.20 | 156.79 ± 28.49 | 225.57 ± 32.18 | |||
Probability | SCFFA | MCFFA | LCFFA | Total | |||
Dairy | 0.104 | 0.104 | 0.517 | 0.333 | |||
Culture | 0.992 | 0.028 | 0.022 | 0.061 | |||
Ripening Temperature | 0.000 | 0.000 | 0.000 | 0.000 | |||
Ripening Time | 0.000 | 0.000 | 0.000 | 0.000 | |||
Dairy × Culture × Ripening Temperature × Ripening time | 0.170 | 0.000 | 0.000 | 0.000 |
Dairy | Culture | Ripening Temperature (°C) | Ripening Time (days) | C4:0 (mg/100 g) | C6:0 (mg/100 g) | C4/C6 |
---|---|---|---|---|---|---|
A | CAS | 8 | 70 | 2.21 | 1.07 | 2.06 |
2.04 | 0.94 | 2.17 | ||||
PRO | 1.55 | 0.73 | 2.11 | |||
2.37 | 1.18 | 2.01 | ||||
B | CAS | 8 | 70 | 1.99 | 0.73 | 2.71 |
2.14 | 0.84 | 2.54 | ||||
PRO | 1.44 | 0.44 | 3.24 | |||
1.45 | 0.45 | 3.21 | ||||
C | CAS | 8 | 70 | 2.53 | 0.75 | 3.36 |
2.29 | 1.00 | 2.28 | ||||
PRO | 2.17 | 0.99 | 2.20 | |||
2.21 | 0.80 | 2.75 | ||||
A | CAS | 8 | 180 | 3.24 | 1.65 | 1.96 |
2.79 | 1.21 | 2.30 | ||||
PRO | 2.28 | 1.17 | 1.95 | |||
4.07 | 2.69 | 1.51 | ||||
B | CAS | 8 | 180 | 2.97 | 0.87 | 3.40 |
2.81 | 0.49 | 5.72 | ||||
PRO | 3.40 | 1.13 | 3.02 | |||
2.80 | 0.86 | 3.25 | ||||
C | CAS | 8 | 180 | 4.00 | 0.33 | 11.98 |
4.23 | 1.60 | 2.64 | ||||
PRO | 4.39 | 2.11 | 2.07 | |||
3.42 | 1.13 | 3.02 | ||||
A | CAS | 12 | 70 | 3.66 | 1.51 | 2.42 |
5.04 | 1.07 | 4.69 | ||||
PRO | 2.03 | 0.83 | 2.43 | |||
6.57 | 1.27 | 5.19 | ||||
B | CAS | 12 | 70 | 2.82 | 0.98 | 2.86 |
2.22 | 0.89 | 2.48 | ||||
PRO | 0.68 | 1.20 | 0.56 | |||
2.77 | 1.03 | 2.68 | ||||
C | CAS | 12 | 70 | 3.98 | 1.30 | 3.06 |
2.72 | 1.33 | 2.04 | ||||
PRO | 4.20 | 1.97 | 2.14 | |||
3.58 | 1.50 | 2.39 | ||||
A | CAS | 12 | 180 | 35.18 | 6.57 | 5.36 |
18.29 | 4.05 | 4.52 | ||||
PRO | 11.33 | 3.37 | 3.36 | |||
48.08 | 4.07 | 11.80 | ||||
B | CAS | 12 | 180 | 8.43 | 4.16 | 2.03 |
7.88 | 4.23 | 1.86 | ||||
PRO | 8.45 | 4.94 | 1.71 | |||
6.72 | 3.78 | 1.78 | ||||
C | CAS | 12 | 180 | 15.86 | 7.56 | 2.10 |
8.83 | 5.34 | 1.65 | ||||
PRO | 8.77 | 4.77 | 1.84 | |||
9.68 | 5.16 | 1.88 |
Free Fatty Acid (FFAs) Profile in Valtellina Casera PDO Cheese During Ripening
Culture | Temperature (°C) | Time (days) | SCFFA (%) | MCFFA (%) | LCFFA (%) |
---|---|---|---|---|---|
CAS | 8 | 70 | 18.84 ± 5.29 | 14.39 ± 3.54 | 66.75 ± 2.81 |
180 | 21.71 ± 2.33 | 14.07 ± 1.91 | 64.2 ± 0.66 | ||
12 | 70 | 13.99 ± 1.75 | 15.93 ± 0.30 | 70.07 ± 1.50 | |
180 | 13.45 ± 3.64 | 16.56 ± 1.23 | 69.98 ± 4.11 | ||
PRO | 8 | 70 | 23.91 ± 4.64 | 12.71 ± 1.38 | 63.36 ± 3.36 |
180 | 23.84 ± 1.85 | 13.88 ± 1.30 | 62.27 ± 1.24 | ||
12 | 70 | 14.83 ± 0.33 | 16.5 ±0.50 | 68.65 ± 0.45 | |
180 | 15.38 ± 4.63 | 16.24 ± 1.25 | 68.37 ± 3.62 | ||
Probability | |||||
Ripening Temperature | 0.992 | 0.028 | 0.022 | ||
Culture | 0.000 | 0.000 | 0.000 | ||
Ripening Time | 0.000 | 0.000 | 0.000 | ||
Culture × Ripening Temperature × Ripening time | 0.150 | 0.000 | 0.000 |
3.6. Sensory Effects
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- MIPAAF (Ministero delle Politiche Agricole Alimentari e Forestali). Valtellina Casera PDO. 1996. Available online: https://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/3340 (accessed on 17 April 2025).
