Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (262)

Search Parameters:
Keywords = rigid polyurethane foam

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1928 KiB  
Article
Thermal and Flammability Analysis of Polyurethane Foams with Solid and Liquid Flame Retardants: Comparative Study
by Dorota Głowacz-Czerwonka, Patrycja Zakrzewska, Beata Zygmunt-Kowalska and Iwona Zarzyka
Polymers 2025, 17(14), 1977; https://doi.org/10.3390/polym17141977 - 18 Jul 2025
Viewed by 244
Abstract
The thermal properties and flammability of rigid polyurethane foams (RPUFs) containing various flame retardants, including solid (melamine, expanded graphite (EG), Exolit OP 935, ammonium polyphosphate (APP)) and liquid (Roflam B7, Roflam PLO) types, added at 30 wt.% and 60 wt.% by weight have [...] Read more.
The thermal properties and flammability of rigid polyurethane foams (RPUFs) containing various flame retardants, including solid (melamine, expanded graphite (EG), Exolit OP 935, ammonium polyphosphate (APP)) and liquid (Roflam B7, Roflam PLO) types, added at 30 wt.% and 60 wt.% by weight have been evaluated. Thermogravimetric analysis (TGA) demonstrated enhanced thermal stability, with the maximum 10% weight loss temperature (292 °C, +34 °C vs. reference) observed for foams containing 60 wt.% Exolit OP 935 and APP. The limiting oxygen index (LOI) test demonstrated the optimal performance for 30 wt.% APP and melamine (26.4 vol.% vs. 18.7 vol.% reference). In the UL-94 test, Exolit OP 935 and APP achieved a V-0 rating. The 60 wt.% Exolit with an EG blend also demonstrated a substantial reduction in heat release rate. These findings underscore the cooperative effects of hybrid flame retardants, thereby supporting their utilization in fire-safe RPUFs for construction and transport. Full article
Show Figures

Figure 1

15 pages, 2137 KiB  
Article
Performance Evolution and Prediction Model of Dam Polyurethane Insulation Materials Under Multi-Field Coupling Conditions in Hot Summer and Cold Winter Climate Zones
by Lingmin Liao, Hui Liang, Ting Zhao, Wei Han, Yun Dong, Da Zhang and Zhenhua Su
Materials 2025, 18(13), 3208; https://doi.org/10.3390/ma18133208 - 7 Jul 2025
Viewed by 372
Abstract
This study evaluates the performance degradation of spray rigid polyurethane foam (RPUF) insulation on reservoir dam structures under multi-physics coupling conditions. Focusing on characteristic environmental exposures in Hot Summer and Cold Winter (HSCW) climate zones, accelerated aging tests simulating coupled temperature–humidity effects were [...] Read more.
This study evaluates the performance degradation of spray rigid polyurethane foam (RPUF) insulation on reservoir dam structures under multi-physics coupling conditions. Focusing on characteristic environmental exposures in Hot Summer and Cold Winter (HSCW) climate zones, accelerated aging tests simulating coupled temperature–humidity effects were conducted to comparatively analyze the thermal resistance and durability evolution between unprotected and encapsulated RPUF configurations. Scanning electron microscopy (SEM), infrared spectroscopy (IR), and other methods were used to characterize and analyze the structure of RPUF. Research has shown that in HSCW climate zones, the thermal conductivity of RPUF gradually increases with the number of degradation cycles, and the insulation performance decreases, mainly due to the damage of the pore structure caused by temperature aging and the combined effect of moisture absorption aging. In comparison, the RPUF after protection can effectively slow down the rate and degree of decline of its insulation performance. On this basis, a time-varying prediction model for the thermal conductivity of RPUF under long-term service in HSCW climate environments was fitted, providing a scientific basis for the durability evaluation of reservoir dam insulation. Full article
Show Figures

