Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (516)

Search Parameters:
Keywords = rice bran

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1305 KB  
Article
Varietal Discrimination of Purple, Red, and White Rice Bran Oils Based on Physicochemical Properties, Bioactive Compounds, and Lipidomic Profiles
by Peng Zheng, Yuyue Qin, Xiaoyu Yin, Jianxin Cao, Shujie Wang and Guiguang Cheng
Molecules 2026, 31(2), 308; https://doi.org/10.3390/molecules31020308 - 15 Jan 2026
Viewed by 22
Abstract
Rice bran oil (RBO) is increasingly valued for its bioactive constituents and associated health benefits. This study presents a comprehensive comparative analysis of RBOs derived from purple (PRBO), red (RRBO), and white (WRBO) rice bran, focusing on their physicochemical properties, fatty-acid profiles, bioactive [...] Read more.
Rice bran oil (RBO) is increasingly valued for its bioactive constituents and associated health benefits. This study presents a comprehensive comparative analysis of RBOs derived from purple (PRBO), red (RRBO), and white (WRBO) rice bran, focusing on their physicochemical properties, fatty-acid profiles, bioactive components, antioxidant activity, oxidative stability, and lipidomics. Our results demonstrate that PRBO consistently exhibited a more favorable fatty-acid composition, characterized by a higher proportion of unsaturated fatty acids and significantly greater concentrations of bioactive compounds (including tocopherols/tocotrienols, γ-oryzanol, phytosterols, and squalene). Accordingly, PRBO showed the highest radical-scavenging activity and storage oxidative stability, followed by RRBO and WRBO. Additionally, untargeted lipidomics using UPLC–MS–MS identified 2908 lipid species spanning 57 subclasses and revealed distinct variety-specific lipid signatures. PRBO was uniquely enriched in lipid species such as ceramide phosphate (CerP) and monogalactosyldiacylglycerol (MGDG). RRBO was characterized by a distinct abundance of sitosteryl esters (SiE), phosphatidic acid (PA), and cardiolipin (CL), while WRBO was distinguished by phosphatidylethanol (PEt), lysodimethylphosphatidylethanolamine (LdMePE), and sphingomyelin (SM). Overall, PRBO possessed not only a broader repertoire of lipid species but also higher relative abundances of nutritionally significant lipids. These results enable quality evaluation and varietal authentication of colored RBOs and guide their targeted use in health-oriented foods and nutritional interventions. Full article
Show Figures

Graphical abstract

17 pages, 1037 KB  
Article
Sustainable Production of Bioactive Chitosan from Fermented Rice Bran and Husk via Solid-State Fermentation
by Helena L. Gouvea, Meritaine da Rocha, Eliezer Q. Oreste, Sergiane C. Barbosa, Larine Kupski and Ednei G. Primel
Fermentation 2026, 12(1), 44; https://doi.org/10.3390/fermentation12010044 - 12 Jan 2026
Viewed by 173
Abstract
Sustainable production of high-quality chitosan from agro-industrial by-products remains a challenge in biotechnology. This study aimed to improve chitosan production from fermented rice bran and rice husk using Rhizopus oryzae in solid-state fermentation (SSF), and evaluated the physicochemical and biological properties of the [...] Read more.
Sustainable production of high-quality chitosan from agro-industrial by-products remains a challenge in biotechnology. This study aimed to improve chitosan production from fermented rice bran and rice husk using Rhizopus oryzae in solid-state fermentation (SSF), and evaluated the physicochemical and biological properties of the resulting biopolymer. A full factorial design (23) was applied to assess key fermentation parameters, including moisture content, substrate composition, and nitrogen supplementation. Among the tested conditions, the highest chitosan yield was at 55% moisture, 50% rice husk, and 1.8 g/L urea. The obtained chitosan was characterized for degree of deacetylation (DD) using FTIR and NMR, and molecular weight (MW) by viscometry. Antimicrobial activity was tested against Gram-positive and Gram-negative bacteria, and antioxidant capacity was measured via DPPH and ABTS assays. The chitosan exhibited a high DD (86.4 ± 0.6%) and a MW of 59.65 kDa, values comparable to commercial standards. It showed strong antimicrobial activity, particularly against Gram-negative strains. Antioxidant assays confirmed concentration-dependent activity, reaching 94% DPPH inhibition at 5.00 mg mL−1. Overall, the results demonstrate that agro-industrial residues can be effectively transformed into high-quality, bioactive chitosan, offering a sustainable and circular alternative to conventional production routes. Full article
Show Figures