- Fox, P.F.; Wallace, J.M. Formation of flavour compounds in cheese. Adv. Appl. Microbiol. 1997, 45, 17–85. [Google Scholar] [CrossRef] [PubMed]
- Kalit, M.T.; Buntić, I.; Morone, G.; Delaš, I.; Kalit, S. The content of free fatty acids in relation to electronic nose sensor responses and sensory evaluation of cheese in a lamb skin sack (Sir iz mišine) throughout ripening. Mljekarstvo 2016, 66, 26–33. [Google Scholar] [CrossRef]
- McSweeney, P.L.H.; Sousa, M.J. Biochemical pathways for the production of flavour compounds in cheese during ripening: A review. Le. Lait. 2000, 80, 293–324. [Google Scholar] [CrossRef]
- Santamarina-García, G.; Amores, G.; Hernandez, I.; Moran, L.; Barròn, L.J.R.; Virto, M. Relationship between the dynamics of volatile aroma compounds and microbial succession during the ripening of raw ewe milk-derived Idiazabal cheese. Curr. Res. Food Sci. 2023, 6, 100425. [Google Scholar] [CrossRef] [PubMed]
- Collins, Y.F.; McSweeney, P.L.H.; Wilkinson, M.G. Lipolysis and free fatty acid catabolism in cheese: A review of current knowledge. Int. Dairy J. 2003, 13, 841–866. [Google Scholar] [CrossRef]
- Murtaza, M.A.; Rehman, S.U.; Anjum, F.M.; Huma, N.; Hafiz, I. Cheddar Cheese Ripening and Flavor Characterization: A Review. Crit. Rev. Food Sci. Nutr. 2014, 54, 1309–1321. [Google Scholar] [CrossRef]
- Mannion, D.; Furey, A.; Kilcawley, K. Free fatty acids quantification in dairy products. Int. J. Dairy Technol. 2015, 69, 1–12. [Google Scholar] [CrossRef]
- Collins, Y.F.; McSweeney, P.L.H.; Wilkinson, M.G. Evidence of a relationship between autolysis of starter bacteria and lipolysis in Cheddar cheese during ripening. J. Dairy Res. 2003, 70, 105–113. [Google Scholar] [CrossRef]
- Bandić, L.M.; Oštarić, F.; Vinceković, M.; Mikulec, N. Biochemistry of aroma compounds in cheese. Mljekarstvo 2023, 73, 211–224. [Google Scholar] [CrossRef]
- Sert, D.; Akin, N.; Aktumsek, A. Lipolysis in Tulum cheese produced from raw and pasteurized goats’ milk during ripening. Small Rumin. Res. 2014, 121, 351–360. [Google Scholar] [CrossRef]
- Diezhandino, I.; Fernández, D.; Abarquero, D.; Prieto, B.; Renes, E.; Fresno, J.M.; Tornadijo, M.E. Changes in the Concentration and Profile of Free Fatty Acids during the Ripening of a Spanish Blue-Veined Cheese Made from Raw and Pasteurized Cow and Goat Milk. Dairy 2023, 4, 222–234. [Google Scholar] [CrossRef]
- Brasca, M.; Morandi, S.; Silvetti, T. Clostridium spp. In Encyclopedia of Dairy Sciences, 3rd ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 431–438. [Google Scholar] [CrossRef]
- Drouin, P.; Lafrenière, C. Clostridial spores in animal feeds and milk. Milk production—An up-to-date overview of animal. Nutr. Manag. Health 2012, 18, 375–390. [Google Scholar] [CrossRef]
- Klijn, N.; Nieuwenhof, F.F.; Hoolwerf, J.D.; van der Waals, C.; Weerkamp, A.H. Identification of Clostridium tyrobutyricum as the Causative Agent of Late Blowing in Cheese by Species-Specific PCR Amplification. Appl. Environ. Microbiol. 1995, 61, 2919–2924. [Google Scholar] [CrossRef] [PubMed]
