Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (167)

Search Parameters:
Keywords = restoration of monuments

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 10645 KB  
Article
History and Overview of the Unique Architecture of Pipe Organs in St. Mary Magdalene’s Church in Wrocław (Poland) from the Middle Ages to the Present Day
by Karol Czajka-Giełdon and Krystyna Kirschke
Arts 2025, 14(5), 121; https://doi.org/10.3390/arts14050121 - 2 Oct 2025
Viewed by 323
Abstract
The historical pipe organ, an instrument of vast scale and complex construction, has a significant connection to liturgical celebration and to the history of European churches. It is also one of the few musical instruments considered to be a work of architecture. The [...] Read more.
The historical pipe organ, an instrument of vast scale and complex construction, has a significant connection to liturgical celebration and to the history of European churches. It is also one of the few musical instruments considered to be a work of architecture. The evolution of organ building, especially in the seventeenth to nineteenth centuries, required deep knowledge of musical culture and technology. The significance of this relationship is illustrated by the example of the former and present organs of the church of St. Mary Magdalene in Wroclaw (Breslau). The first church organs appeared here in the Middle Ages, and as will be shown, in subsequent eras, their location, form, and décor were changed according to evolving cultural and liturgical mandates as well as changes to the structure of the church architecture. The history of the specific organs of the church of St. Mary Magdalene is the product of a rich history of monumental construction, reconstruction, conservation, and restoration, and it is poised to offer a continuation of this tradition in the present and future of the parish and in music history with proposed restorations and renovations of their historic space and instruments. Full article
Show Figures

Figure 1

29 pages, 14227 KB  
Article
Towards a More Cohesive and Accessible City Centre: Bridging the Gap Between Historical Identity and Modern Community’s Needs—Case Study: Lugoj City, Romania
by Cristina Drăghici, Iasmina Onescu, Ioana Tănase and Cristina Maria Povian
Heritage 2025, 8(10), 396; https://doi.org/10.3390/heritage8100396 - 23 Sep 2025
Viewed by 378
Abstract
The centres of historical cities have changed trying to accommodate modern urban needs, while maintaining the original bohemian atmosphere that represents the identity of the local community. Restoration, according to Cesare Brandi, goes beyond mere physical repairs and focuses on preserving the core [...] Read more.
The centres of historical cities have changed trying to accommodate modern urban needs, while maintaining the original bohemian atmosphere that represents the identity of the local community. Restoration, according to Cesare Brandi, goes beyond mere physical repairs and focuses on preserving the core historical and cultural significance of a building within its context. Brandi highlights the importance of the surrounding environment, suggesting that the “horizontal plan” around a structure should be prioritised to ensure its recognition within its historical setting. Decisions about preserving or removing additions should be informed by historical evidence, as modifications over time contribute to the building’s narrative. Aesthetic considerations are secondary to historical accuracy, with the primary goal being the preservation of the building’s relationship with its context rather than its visual appeal. This perspective aligns with Giovannoni’s view that preservation should not focus solely on individual monuments but on the broader urban fabric, which collectively forms the city’s historical environment. By respecting the context in which buildings exist, restoration efforts can maintain their role in the larger space. Ultimately, the aim is to balance the conservation of architectural value with modern needs, all while ensuring that the structure’s historical integrity is maintained. While there is extensive research on heritage conservation and accessibility, there remains a lack of integrated strategies that harmoniously address both cultural preservation and inclusive access. This paper presents an urban study made on the historical centre of Lugoj, a Romanian city with interesting architecture. This study aims to illustrate how creating an urban promenade can improve cohesion between old and new, creating a harmonious public space that reflects the identity of the local community. Moreover, the accessibility of the case study area is investigated, following four major categories of special needs, mobility, visual, auditory, and cognitive impairments, and offering recommendations for a better public space for all the citizens. Full article
Show Figures