Figure 1

16 pages, 10359 KB  
Article
Gamma-Oryzanol Attenuates Aortic Valve Interstitial Cell Calcification via Suppression of BMP2-SMAD and MAPK Signaling Pathways
by Mausam Thapa, Saugat Shiwakoti, Dalseong Gong, Ju-Young Ko, Yeon-Hyang Gwak and Min-Ho Oak
Biomolecules 2026, 16(1), 107; https://doi.org/10.3390/biom16010107 - 8 Jan 2026
Viewed by 245
Abstract
Calcific aortic valve stenosis (CAVS) is a progressive cardiovascular disease associated with oxidative stress-driven osteogenic differentiation of valvular interstitial cells (VICs), yet no pharmacological therapy can prevent its progression. γ-oryzanol (γ-ORZ), a rice bran-derived phytosteryl ferulate, exhibits potent antioxidative and anti-inflammatory activities that [...] Read more.
Calcific aortic valve stenosis (CAVS) is a progressive cardiovascular disease associated with oxidative stress-driven osteogenic differentiation of valvular interstitial cells (VICs), yet no pharmacological therapy can prevent its progression. γ-oryzanol (γ-ORZ), a rice bran-derived phytosteryl ferulate, exhibits potent antioxidative and anti-inflammatory activities that may counteract valvular calcification. Here, we show that γ-ORZ markedly attenuates PCM-induced intracellular ROS elevation, osteogenic differentiation, and calcium phosphate deposition in porcine VICs (pVICs). In addition, RT-qPCR and Western blot analyses revealed significant downregulation of calcification markers (RUNX2, OPN, BMP2), along with suppressed SMAD1/5/9 transcription and phosphorylation, decreased p38/ERK MAPK activation, and reduced ALP activity. Collectively, these findings indicate that γ-ORZ mitigates oxidative stress-mediated valvular calcification by inhibiting both canonical and non-canonical BMP2-SMAD/MAPK signaling, suggesting its potential as a medicinal candidate for early intervention in CAVS. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Aortic Diseases)
Show Figures

Figure 1

18 pages, 2548 KB  
Article
Quantitative Analysis Model for the Powder Content of Zanthoxylum bungeanum Based on IncepSpect-CBAM
by Yue Wang, Pingzeng Liu, Sicheng Liang, Yan Zhang, Ke Zhu and Qun Yu
Foods 2026, 15(1), 169; https://doi.org/10.3390/foods15010169 - 4 Jan 2026
Viewed by 245
Abstract
The adulteration of Zanthoxylum bungeanum powder presents a complex challenge, as current near-infrared spectroscopy (NIRS) models are typically designed for specific adulterants and require extensive preprocessing, limiting their practical utility. To overcome these limitations, this study proposes IncepSpect-CBAM, an end-to-end one-dimensional convolutional neural [...] Read more.
The adulteration of Zanthoxylum bungeanum powder presents a complex challenge, as current near-infrared spectroscopy (NIRS) models are typically designed for specific adulterants and require extensive preprocessing, limiting their practical utility. To overcome these limitations, this study proposes IncepSpect-CBAM, an end-to-end one-dimensional convolutional neural network that integrates multi-scale Inception modules, a Convolutional Block Attention Module (CBAM), and residual connections. The model directly learns features from raw spectra while maintaining robustness across multiple adulteration scenarios, focusing specifically on quantifying Zanthoxylum bungeanum powder content. When evaluated on a dataset containing four common adulterants (corn flour, wheat bran powder, rice bran powder, and Zanthoxylum bungeanum stem powder), the model achieved a Root Mean Square Error of Prediction (RMSEP) of 0.058 and a coefficient of determination for prediction (RP2) of 0.980, demonstrating superior performance over traditional methods including Partial Least Squares Regression (PLSR) and Support Vector Regression (SVR), as well as deep learning benchmarks such as 1D-CNN and DeepSpectra. The results establish that the proposed model enables high-precision quantitative analysis of Zanthoxylum bungeanum powder content across diverse adulteration types, providing a robust technical framework for rapid, non-destructive quality assessment of powdered food products using near-infrared spectroscopy. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