- Trevisiol, F.; Renoldi, N.; Rossi, A.; Di Filippo, G.; Marino, M.; Innocente, N. Lacticaseibacillus casei as anti-blowing agents: Impact on the evolution of ripening and sensory profile of Montasio cheese. Food Bioproc. Technol. 2024, 18, 1764–1776. [Google Scholar] [CrossRef]
- Brandle, J.; Domig, K.J.; Kneifel, W. Relevance and analysis of butyric acid producing Clostridia in milk and cheese. Food Control. 2016, 67, 96–113. [Google Scholar] [CrossRef]
- Velasco, M.; Cabezaa, M.C.; Ordóñez, J.A. Current approaches to minimize the late blowing defect of cheese. Cogent Food Agric. 2025, 11, 2460462. [Google Scholar] [CrossRef]
- Garde, S.; Ávila, M.; Gaya, P.; Arias, R.; Nuñez, M. Sugars and organic acids in raw and pasteurized milk Manchego cheeses with different degrees of late blowing defect. Int. Dairy J. 2012, 25, 87–91. [Google Scholar] [CrossRef]
- Elwell, M.W.; Barbano, D.M. Use of microfiltration to improve fluid milk quality. J. Dairy Sci. 2006, 89, E20–E30. [Google Scholar] [CrossRef]
- Bassi, D.; Puglisi, E.; Cocconcelli, P.S. Understanding the bacterial communities of hard cheese with blowing defect. Food Microbiol. 2015, 52, 106–118. [Google Scholar] [CrossRef]
- Morandi, S.; Battelli, G.; Silvetti, T.; Tringali, S.; Nunziata, L.; Villa, A.; Acquistapace, A.; Brasca, M. Impact of salting and ripening temperatures on late blowing defect in Valtellina Casera PDO cheese. Food Control. 2021, 120, 107508. [Google Scholar] [CrossRef]
- Burtscher, J.; Hobl, L.; Kneifel, W.; Domig, K.J. Short communication: Clostridial spore counts in vat milk of Alpine dairies. J. Dairy Sci. 2020, 103, 2111–2116. [Google Scholar] [CrossRef]
- Hassan, H.; St-Gelais, D.; Gomaa, A.; Fliss, I. Impact of Nisin and Nisin-Producing Lactococcus lactis ssp. lactis on Clostridium tyrobutyricum and Bacterial Ecosystem of Cheese Matrices. Foods 2021, 10, 898. [Google Scholar] [CrossRef] [PubMed]
- Avila, M.; Gómez-Torres, N.; Gaya, P.; Garde, S. Effect of a nisin-producing lactococcal starter on the late blowing defect. Int. J. Food Sci. Tech. 2020, 55, 3343–3349. [Google Scholar] [CrossRef]
- Rodi, L.; Ramos, M.J.G.; Gadea, P.D.; Reginensi, S.M.A. Screening of anti-clostridial lactic acid bacteria strains isolated from Uruguayan dairy farms. J. Micro. Biotech. Food Sci. 2020, 9, 1170–1175. [Google Scholar] [CrossRef]
- Mayo, B.; Rodríguez, J.; Vázquez, L.; Flórez, A.B. Microbial Interactions within the Cheese Ecosystem and Their Application to Improve Quality and Safety. Foods 2021, 10, 602. [Google Scholar] [CrossRef]
- Morandi, S.; Brasca, M.; Lodi, R. Technological. phenotypic and genotypic characterisation of wild lactic acid bacteria involved in the production of Bitto PDO Italian cheese. Dairy Sci. Technol. 2011, 91, 341–359. [Google Scholar] [CrossRef]