Figure 1

14 pages, 1812 KiB  
Article
Influence of Rigid Polyurethane Foam Production Technology on Cryogenic Water Uptake
by Vladimir Yakushin, Vanesa Dhalivala, Laima Vevere and Ugis Cabulis
Polymers 2025, 17(12), 1669; https://doi.org/10.3390/polym17121669 - 16 Jun 2025
Viewed by 446
Abstract
This study explores how production technology influences spray-applied rigid polyurethane (PUR) foam insulation’s cryogenic performance. In cryogenic applications such as liquid gas storage, insulation must minimise heat transfer and resist moisture ingress under severe thermal gradients. Experimental aluminium vessels were insulated with PUR [...] Read more.
This study explores how production technology influences spray-applied rigid polyurethane (PUR) foam insulation’s cryogenic performance. In cryogenic applications such as liquid gas storage, insulation must minimise heat transfer and resist moisture ingress under severe thermal gradients. Experimental aluminium vessels were insulated with PUR foam of varying thicknesses and surface conditions—rough, machined smooth, and with a urea-based protective coating—and then tested using dynamic boil-off of liquid nitrogen (LN2). Foam properties, including adhesion, mechanical strength, thermal expansion, thermal conductivity, and closed-cell content, were evaluated. The results revealed that thicker insulation reduced both effective thermal conductivity and moisture uptake. Although the urea-coated vessel showed minimal water absorption, the coating increased overall thermal conductivity due to its heat conduction and condensation behaviour. Moisture was primarily absorbed near the foam surface, and no cumulative effects were observed during repeated tests. The effective thermal conductivity was determined by interpolating boil-off data, confirming that insulation performance strongly depends on thickness, surface condition, and environmental humidity. These findings provide valuable guidance for the design and application of PUR foam insulation in cryogenic environments. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

15 pages, 1914 KiB  
Article
Derivatization of PVA into Polyols Suitable for Fabrication of Rigid Polyurethane Foams—Preliminary Studies and Perspectives
by Jacek Lubczak
Materials 2025, 18(12), 2780; https://doi.org/10.3390/ma18122780 - 12 Jun 2025
Viewed by 461
Abstract
Polyols derived from poly(vinyl alcohol) (PVA) have not been reported before. The hydroxyalkylation of PVA with oxiranes leads to powdered or gum-like products that are not miscible with isocyanates and therefore useless as sources of polyurethane foams. Glycidol and ethylene carbonates were used [...] Read more.
Polyols derived from poly(vinyl alcohol) (PVA) have not been reported before. The hydroxyalkylation of PVA with oxiranes leads to powdered or gum-like products that are not miscible with isocyanates and therefore useless as sources of polyurethane foams. Glycidol and ethylene carbonates were used to dissolve and convert PVA into liquid polyol. The physical properties of the PVA-derived polyol, such as the density, viscosity, and surface tension, were determined. The polyol was then used to obtain rigid polyurethane foams (PUFs). Foaming conditions were optimized, and the apparent density, volume water uptake, dimensional stability, heat conductance coefficient, pore size, thermal resistance, compressive strength, and glass transition temperature of the obtained PUFs were determined. The properties of the obtained PUFs were similar to those of classic rigid PUFs, but the thermal resistance of the former is better. Specifically, PVA-derived PUFs are thermally resistant at temperatures of up to 150 °C. Furthermore, they are ecologically safe; in standard soil conditions, 54.6% or 100% biodegradation of the foams in cube and powder form, respectively, was observed, as measured by BOD after 28 days of storage. Full article
(This article belongs to the Special Issue Advances in Development and Characterization of Polyurethane Foams)
Show Figures