22 pages, 2310 KB  
Article
Fermentation of Lignocellulosic Substrates Enhances the Safety and Nutritional Quality of Flake Soil for Rhinoceros Beetle Rearing
by Khanchai Danmek, Tippapha Pisithkul, Chuleui Jung, Sukjun Sun, Hyeonjeong Jang, Surat Hongsibsong, Sampat Ghosh, Ming Cheng Wu, Pichet Praphawilai, Michael Burgett and Bajaree Chuttong
Polymers 2026, 18(1), 95; https://doi.org/10.3390/polym18010095 - 29 Dec 2025
Viewed by 312
Abstract
The rhinoceros beetle (Xylotrupes gideon) requires safe and nutritious flake soil substrate for commercial rearing in northern Thailand, yet optimal lignocellulosic formulations remain undefined. This study evaluated five flake soil formulations substituting lignin-rich cadamba sawdust (0–100%) with cellulose-rich corn stover, plus [...] Read more.
The rhinoceros beetle (Xylotrupes gideon) requires safe and nutritious flake soil substrate for commercial rearing in northern Thailand, yet optimal lignocellulosic formulations remain undefined. This study evaluated five flake soil formulations substituting lignin-rich cadamba sawdust (0–100%) with cellulose-rich corn stover, plus cattle manure and rice bran, fermented for 90 days. Fermentation engineered the cellulose-lignin-hemicellulose matrix, reducing lignin from 25.07% to 7.30% while enriching cellulose from 29.73% to 33.83% and hemicellulose from 6.67% to 17.42%. Increasing corn stover enhanced crude protein (5.46–7.53%) and nitrogen-free extract (24.17–34.14%), creating T1 (25% substitution) as the optimal cellulose-based composite for X. gideon rearing. Microbial analysis showed T1-T2 supported highest α-diversity and lactic acid bacteria enrichment, suppressing pathogens like Escherichia coli and Salmonella enterica. Fermentation degraded >99% glyphosate residues (from 106 mg/kg to <0.25 mg/kg or undetectable). T1 is recommended as the optimal, sustainable flake soil for X. gideon rearing, balancing nutrition, microbiology, and safety while valorizing agricultural wastes. Full article
(This article belongs to the Special Issue Cellulose-Based Polymer Composites and Their Emerging Applications)
Show Figures

Figure 1

18 pages, 6319 KB  
Article
Depth-Dependent Responses of Microbial Community Structure and Function to Reductive Soil Disinfestation
by Xinyu Wang, Hanlin Chen, Juntao Zeng, Jintao Chen, Yanru Ma, Qin Shao and Liangliang Liu
Horticulturae 2026, 12(1), 35; https://doi.org/10.3390/horticulturae12010035 - 27 Dec 2025
Viewed by 208
Abstract
Reductive soil disinfestation (RSD) is an effective approach for controlling horticultural plant diseases by improving soil properties. However, its effects on microbial communities and their functional characteristics across soil depths remain poorly researched. In this study, we evaluated the impacts of RSD using [...] Read more.
Reductive soil disinfestation (RSD) is an effective approach for controlling horticultural plant diseases by improving soil properties. However, its effects on microbial communities and their functional characteristics across soil depths remain poorly researched. In this study, we evaluated the impacts of RSD using solid (rice bran, RB) and liquid (molasses, MO) organic amendments in a Fusarium-infested field. Changes in biotic and abiotic properties were examined at two soil depths (0–15 cm and 15–30 cm) and the potential of different amendments to restore microecological functions in deeper soil was assessed. Both RSD treatments alleviated soil acidification and salinization compared with the control. The absolute abundances of Fusarium oxysporum and Fusarium solani were significantly reduced under both treatments, with MO-RSD showing stronger pathogen suppression in the 15–30 cm layer. MO-RSD exerted a greater influence on microbial community structure across soil depths, resulting in bacterial-fungal co-occurrence networks with higher complexity. Metabolic activity and carbon source utilization increased significantly following both RSD treatments, with the greatest enhancement observed in the 0–15 cm layer under MO-RSD. Furthermore, MO-RSD enriched a higher diversity and abundance of beneficial microorganisms such as Bacillus, Paenibacillus, and Tumebacillus in the 0–15 cm layer, and Azotobacter, Penicillium, and Neurospora in the 15–30 cm layer. These microbes were closely associated with enhanced metabolic activity and pathogen suppression. Overall, MO-RSD established a more integrated and functionally diverse microbiota across the 0–30 soil profile, likely due to the greater permeability and mobility of liquid organic amendments in shaping deeper soil microbial communities. Full article
Show Figures