- Morandi, S.; Silvetti, T.; Miranda Lopez, J.M.; Brasca, M. Antimicrobial activity. antibiotic resistance and the safety of lactic acid bacteria in raw milk Valtellina Casera cheese. J. Food Saf. 2015, 35, 193–205. [Google Scholar] [CrossRef]
- Morandi, S.; Silvetti, T.; Bonazza, F.; Siciliano, R.A.; Mazzeo, M.F.; Stuknytė, M.; De Noni, I.; Brasca, M. Effect of cheese-making and ripening processes on the anti-Clostridium activity of Lactococcus strains. Food Res. Int. 2025, 209, 116239. [Google Scholar] [CrossRef]
- Magnusson, J.; Ström, K.; Ross, S.; Sjögren, J.; Schnürer, J. Broad and complex antifungal activity among environmental isolates of lactic acid bacteria. FEMS Microbiol. Lett. 2003, 219, 129–135. [Google Scholar] [CrossRef]
- Maidment, C.; Dyson, A.; Beard, J. A study into measuring the antibacterial activity of lysozyme-containing foods. Nutr. Food Sci. 2009, 39, 29–35. [Google Scholar] [CrossRef]
- EFSA. Guidance on the characterization of microorganisms used as feed additives or as production organisms. EFSA J. 2018, 16, 5206. [Google Scholar] [CrossRef]
- Morandi, S.; Silvetti, T.; Guerci, M.; Tamburini, A.; Brasca, M. Legally admissible amounts of antibiotics in milk affect the growth of lactic acid bacteria. Int. J. Dairy Technol. 2024, 77, 1072–1082. [Google Scholar] [CrossRef]
- ISO 23319:2022; Cheese and Processed Cheese Products, Caseins and Caseinates, Determination of Fat Content, Gravimetric Method. International Organization for Standardization (ISO): Geneva, Switzerland, 2022.
- ISO 5534:2012; Cheese and Processed Cheese—Determination of the Total Solids Content. International Organization for Standardization (ISO): Geneva, Switzerland, 2017.
- ISO 8968-1:2014; Milk and Milk Products, Determination of Nitrogen Content, Part 1: Kjeldahl Principle and Crude Protein Calculation. International Organization for Standardization (ISO): Geneva, Switzerland, 2014.
- Masotti, F.; Cattaneo, S.; Stuknytė, M.; Ribolzi, L.A.; De Noni, I. Impact of the type of cooker-stretcher on chemical. rheological and microstructural properties of low-moisture mozzarella cheese analogue. Int. J. Dairy Technol. 2023, 76, 607–615. [Google Scholar] [CrossRef]
- ISO 27871:2011; Cheese and Processed Cheese, Determination of the Nitrogenous Fractions. International Organization for Standardization (ISO): Geneva, Switzerland, 2011.
- Andrews, A.T. Proteinases in normal bovine milk and their action on caseins. J. Dairy Res. 1983, 50, 45–55. [Google Scholar] [CrossRef]
- Veloso, A.C.A.; Teixeira, N.; Peres, A.M.; Mendonça, Á.; Ferreira, I.M.P.L.V.O. Evaluation of cheese authenticity and proteolysis by HPLC and urea–polyacrylamide gel electrophoresis. Food Chem. 2004, 87, 289–295. [Google Scholar] [CrossRef]
- De Jong, C.; Badings, H.T. Determination of free fatty acids in milk and cheese: Procedures for extraction. clean-up. and capillary gas chromatographic analysis. J. High Resolut. Chromatogr. 1990, 13, 94–98. [Google Scholar] [CrossRef]
- ISO 4120:2021; Sensory Analysis Methodology, Triangle Test. International Organization for Standardization (ISO): Vernier, Switzerland, 2022.