Graphical abstract

22 pages, 5187 KiB  
Article
The Impact of Dextrin-Activated Expanded Perlite and Vermiculite Particles on the Performance of Thermal Insulating Rapeseed Oil-Based Polyurethane Foam Composites
by Agnė Kairytė and Aliona Levina
Appl. Sci. 2025, 15(12), 6604; https://doi.org/10.3390/app15126604 - 12 Jun 2025
Viewed by 436
Abstract
To enhance the performance of polyurethane foams, fillers are often incorporated into the matrix. However, the interaction between the filler and the polyurethane matrix is crucial for achieving the desired property improvements. Therefore, surface modification of the fillers plays a vital role in [...] Read more.
To enhance the performance of polyurethane foams, fillers are often incorporated into the matrix. However, the interaction between the filler and the polyurethane matrix is crucial for achieving the desired property improvements. Therefore, surface modification of the fillers plays a vital role in optimizing this interaction. The current study aims to activate the surface of expanded vermiculite and perlite with dextrin to incorporate additional functional groups on the surface of the fillers via the ball-milling process, thereby improving the reaction with a polymer matrix. Applied surface activation with dextrin resulted in the formation of dextrin-Si-O-Si-dextrin linkages in the fillers, allowing for a maximum improvement of 11% and 9% in water absorption, as well as slightly positive changes in the water contact angle of polyurethane foam with dextrin-activated perlite and vermiculite, respectively, compared to non-activated fillers. It also resulted in noticeable differences in the foaming times and viscosity of the premixes, affecting the structure of rigid polyurethane foam composites. Compared to non-activated perlite and vermiculite filler polyurethane foam composites, the dynamic viscosity of polyurethane foam composites with dextrin-activated perlite and vermiculite reduced maximally 16 and 21 times, respectively. At the same time, the closed cell content increased, resulting in lower thermal conductivity values up to a 7.5 wt.% filler concentration. In addition, a rise in mechanical performance was also achieved. Compressive strength increased by a maximum of 61% and 71%, while tensile strength increased by a maximum of 36% and 20% for polyurethane foam composites with dextrin-activated perlite and vermiculite, respectively. Full article
Show Figures

Figure 1

17 pages, 4471 KiB  
Article
Nanocrystalline Cellulose Reinforcement and Constrained Expansion to Enhance Mechanical Performance of Rigid Polyurethane Foams for Sandwich Panel Applications
by Marcelo Jorge Bach, Kelvin Techera Barbosa, Cristiane da Silva Fonseca, Darci Alberto Gatto, Rafael Beltrame, André Luiz Missio, Jalel Labidi and Rafael de Avila Delucis
Materials 2025, 18(9), 1950; https://doi.org/10.3390/ma18091950 - 25 Apr 2025
Viewed by 419
Abstract
This study aimed to assess the mechanical and morphological properties of rigid polyurethane foams (RPUFs) reinforced with cellulose nanocrystals (CNC) at varying concentrations, exploring also effects of expansion under confinement for use in sandwich panels. RPUFs with 1%, 3%, and 5% CNC were [...] Read more.
This study aimed to assess the mechanical and morphological properties of rigid polyurethane foams (RPUFs) reinforced with cellulose nanocrystals (CNC) at varying concentrations, exploring also effects of expansion under confinement for use in sandwich panels. RPUFs with 1%, 3%, and 5% CNC were tested, with the 3% CNC content delivering the best combination of mechanical performance and cellular structure. While the RPUF with 5% CNC showed a 78% increase in cell length, its compressive strength dropped by 55%, likely due to CNC agglomeration. Confining the RPUF during expansion improved the density by 23%, which in turn led to an approximately 90% increase in core shear stress. Flexural tests revealed that confined panels exhibited better force-displacement responses, with core shear strength rising by 55% compared to unconfined panels. These results suggest that CNC-reinforced and confined RPUFs are well-suited for structural applications requiring both strength and insulation. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

21 pages, 21385 KiB  
Article
Experimental Study on the Use of Polyurethane Elastomers to Enhance Structural Performance of A36 Steel Sheets Under Near-Field Detonation
by Anselmo S. Augusto, Girum Urgessa, José A. F. F. Rocco, Fausto B. Mendonça and Koshun Iha
Appl. Mech. 2025, 6(2), 28; https://doi.org/10.3390/applmech6020028 - 15 Apr 2025
Cited by 1 | Viewed by 838
Abstract
In recent years, a series of studies have examined the effects of blast loads on structures and proposed new materials to enhance or retrofit the resistance of conventional materials, such as steel or concrete. Polymeric materials, including foams and elastomers, play a significant [...] Read more.
In recent years, a series of studies have examined the effects of blast loads on structures and proposed new materials to enhance or retrofit the resistance of conventional materials, such as steel or concrete. Polymeric materials, including foams and elastomers, play a significant role in this field due to their low density and favorable mechanical properties under dynamic loads. This study investigates the use of polyurethane elastomer to improve the mechanical properties of 2 mm A36 steel sheets. The efficiency of this material in steel structures has not yet been studied in the scientific literature through blast tests. A total of 18 near-field blast tests were conducted at standoff distances of 300 mm and 500 mm. The explosive charges consisted of 334 g of bare Composition B in a spherical shape. The steel sheets were fixed to rigid supports and exposed to the blast either bare or covered with different layers of commercial Shore A 60 or 90 polyurethane elastomer, with thicknesses varying from 2 to 6 mm. The maximum displacement of the steel sheets was measured using a high-speed camera and the results were compared. The elastomer retrofitted sheets exhibited a reduction in maximum displacement ranging from 5% to 20% when compared to the sheet without the elastomer. Full article
Show Figures