Figure 1

14 pages, 1859 KB  
Article
Thallium(I) Uptake and Accumulation by Wheat and Rice Plants
by Puu-Tai Yang, Hsin-Fang Chang, Liang-Sin Huang, Tsung-Ju Chuang and Shan-Li Wang
Agronomy 2025, 15(12), 2918; https://doi.org/10.3390/agronomy15122918 - 18 Dec 2025
Viewed by 300
Abstract
Thallium (Tl) is a highly toxic trace metal of increasing concern in agricultural soils. This study investigated the uptake, accumulation, and tissue-level distribution of Tl(I) in rice (Oryza sativa L.) and wheat (Triticum aestivum L.) grown in three agricultural soils differing [...] Read more.
Thallium (Tl) is a highly toxic trace metal of increasing concern in agricultural soils. This study investigated the uptake, accumulation, and tissue-level distribution of Tl(I) in rice (Oryza sativa L.) and wheat (Triticum aestivum L.) grown in three agricultural soils differing in soil pH and texture. In the seedling pot experiment (0–100 mg kg−1 soil Tl), plant Tl concentrations increased dose-dependently, and were at least an order of magnitude lower in the alkaline soil than in the acidic soils. Bioaccumulation factors of roots and shoots generally exceeded unity and declined with increasing Tl dose in acidic soils, consistent with uptake saturation and physiological stress at high exposure. To elucidate how soil Tl speciation and pH regulate Tl availability, X-ray absorption spectroscopy (XAS) was used; it showed that Tl(I)—sorbed on illite was the predominant species in all soils (89–95%), with a minor fraction (5–11%) associated with non-specific adsorption. In maturity pots (5 mg kg−1 soil Tl), both crops grown in the moderately acidic, coarse-textured soil translocated a small fraction of absorbed Tl to grains, with wheat and rice containing 0.24 and 0.10 mg kg−1 Tl, respectively. Comparatively, plants in the more acidic soil failed to reach maturity, and grain Tl was not detected in the alkaline soil. LA-ICP-MS mapping revealed Tl enrichment in the bran and embryo of rice and in the crease, bran, and embryo of wheat, indicating that unpolished grains may pose higher dietary exposure risks than polished products. Overall, these findings demonstrate the key roles of soil pH and mineral composition in governing soil Tl availability and plant Tl uptake, whereas plant transport processes regulate grain Tl loading. In the absence of food-safety standards for Tl, the results of this study underscore the need to better understand and mitigate Tl transfer from contaminated soils into human food chains via cereal crops. Full article
(This article belongs to the Special Issue Soil Pollution and Remediation in Sustainable Agriculture)
Show Figures

Figure 1

11 pages, 877 KB  
Article
Basophilic Response in Patients with Persistent Symptoms Attributed to Lyme Borreliosis Treated with Hydrolysed Arabinoxylan Rice Bran
by Basant K. Puri, Gary S. Lee, Georgia Tuckey, Lisa Wyness, Reine Corley, Lucy Monaghan and Sari J. Arminen
Medicina 2025, 61(12), 2156; https://doi.org/10.3390/medicina61122156 - 3 Dec 2025
Viewed by 394
Abstract
Background and Objectives: MGN-3/Biobran (BRM4, Lentin Plus or Ribraxx) is a natural, rice bran-derived arabinoxylan immunoceutical that modulates the adaptive immune response to viral infections. In response to bacterial infections, basophils act as “first responders” and are also associated with modulation of [...] Read more.
Background and Objectives: MGN-3/Biobran (BRM4, Lentin Plus or Ribraxx) is a natural, rice bran-derived arabinoxylan immunoceutical that modulates the adaptive immune response to viral infections. In response to bacterial infections, basophils act as “first responders” and are also associated with modulation of the adaptive immune response. The maturation of pluripotent CD34+ stem cells into basophils is supported by the cytokine interleukin-3 (IL-3). The aim was to test the hypothesis that modulation of the adaptive immune response in bacterial infection by MGN-3/Biobran entails a basophilic response. The tick-related disorder Lyme borreliosis was chosen as the disease model; tick bites are associated with cutaneous IL-3-mediated basophil recruitment. Materials and Methods: A three-month randomised double-blind placebo-controlled trial was conducted in patients with a history of borreliosis who were suffering from symptoms attributable to this disorder. The immunoceutical group received oral Biobran; the dosage for both groups was 1 g thrice daily. Both groups were matched for age, sex, and ethnicity. Results: A higher percentage of basophil count occurred in the immunoceutical group (p = 0.038). The final general linear model included the group (immunoceutical/placebo) and change in fatigue assessed by the 11-item Chalder Fatigue Questionnaire (CFQ) (r2 = 0.63; p = 0.0066). The change in basophil count was positively correlated with CFQ change (rs = 0.633; p = 0.020); only the immunoceutical group showed a positive correlation. Conclusions: These results support the hypothesis being tested. Basophils may modulate the adaptive immune response by acting as immunoregulatory cells. They can regulate the functioning of type 2 T-helper lymphocytes, enhance immunological memory, and present antigens to CD8 T lymphocytes. Further studies are needed to clarify potential mechanistic factors and the timing of this basophilic response. Full article
Show Figures