- Mani-López, E.; Arrioja-Bretón, D.; López-Malo, A. The impacts of antimicrobial and antifungal activity of cell-free supernatants from lactic acid bacteria in vitro and foods. Compr. Rev. Food Sci. Food Saf. 2022, 21, 604–641. [Google Scholar] [CrossRef]
- Alakomi, H.L.; Skyttä, E.; Saarela, M.; Mattila-Sandholm, T.; Latva-Kala, K.; Helander, I.M. Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl. Environ. Microbiol. 2000, 66, 2001–2005. [Google Scholar] [CrossRef]
- Zalán, Z.; Hudáček, J.; Štětina, J.; Chumchalová, J.; Halász, A. Production of organic acids by Lactobacillus strains in three different media. Eur. Food Res. Tech. 2010, 230, 395–404. [Google Scholar] [CrossRef]
- Szymanowska-Powałowska, D.; Kubiak, P. Effect of 1, 3-propanediol, organic acids, and ethanol on growth and metabolism of Clostridium butyricum DSP1. Appl. Microbiol. Biotechnol. 2015, 99, 3179–3189. [Google Scholar] [CrossRef]
- Gómez-Torres, N.; Ávila, M.; Gaya, P.; Garde, S. Prevention of late blowing defect by reuterin produced in cheese by a Lactobacillus reuteri adjunct. Food Microbiol. 2014, 42, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Vinderola, C.G.; Mocchiutti, P.; Reinheimer, J.A. Interactions among lactic acid starter and probiotic bacteria used for fermented dairy products. J. Dairy Sci. 2002, 85, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Salvadori, F. Caratterizzazione di Ceppi Lattici Isolati da Bitto e Valtellina Casera DOP Per il Controllo del Difetto di Gonfiore Tardivo. Ph.D. Thesis, Università degli Studi di Milano, Milan, Italy, 1999. [Google Scholar]
- Innocente, N.; Corradini, C. Effect of ripening temperature on the maturation of Montasio cheese. Ital. J. Food Sci. 1996, 8, 291–302. [Google Scholar]
- Alamprese, C.; D’Incecco, P.; Cattaneo, S.; Masotti, F.; De Noni, I. Effect of Type of Coagulant and Addition of Stored Curd on Chemical, Rheological and Microstructural Properties of Low-Moisture Mozzarella Cheese. Dairy 2025, 6, 6. [Google Scholar] [CrossRef]
- Battelli, G.; Scano, P.; Albano, C.; Cagliani, L.R.; Brasca, M.; Consonni, R. Modifications of the volatile and nonvolatile metabolome of goat cheese due to adjunct of non-starter lactic acid bacteria. LWT 2019, 116, 108576. [Google Scholar] [CrossRef]
- Amiri, S.; Kohneshahri, S.R.A.; Nabizadeh, F. The effect of unit operation and adjunct probiotic culture on physicochemical. biochemical. and textural properties of Dutch Edam cheese. LWT 2022, 155, 112859. [Google Scholar] [CrossRef]
- Georgala, A.; Moschopoulou, E.; Aktypis, A.; Zoidou, E.; Kandarakis, I.; Anifantakis, E. Evolution of lipolysis during the ripening of traditional Feta cheese. Food Chem. 2004, 93, 73–80. [Google Scholar] [CrossRef]
- Sihufe, G.A.; Zorrilla, S.E.; Mercanti, D.J.; Perotti, M.C.; Zalazar, C.A.; Rubiolo, A.C. The influence of ripening temperature and sampling site on the lipolysis in Reggianito Argentino cheese. Food Res. Int. 2007, 40, 1220–1226. [Google Scholar] [CrossRef]
- Ceruti, R.; Mercanti, D.J.; Perotti, M.C.; Zalazar, C.A.; Rubiolo, A.C.; Sihufe, G.A. Effect of increased initial ripening temperature on the sensory characteristics of Reggianito cheese. Int. J. Dairy Tech. 2014, 67, 539–546. [Google Scholar]