Graphical abstract

20 pages, 7726 KiB  
Article
The Experimental Study of Flame Behavior of Flexible Polyurethane Foam (Sponge), as a Sound-Absorbing Element
by Florin Manea, Gheorghe Ilia, Emilian Ghicioi, Daniel Gheorghe Pupazan, Maria Prodan and Aurelian Horia Nicola
Fire 2025, 8(4), 127; https://doi.org/10.3390/fire8040127 - 26 Mar 2025
Viewed by 486
Abstract
Polyurethane foam (PF) is a versatile polymer widely used in various applications. By changing the composition of polyol and isocyanate, these foams can be classified into rigid polyurethane foams (PUFRs) and flexible polyurethane foams (PUFFs). The flexible polyurethane foam (PUFFs) is well known [...] Read more.
Polyurethane foam (PF) is a versatile polymer widely used in various applications. By changing the composition of polyol and isocyanate, these foams can be classified into rigid polyurethane foams (PUFRs) and flexible polyurethane foams (PUFFs). The flexible polyurethane foam (PUFFs) is well known for its sound absorption capacities; nevertheless, its flammability poses significant safety hazards. The purpose of this study is to look into how flexible polyurethane foam reacts to fire, specifically its combustion properties, and the risks that come with them. The study aims to find out the rates of horizontal and vertical burning, the make-up of the reaction products, and the temperatures that build up inside the polyurethane foam mass when a support pole is placed in front of the stage and sound-absorbing material is added to stop stage sounds from reverberating. There were performed experiments to determine the fire behavior of the samples in contact with an ignition source in the form of a small flame and experiments to determine the ignition temperature of the sound-absorbing sponge, where it was found that vertical position accelerates combustion, and in practical applications, this aspect must be considered for fire prevention. To determine the combustion gases, several methods were used, namely spectrophotometric, ion chromatography, and gas-chromatographic methods. Analysis of the gases resulting from the combustion of the sound-absorbing sponge indicates the presence of dangerous toxic compounds (hydrogen cyanide, carbon monoxide, and hydrochloric acid), which can endanger human health in the event of a fire. Full article
Show Figures

Figure 1

17 pages, 5650 KiB  
Article
Smart Biomimetic 3D Scaffolds Based on Shape Memory Polyurethane for Soft Tissue Repair
by Xiaoling Zuo, Weijing Sun, Yutong Wu, Hanliu Gu, Tao Chen, Ting Zhang, Xiaoying Liu, Jianwei Zhang and Li Wang
Polymers 2025, 17(7), 872; https://doi.org/10.3390/polym17070872 - 25 Mar 2025
Viewed by 743
Abstract
Tissue-engineered biocompatible scaffolds could mimic the extracellular matrix structure for cell adhesion and proliferation; however, patients suffer from large volume implantation. In this study, a thermal sensitive shape memory polyurethane porous 3D scaffold based on poly(ε-caprolactone) and poly(ethylene glycol adipate) was developed, utilizing [...] Read more.
Tissue-engineered biocompatible scaffolds could mimic the extracellular matrix structure for cell adhesion and proliferation; however, patients suffer from large volume implantation. In this study, a thermal sensitive shape memory polyurethane porous 3D scaffold based on poly(ε-caprolactone) and poly(ethylene glycol adipate) was developed, utilizing the water-splitting property of aliphatic hexamethylene diisocyanate (HDI) to crosslink rigid segments during the polymerization process. The chemical structure, microstructure, and morphology, as well as mechanical strength, of the scaffolds were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), a scanning electron microscope (SEM), and tensile tests. The results show that gas foaming action caused by the release of CO2 occurred simultaneously in the reactive process, resulting in the interconnective porous structure of the PU scaffolds with a porosity of over 70% and pore sizes from 100 μm to 800 μm. Additionally, after programming to a temporary shape, the scaffolds could recover to their initial shapes and could be programmed into various shapes according to different defects. These smart shape-changeable scaffolds with high porosity and good physio-chemical properties are a promising material for minimally invasive tissue engineering. Full article
(This article belongs to the Collection Polyurethanes)
Show Figures