Figure 1

8 pages, 3444 KB  
Proceeding Paper
Biowax Impregnation of Recyclable Packaging Papers with Enhanced Water and Oil Barrier Properties
by Pieter Samyn
Eng. Proc. 2025, 117(1), 5; https://doi.org/10.3390/engproc2025117005 - 3 Dec 2025
Viewed by 446
Abstract
The industrial processing of innovative packaging papers with enhanced barrier properties has become ever more challenging due to the more stringent regulations on single-use plastics (SUPs), with an extended applicability to coated papers. Although the traditional packaging papers are based on renewable sources, [...] Read more.
The industrial processing of innovative packaging papers with enhanced barrier properties has become ever more challenging due to the more stringent regulations on single-use plastics (SUPs), with an extended applicability to coated papers. Although the traditional packaging papers are based on renewable sources, they do not provide water and oil resistance and traditionally require the deposition of extruded polymer films or dispersion coatings that interfere with the paper recycling process. In this study, an alternative method has been investigated through the impregnation of papers with various types of biowax, including a synthetic PE wax, palm oil wax, sunflower wax, rice bran wax, rapeseed wax, castor wax, rice bran wax, and candelilla wax. The close control of processing conditions in an industrial pilot-line is critical to produce an optimized product quality with enhanced water and oil contact angles. In particular, the variations in wax type and wax loadings after single- or dual-side impregnation and the control of processing temperatures have been related to the oil and water contact angles. The stable water contact angles in the range of 100 to 120° were obtained depending on the biowax type. Meanwhile, the increase in oil contact angles up to 60° is in line with the enhanced grease resistance. The good recyclability scores of biowax-impregnated papers were demonstrated following the “Harmonized European laboratory test method to generate parameters enabling the assessment of the recyclability of paper and board products in recycling mills with conventional process (Part I)”, version February 2024. Full article
Show Figures

Figure 1

18 pages, 3495 KB  
Article
Nanoemulsion of γ-Oryzanol-Rich Rice Bran Oil Obtained by Ultrasound and Supercritical Fluid Extraction from White and Parboiled Rice Brans
by Sarah Alves Prado, Micheli Legemann Monte, Mery Luiza Garcia Vieira, Anelise Christ Ribeiro, Débora Pez Jaeschke, Tito Roberto Sant’Anna Cadaval Jr. and Luiz Antonio de Almeida Pinto
Processes 2025, 13(12), 3898; https://doi.org/10.3390/pr13123898 - 2 Dec 2025
Viewed by 430
Abstract
This study aimed to extract rice bran oil rich in γ-oryzanol from white (WB) and parboiled rice bran (PB) using ultrasound as a pre-treatment to supercritical fluid extraction (US + SFE), supercritical fluid extraction (SFE), and conventional solvent extraction. PB oil exhibited superior [...] Read more.
This study aimed to extract rice bran oil rich in γ-oryzanol from white (WB) and parboiled rice bran (PB) using ultrasound as a pre-treatment to supercritical fluid extraction (US + SFE), supercritical fluid extraction (SFE), and conventional solvent extraction. PB oil exhibited superior quality compared to WB, with low free fatty acid (FFA) levels and higher γ-oryzanol content. PB oil extracted by US + SFE achieved a yield of 18.2 ± 0.4%, γ-oryzanol content of 1.53 ± 0.19 g 100 g−1, and low FFA content (0.27 ± 0.01%), showing improved oil quality compared to SFE (yield 13.5 ± 0.3%, γ-oryzanol 1.13 ± 0.08%, FFA 0.55 ± 0.01%) and conventional extraction (yield 25.0 ± 1.3%, γ-oryzanol 2.03 ± 0.04%, FFA 1.12 ± 0.01%). The US + SFE oil also showed lower peroxide value (1.7 mEq kg−1) and preserved fatty acid profiles containing palmitic, oleic, and linoleic acids. US induced structural disruption in bran, enhancing oil release. Additionally, chitosan–gelatin nanoemulsions were developed to protect the extracted oil. Formulations exhibited droplet sizes of 119–352 nm, polydispersity indices below 0.3, and zeta potentials from –12.4 to 38.8 mV. Gelatin-based nanoemulsions maintained FFAs at 0.56 ± 0.2% and peroxide values at 4.71 ± 0.2 mEq kg−1 over 90 days, demonstrating superior oxidative stability. These results highlight the potential of US and SFE combined with nanostructured delivery systems to valorize agro-industrial byproducts and develop stable, functional ingredients and drug carrier systems. Full article
Show Figures