- Delgado, F.J.; González-Crespo, J.; Ladero, L.; Cava, R.; Ramírez, R. Free fatty acids and oxidative changes of a Spanish soft cheese (PDO ‘Torta del Casar’) during ripening. Int. J. Food Sci. Tech. 2009, 44, 1721–1728. [Google Scholar] [CrossRef]
- You, Q.Y.; Wang, Y.R.; Bai, S.; Wang, X.Y.; Wei, Z.J. Impact of ripening periods on the key volatile compounds of Cheddar cheese evaluated by sensory evaluation. instrumental analysis and chemometrics method. Appl. Food Res. 2024, 4, 100578. [Google Scholar] [CrossRef]
- Garde, S.; Calzada, J.; Sanchez, C.; Gaya, P.; Narbad, A.; Meijers, R.; Mayer, M.J.; Avila, M. Effect of Lactococcus lactis expressing phage endolysin on the late blowing defect of cheese caused by Clostridium tyrobutyricum. Int. J. Food Microbiol. 2020, 329, 108686. [Google Scholar] [CrossRef]
- Mayenobe, D.; Didienne, R.; Pradel, G. Caractérisation des gonflements tardifs dans les fromages de St-Nectaire et certaines pâtes pressées. Le. Lait. 1986, 63, 15–24. [Google Scholar]
- CTCB—Consorzio Tutela Formaggi Valtellina Casera e Bitto. Available online: https://www.ctcb.it/valtellina-casera (accessed on 3 June 2025).
- Melilli, C.; Barbano, D.M.; Manenti, M.; Lynch, J.M.; Carpino, S.; Licitra, G. Lipolysis and proteolysis in Ragusano cheese during brine salting at different temperatures. J. Dairy Sci. 2004, 87, 2359–2374. [Google Scholar] [CrossRef]
- Ziarno, M.; Bryś, J.; Kowalska, E.; Cichońska, P. Effect of metabolic activity of lactic acid bacteria and propionibacteria on cheese protein digestibility and fatty acid profile. Sci. Rep. 2023, 13, 1–14. [Google Scholar] [CrossRef]
- Ávila, M.; Calzada, J.; Garde, S.; Nuñez, M. Lipolysis of semi-hard cheese made with a lacticin 481-producing Lactococcus lactis strain and a Lactobacillus helveticus strain. Le. Lait. 2007, 87, 575–585. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonazza, F.; Morandi, S.; Silvetti, T.; Tamburini, A.; De Noni, I.; Masotti, F.; Brasca, M. Effects of Protective Lacticaseibacillus casei VC201 Culture on Late Blowing Prevention, Lipid Profile, and Sensory Characteristics of Valtellina Casera PDO Cheese During Ripening. Foods 2025, 14, 2433. https://doi.org/10.3390/foods14142433
Bonazza F, Morandi S, Silvetti T, Tamburini A, De Noni I, Masotti F, Brasca M. Effects of Protective Lacticaseibacillus casei VC201 Culture on Late Blowing Prevention, Lipid Profile, and Sensory Characteristics of Valtellina Casera PDO Cheese During Ripening. Foods. 2025; 14(14):2433. https://doi.org/10.3390/foods14142433
Chicago/Turabian StyleBonazza, Francesca, Stefano Morandi, Tiziana Silvetti, Alberto Tamburini, Ivano De Noni, Fabio Masotti, and Milena Brasca. 2025. "Effects of Protective Lacticaseibacillus casei VC201 Culture on Late Blowing Prevention, Lipid Profile, and Sensory Characteristics of Valtellina Casera PDO Cheese During Ripening" Foods 14, no. 14: 2433. https://doi.org/10.3390/foods14142433
APA StyleBonazza, F., Morandi, S., Silvetti, T., Tamburini, A., De Noni, I., Masotti, F., & Brasca, M. (2025). Effects of Protective Lacticaseibacillus casei VC201 Culture on Late Blowing Prevention, Lipid Profile, and Sensory Characteristics of Valtellina Casera PDO Cheese During Ripening. Foods, 14(14), 2433. https://doi.org/10.3390/foods14142433