Figure 1

22 pages, 16995 KiB  
Article
Effect of Unit Cell Design and Volume Fraction of 3D-Printed Lattice Structures on Compressive Response and Orthopedics Screw Pullout Strength
by Boonyanuch Suksawang, Pisaisit Chaijareenont and Patcharawan Silthampitag
Materials 2025, 18(6), 1349; https://doi.org/10.3390/ma18061349 - 19 Mar 2025
Viewed by 711
Abstract
We aimed to evaluate the effects of unit cell design and the volume fraction of 3D-printed lattice structures with relative densities of 30% or 45% on compressive response and orthopedics screw pullout strength. All 3D lattice models were created using FLatt Pack software [...] Read more.
We aimed to evaluate the effects of unit cell design and the volume fraction of 3D-printed lattice structures with relative densities of 30% or 45% on compressive response and orthopedics screw pullout strength. All 3D lattice models were created using FLatt Pack software (version 3.31.0.0). The unit cell size of sheet-based triply periodic minimal surfaces (TPMSs)—Gyroid and Schwarz Diamond—was 5.08 mm, whereas that of skeletal TPMS—Skeletal Gyroid, Skeletal Schwarz Diamond, and Skeletal Schoen I-Wrapped Package—was scaled down to 3.175 and 2.54 mm. Two photopolymer resin types—Rigid 10k and Standard Grey—were used. In uniaxial compression tests, Rigid 10k resin lattices failed at relatively lower strains (<0.11), while Standard Grey lattices endured higher strains (>0.60) and experienced less softening effects, resulting in stress–strain curve plateauing followed by lattice densification. ANOVA revealed significant effects of design and volume fraction at p < 0.001 on compressive modulus, screw pullout strength, and screw withdrawal stiffness of the 3D-printed lattice. The pullout load from 3D-printed lattices (61.00–2839.42 N) was higher than that from open-cell polyurethane foam (<50 N) and lower than that of human bone of similar volume fraction (1134–2293 N). These findings demonstrate that 3D-printed lattices can be tailored to approximate different bone densities, enabling more realistic orthopedic and dental training models. Full article
Show Figures

Figure 1

17 pages, 3853 KiB  
Article
Analysis of the Structural, Chemical, and Mechanical Characteristics of Polyurethane Foam Infused with Waste from Thermal Processing
by Anna Magiera, Monika Kuźnia and Wojciech Jerzak
Materials 2025, 18(6), 1327; https://doi.org/10.3390/ma18061327 - 17 Mar 2025
Cited by 1 | Viewed by 390
Abstract
The continuous generation of agricultural, industrial, and urban waste necessitates effective waste management strategies. One promising approach is incorporating these residues as fillers in polymer composites. This study investigated the influence of coal processing-derived fillers, specifically microspheres and fluidized-bed combustion fly ash, on [...] Read more.
The continuous generation of agricultural, industrial, and urban waste necessitates effective waste management strategies. One promising approach is incorporating these residues as fillers in polymer composites. This study investigated the influence of coal processing-derived fillers, specifically microspheres and fluidized-bed combustion fly ash, on the structure and properties of composite rigid polyurethane foam. Polyurethane foams were produced through manual mixing and casting, with composite foams containing a combination of 5% microspheres and 5–15% fly ash by weight. The analysis of the samples investigated their structural, thermal, and mechanical properties. The samples consistently displayed predominantly pentagonal, regularly shaped cells. Infrared spectroscopy revealed no observable chemical bonding between the matrix and filler materials. Mechanical analysis was performed to evaluate the materials’ characteristics, revealing significant variations in compressive strength and Young’s modulus values. The results indicate that the addition of fillers did not impact the cellular and chemical composition of the polyurethane matrix. Furthermore, the composite material specimens were subjected to accelerated aging in a laboratory dryer and outdoor exposure in order to assess their thermal stability. This analysis revealed notable alterations in both the cellular composition and mechanical properties of the composite foam materials. Full article
Show Figures