Graphical abstract

16 pages, 854 KB  
Article
A Comparative Study on the Efficiency and Sustainability of Rice Bran Oil Extraction Methods
by Lucia Sportiello, Maria Concetta Tenuta, Roberta Tolve, Fabio Favati, Gabriele Quarati and Giovanna Ferrentino
Foods 2025, 14(23), 4076; https://doi.org/10.3390/foods14234076 - 27 Nov 2025
Viewed by 562
Abstract
Rice bran, a rice milling by-product, is a rich source of bioactives such as tocopherols and γ-oryzanol, with promising antioxidant properties. This study compared three extraction techniques—Soxhlet, maceration, and supercritical CO2 (SC-CO2)—to identify the method offering the best balance of [...] Read more.
Rice bran, a rice milling by-product, is a rich source of bioactives such as tocopherols and γ-oryzanol, with promising antioxidant properties. This study compared three extraction techniques—Soxhlet, maceration, and supercritical CO2 (SC-CO2)—to identify the method offering the best balance of rice bran oil (RBO) recovery, composition, and sustainability. Although all methods yielded similar oil quantities (~9.5–10.8%), SC-CO2 extraction achieved superior preservation of bioactives, with the highest tocopherol (116.9 µg/g) and γ-oryzanol (13.2 mg/g) levels. Antioxidant capacity, assessed via FRAP, ABTS, and DPPH assays, was consistently higher in SC-CO2-extracted oil. The fatty acid profile further confirmed the advantages of SC-CO2 extraction, with the oil showing a high proportion of unsaturated fatty acids (86.3%) and low saturated content (13.6%). In contrast, Soxhlet- and maceration-extracted oils contained higher saturated fractions (56.5% and 60.1%, respectively) and lower unsaturated content, reflecting the impact of thermal and solvent exposure on the lipid composition. Environmental impacts were quantified through cradle-to-gate life cycle assessment (LCA), showing that SC-CO2 extraction led to the lowest ecological burden due to its solvent-free process and lower energy demand. Normalizing impacts on both oil yield and bioactive content further highlighted its advantages. These findings place SC-CO2 extraction as a green, efficient alternative for valorizing rice bran, yielding a high-quality, antioxidant-rich oil suitable for food and cosmetic applications. The integrated chemical and environmental evaluation underscores the potential for a sustainable bioeconomy, effectively turning agricultural residue into functional ingredients. Full article
Show Figures

Graphical abstract

11 pages, 997 KB  
Article
Screening, Characterization and Mutagenesis Breeding of Monascus Isolates with High Esterification Activity
by Chen Zhou, Shuran Yang, Xingche Zhu, Xiaoxi Li, Jing Li and Zhenghui Lu
Foods 2025, 14(22), 3949; https://doi.org/10.3390/foods14223949 - 18 Nov 2025
Viewed by 460
Abstract
Esters are predominant fragrance components in various traditional fermented foods. Hongqu rice wine, a beverage gaining popularity among young consumers in China, largely owes its aromatic profile to esterases derived from Monascus species. However, research on esterification characteristics of Monascus strains remains limited, [...] Read more.
Esters are predominant fragrance components in various traditional fermented foods. Hongqu rice wine, a beverage gaining popularity among young consumers in China, largely owes its aromatic profile to esterases derived from Monascus species. However, research on esterification characteristics of Monascus strains remains limited, constraining efforts to improve the quality and flavor of Hongqu rice wine. To better understand their esterification characteristics of commercial Monascus strains from different regions of China and further develop a high-quality esterifying Monascus strain for the liquor industry, we identified five Monascus isolates from red koji samples used in rice wine fermentation. Their esterification activity was evaluated by preparing red koji through solid-state fermentation of wheat bran under conditions simulating industrial production. Among the isolates, M. purpureus M21 exhibited the highest reported esterification activity to date, reaching 88.5 ± 8.6 U. Through atmospheric and room-temperature plasma (ARTP) mutagenesis breeding, the esterification activity of M. purpureus M21 was further enhanced by 41% to 124.8 U. In summary, this study not only figures out the properties of commercial esterifying Monascus from diverse regional sources but also significantly enhances the esterification performance of a potent esterifying Monascus strain without invoking GMO controversies. This high-performance esterifying Monascus strain presents a promising fermentation starter to enhance the flavor profile of Hongqu rice wine and diverse fermented beverages, thereby meeting evolving consumer preferences. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

19 pages, 1549 KB  
Article
Rice Bran Biorefinery: A Zero-Waste Approach to Bioactive Oil and Biopolymer Production
by Bruno Navajas-Preciado, Sara Martillanes, Almudena Galván, Javier Rocha-Pimienta, M. Rosario Ramírez-Bernabé and Jonathan Delgado-Adámez
Sustainability 2025, 17(22), 10219; https://doi.org/10.3390/su172210219 - 15 Nov 2025
Viewed by 675
Abstract
Rice is a staple food for global nutrition, and its processing generates large volumes of waste with a consequent environmental impact. The industry needs to improve its capacity to manage and treat this waste with more sustainable options than traditional management methods, thereby [...] Read more.
Rice is a staple food for global nutrition, and its processing generates large volumes of waste with a consequent environmental impact. The industry needs to improve its capacity to manage and treat this waste with more sustainable options than traditional management methods, thereby mitigating the environmental impact of the rice industry. Among the waste streams generated, rice bran represents a significant fraction that is largely underutilized. This study proposes a comprehensive approach to rice bran recovery, aiming to transform 100% of the waste into bio-based products through a three-stage biorefinery approach that combines chemical and biological operations. The process began with the ethanolic extraction of rice bran, which yielded 20.58% (w·w−1) rice bran oil. This oil, evaluated through both in vitro and in vivo trials, has demonstrated effectiveness when combined with commercial edible coatings, reducing post-harvest damage in grapes and lemons by 15–20%. Following extraction, the remaining defatted rice bran, accounting for 79.42% (w·w−1) of the initial material, was used as a carbon-rich substrate for microbial fermentation by Haloferax mediterranei. This step converts 28.75% (w·w−1) of rice bran into microbial biomass and 12.75% (w·w−1) into polyhydroxybutyrate-valerate. The undigested residual biomass, comprising 37.95% (w·w−1) of the starting material, was further valorized through the purification of high-value products such as cellulose (13.08% (w·w−1)), hemicellulose (14.58% (w·w−1)), and lignin (10.29% (w·w−1)). Overall, the biorefinery model recovers 100% of the initial waste and demonstrates, under laboratory conditions, the model’s ability to transform rice bran into six products of industrial interest, offering an option with the potential to effectively manage rice bran waste and help circularize the production model of an industry that traditionally operates under a linear production model. Full article
Show Figures