Figure 1

17 pages, 2808 KiB  
Article
Phase-Change Materials as Cryo-Shock Absorbers in Rigid Polyurethane Cryogenic Insulation Foams
by Laima Vevere, Beatrise Sture-Skela, Vladimir Yakushin, Pavel Němeček, Hynek Beneš and Ugis Cabulis
Polymers 2025, 17(6), 729; https://doi.org/10.3390/polym17060729 - 10 Mar 2025
Cited by 2 | Viewed by 1209
Abstract
This study investigates the effects of microencapsulated phase-change materials (PCMs) on the density and thermal conductivity of rigid polyurethane (PU) foams, alongside their mechanical properties. Introducing PCMs into the foam composition results in increased viscosity, complicating the mixing of polyol and isocyanate components. [...] Read more.
This study investigates the effects of microencapsulated phase-change materials (PCMs) on the density and thermal conductivity of rigid polyurethane (PU) foams, alongside their mechanical properties. Introducing PCMs into the foam composition results in increased viscosity, complicating the mixing of polyol and isocyanate components. This viscosity increase can slow the foaming rate and subsequently raise the foam density, as observed in both poured and sprayed rigid PU foams containing 5% and 10% PCM, leading to density increases of up to 9%. Despite these slight density changes, the thermal conductivity remained relatively stable due to the preservation of the foam’s closed-cell structure. The mechanical evaluation revealed a decrease in compressive and tensile strength with a higher PCM content attributed to defects arising in the foam’s cellular architecture. However, adhesive strength to aluminum substrates improved, particularly with 5% PCM, possibly due to a more consistent foam structure during the slower foaming process. Differential scanning calorimetry and a dynamic mechanical analysis indicated that the incorporation of PCM increased the glass transition temperature and affected the foam’s mechanical properties. This research underscores the potential of microencapsulated PCMs to enhance the functionality of rigid PU foams while needing careful consideration of their concentration to avoid compromising the structural integrity. Full article
Show Figures

Figure 1

12 pages, 15543 KiB  
Article
Enhancing the Fatigue Properties of Rigid Polyurethane Foam by Dissipating the Mechanical Energy of Rubber Powder
by Jinlong Ju, Nana Yang, Yifei Zhang, Lei Yu, Guolu Ma and Wenhua Wu
Polymers 2025, 17(5), 705; https://doi.org/10.3390/polym17050705 - 6 Mar 2025
Viewed by 1108
Abstract
Rigid polyurethane-based foam is an ideal choice for sandwich-panel-filling materials due to its high strength, low thermal conductivity, high adhesion, and high chemical resistivity. Since sandwich panel materials often face cyclic mechanical loads during their service, it is significant to study the design [...] Read more.
Rigid polyurethane-based foam is an ideal choice for sandwich-panel-filling materials due to its high strength, low thermal conductivity, high adhesion, and high chemical resistivity. Since sandwich panel materials often face cyclic mechanical loads during their service, it is significant to study the design methods of fatigue-resistant rigid polyurethane foam and its fatigue failure mechanism to improve the performance of sandwich-panel-filling materials. In this study, a fatigue-resistant rubber powder/polyurethane composite material was prepared by introducing rubber powder, and its fatigue failure mechanism was systematically studied. The static mechanical test results indicate that with the introduction of 20% rubber powder, the compressive strength (at 85% strain) increased to 588 kPa. Additionally, thanks to the excellent energy absorption and dissipation properties of rubber powder, it can effectively dissipate mechanical energy during cyclic loading. The fatigue test results show that after the introduction of rubber powder, the fatigue life of the polyurethane foam material increases from 10,258 cycles (for PU, stress ratio 0.6) to 45,987 cycles (for 20R-PU, stress ratio 0.6). This study not only proves the fact that rubber powder can improve the fatigue performance of foam materials but also provides a potential option for the design of high-performance filling materials. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