Figure 1

20 pages, 2382 KB  
Article
Dietary Full-Fat Rice Bran or Glucose Regulates Bile Acid Circulation, Colonic Microbiota, and Short-Chain Fatty Acids in Pigs During Chronic Cold Stress
by Yusong Zheng, Yang Zhao, Ze Wang, Guodong Sun, Teng Teng and Baoming Shi
Animals 2025, 15(22), 3232; https://doi.org/10.3390/ani15223232 - 7 Nov 2025
Viewed by 751
Abstract
Chronic cold stress is a severe test that animals in cold regions have to face during winter. However, the lack of precise dietary adjustments for animals in cold regions represents a significant gap in addressing their nutritional needs. Full-fat rice bran is one [...] Read more.
Chronic cold stress is a severe test that animals in cold regions have to face during winter. However, the lack of precise dietary adjustments for animals in cold regions represents a significant gap in addressing their nutritional needs. Full-fat rice bran is one of the feed materials rich in protein, lipids, dietary fiber, and antioxidant-active substances. Glucose is the most common quick energy supply. We determined dietary full-fat rice bran and glucose can improve the growth and health of cold-exposed pigs. A total of 18 Yorkshire pigs were randomized to one of three treatment groups (basal diet, full-fat rice bran diet (20%), and glucose diet (10%)) for 22 d to evaluate the effects of full-fat rice bran and glucose on growth performance, antioxidants, microbiomes, and bile acid circulation in cold-exposed pigs. The results showed that dietary full-fat rice bran decreased the average daily feed intake (p < 0.05), increased superoxide dismutase (SOD) activity in plasma (p < 0.05), and decreased Rikenellaceae_RC9_gut_group and Campylobacter in the colon microbiota of cold-exposed pigs (p < 0.05). Dietary glucose improved the growth performance of cold-exposed pigs and decreased the abundance of Prevotellaceae_NK3B31_group (p < 0.05) in the colon microbiota of cold-exposed pigs. Dietary full-fat rice bran and glucose both downregulated the abundance of Alloprevotella, Bradymonadales, and Erysipelotrichaceae in colon microbiota (p < 0.05), promoted the production of SCFAs, and activated the FXR-CYP7A1 signaling pathway. Dietary full-fat rice bran or glucose promoted fecal excretion of bile acids. This study demonstrated that dietary supplementation with full-fat rice bran or glucose can improve the colonic microbiota structure and SCFA levels in cold-exposed pigs. When comparing the two dietary strategies, the glucose-supplemented diet is more beneficial to the growth performance of cold-exposed pigs, while the full-fat-rice-bran-supplemented diet is more conducive to enhancing the function of their antioxidant system. Additionally, dietary supplementation with full-fat rice bran or glucose can also regulate the bile acid circulation in pigs, thereby enhancing their cold adaptation ability. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

20 pages, 2496 KB  
Article
Optimization of Tiliacora triandra Leaf Extraction and Probiotic Fermentation for Developing a Functional Freeze-Dried Feed Supplements
by Manatsanun Nopparatmaitree, Tossaporn Incharoen, Watcharapong Mitsuwan, Atichat Thongnum, Juan J. Loor and Noraphat Hwanhlem
Fermentation 2025, 11(10), 602; https://doi.org/10.3390/fermentation11100602 - 21 Oct 2025
Viewed by 1116
Abstract
Tiliacora triandra (Yanang) leaf contains polyphenols, flavonoids, and mucilage polysaccharides with antioxidant and prebiotic functions, making it a promising substrate for probiotic fermentation. This study aimed to optimize Yanang extraction and sterilization to preserve bioactive mucilage and support probiotic survivability during freeze-drying–based encapsulation, [...] Read more.
Tiliacora triandra (Yanang) leaf contains polyphenols, flavonoids, and mucilage polysaccharides with antioxidant and prebiotic functions, making it a promising substrate for probiotic fermentation. This study aimed to optimize Yanang extraction and sterilization to preserve bioactive mucilage and support probiotic survivability during freeze-drying–based encapsulation, and evaluate antimicrobial activity against poultry pathogens. Yanang extract was prepared under different leaf processing conditions and used as a substrate for Pediococcus acidilactici V202, Lactiplantibacillus plantarum TISTR 926, Streptococcus thermophilus TISTR 894, Bacillus subtilis RP4-18, and Bacillus licheniformis 46-2. Fermentation at 37 °C for 24 h revealed that lactic acid bacteria (P. acidilactici V202, L. plantarum TISTR 926, S. thermophilus TISTR 894) reduced pH (<4.10, p < 0.001) while maintaining high viable counts (>8.67 log CFU/mL, p < 0.01), whereas Bacillus strains (B. subtilis RP4-18, B. licheniformis 46-2) retained a higher pH (>5.00) and lower viability (<8.50 log CFU/mL). Total soluble solids decreased across treatments, with the lowest observed for B. subtilis RP4-18 (1.97 °Brix, p = 0.007). Freeze-dried probiotics encapsulated in enzyme-extracted rice bran carriers had comparable physicochemical properties (p > 0.05), while compared with Bacillus strains (p < 0.01), lactic acid bacteria had superior tolerance to simulated gastrointestinal and thermal stress. Supernatant from Yanang extract inhibited B. cereus WU22001, S. aureus ATCC25923, Escherichia coli ATCC25922, and Salmonella typhimurium WU241001 (MIC/MBC 25–50% v/v). These results indicate that Yanang extract supports effective probiotic fermentation, and rice bran encapsulation enhances survivability and antimicrobial functionality for potential functional feed applications. Full article
Show Figures

Figure 1

Back to TopTop