28 pages, 4600 KiB  
Article
Utilization of Coniferous and Deciduous Tree and Paper Ashes as Fillers of Rigid Polyurethane/Polyisocyanurate (PU/PIR) Foams
by Joanna Liszkowska, Magdalena Stepczyńska, Andrzej Trafarski, Justyna Miłek and Tomasz Karasiewicz
Materials 2025, 18(5), 1165; https://doi.org/10.3390/ma18051165 - 5 Mar 2025
Viewed by 1309
Abstract
Five series of rigid polyurethane–polyisocyanurate (RPU/PIR) foams were obtained. They were modified by ashes from burning paper (P) and wood: conifers (pine—S, spruce—S’) and deciduous trees (oak—D, birch—B). The ash was added to rigid polyurethane–polyisocyanurate foams (PU/PIR). In this way, five series of [...] Read more.
Five series of rigid polyurethane–polyisocyanurate (RPU/PIR) foams were obtained. They were modified by ashes from burning paper (P) and wood: conifers (pine—S, spruce—S’) and deciduous trees (oak—D, birch—B). The ash was added to rigid polyurethane–polyisocyanurate foams (PU/PIR). In this way, five series of foams with different ash contents (from 1 to 9% wt.) were obtained: PP, PS, PD, PS’, PB. The model foam (reference—W) was obtained without filler. The basic properties, physico-mechanical, and thermal properties of the ashes and obtained foams were examined. It was specified, among other things, the cellular structure by scanning electron microscopy (SEM), and changes in chemical structure by Fourier-transform infrared spectroscopy (FTIR) were compared. The obtained foams were also subjected to thermostating in a circulating air dryer in increased temperature (120 °C) for 48 h. Ash tests showed that their skeletal density is about 2.9 g/cm3, and the pH of their solutions ranges from 9 to 13. The varied color of the ashes affected the color of the foams. SEM-EDS tests showed the presence of magnesium, calcium, silicon, potassium, aluminum, phosphorus, sodium, and sulfur in the ashes. Foam tests showed that pine ash is the most beneficial for foams, because it increases their compressive strength three times compared to W foam and improves their thermal stability. All ashes cause the residue after combustion of the foams (retention) to increase and the range of combustion of the samples to decrease. Full article
Show Figures

Figure 1

26 pages, 5256 KiB  
Article
Unveiling the Potential of Plant-Derived Diarylheptanoids and Their Derivatives in Bio-Based Polyurethane Compositions
by Matiss Pals, Jevgenija Ponomarenko, Maris Lauberts, Lilija Jashina, Vilhelmine Jurkjane and Alexandr Arshanitsa
Plants 2025, 14(5), 775; https://doi.org/10.3390/plants14050775 - 3 Mar 2025
Viewed by 1187
Abstract
The key challenge in polymer science is developing sustainable synthesis methods using renewable feedstocks. This study explores plant-derived diarylheptanoids with various structures as the building blocks for polyurethane (PU) materials. Diarylheptanoid glucosides isolated from black alder (Alnus glutinosa) bark were hydrolyzed [...] Read more.
The key challenge in polymer science is developing sustainable synthesis methods using renewable feedstocks. This study explores plant-derived diarylheptanoids with various structures as the building blocks for polyurethane (PU) materials. Diarylheptanoid glucosides isolated from black alder (Alnus glutinosa) bark were hydrolyzed and fractionated to remove sugar moieties. The resulting diarylheptanoids, along with unhydrolyzed analogues and curcumin, were used as biomass-based polyols to synthesize model PU films. Incorporating diarylheptanoids enhanced the mechanical strength and reduced the flexibility of PU due to increased crosslinking, with effects proportional to the OH functionality of the biomass-based polyols. Weight loss, FTIR, and Py-GC-MS/FID analyses revealed that the catechol moieties and the glucosidic bonds are biodegradable structural subunits of diarylheptanoids incorporated into PU films. Rigid polyurethane foams (PURs) incorporating high-OH-functionality diarylheptanoid glucosides such as oregonin demonstrated significantly higher compression strength and less weight loss during non-isothermal thermal analysis in air compared to those of commercial polyol-based foams. A cone calorimeter test showed that the PUR foam with diarylheptanoid derivatives had a lower degradation rate, a longer flame-burning time, 30% less heat emission, and 25% less smoke, indicating improved flame retardancy. Adding 1–2% oregonin-enriched black alder bark extracts to commercial Elastopir 1132/509/0 PUR foam significantly improved its resistance to thermal oxidative aging, outperforming the commercial antioxidant Irganox. Full article
Show Figures

Figure 1

Back to TopTop