Figure 1

17 pages, 6617 KB  
Article
Biological Colonization of Carolei’s Nymphaeum (Calabria, Italy)
by Anna Maria Palermo, Raffaella Greca and Mattia Chiappetta
Sustainability 2025, 17(18), 8426; https://doi.org/10.3390/su17188426 - 19 Sep 2025
Viewed by 427
Abstract
The nymphaeum originated as a monument dedicated to the nymphs and defined as a natural cave with a water source. Over time, it has been transformed into an artificial cave with the presence of fountains, statues and wall paintings. The nymphaeum is exposed [...] Read more.
The nymphaeum originated as a monument dedicated to the nymphs and defined as a natural cave with a water source. Over time, it has been transformed into an artificial cave with the presence of fountains, statues and wall paintings. The nymphaeum is exposed to specific environmental conditions, leading to biodeterioration caused by vegetal organisms that find an ideal environment for their growth. This study aimed to document the vegetation present inside and outside the Carolei’s Nymphaeum, as well as the biofilm on the interior walls, particularly the painted walls. The biological work is part of a large-scale project involving building materials, thermo-hygrometric parameters, and partial pilot restoration work. Multiple approaches were used for biological analysis by combining microscopic, culture, and molecular techniques. We identified Pteridophytes, Angiosperms, and mosses, as well as fungal taxa, cyanobacteria, and chlorophytes in the biofilms. The results indicate that there is a very heterogeneous organism composition with significant biodeterioration potential. Biodeterioration is one of the major problems in the prevention, conservation, and restoration of cultural heritage, and the data gathered in this research may help to enhance the understanding of issues and develop suitable strategies for restoration, upkeep, and accessibility and usability. Full article
(This article belongs to the Section Tourism, Culture, and Heritage)
Show Figures

Figure 1

22 pages, 2448 KB  
Article
Establishing Reference Models for Ecological Restoration—Case Study from Colorado National Monument, USA
by Patrick J. Comer, Gregory E. Eckert and George D. Gann
Land 2025, 14(9), 1871; https://doi.org/10.3390/land14091871 - 12 Sep 2025
Viewed by 653
Abstract
Restoration practitioners specify goals that describe how the focal ecosystem will look or function upon reaching recovery goals. Goals may be influenced by the level of degradation, surrounding landscape conditions, societal choice, and a changing climate regime. The Society for Ecological Restoration’s International [...] Read more.
Restoration practitioners specify goals that describe how the focal ecosystem will look or function upon reaching recovery goals. Goals may be influenced by the level of degradation, surrounding landscape conditions, societal choice, and a changing climate regime. The Society for Ecological Restoration’s International Principles and Standards for the Practice of Ecological Restoration recommend that goals should be informed by reference models of site conditions, which include the biotic composition, the environmental setting, and dynamic processes—had anthropogenic degradation not occurred—while accounting for anticipated changes. The SER principles address many aspects of ecological restoration, and practical steps include conceptualizing the structure and function of the natural system, measuring ecological integrity, and assessing potential climate change effects and adaptations. Models optimally reflect a variety of information sources and are based, where possible, on multiple reference sites of similar native ecological conditions. Using a project site from the Colorado National Monument in the USA, we illustrate a stepwise process to address these principles and standards by compiling and synthesizing map, text, and tabular information from reference materials and sites. By addressing these principles and systematically utilizing existing frameworks and locally available data, practitioners can streamline the establishment of reference models for ecological restoration. Full article
(This article belongs to the Special Issue Ecosystem and Biodiversity Conservation in Protected Areas)
Show Figures

Figure 1

21 pages, 6784 KB  
Article
Digitizing Challenging Heritage Sites with the Use of iPhone LiDAR and Photogrammetry: The Case-Study of Sourp Magar Monastery in Cyprus
by Mehmetcan Soyluoğlu, Rahaf Orabi, Sorin Hermon and Nikolas Bakirtzis
Geomatics 2025, 5(3), 44; https://doi.org/10.3390/geomatics5030044 - 9 Sep 2025
Viewed by 806
Abstract
Documenting and preserving cultural heritage assets is increasingly important, with threats from natural disasters, conflicts, climate change, and neglect, and some sites are both contested and physically difficult to access or document, posing the issue of “challenging heritage”. A range of innovative digital [...] Read more.
Documenting and preserving cultural heritage assets is increasingly important, with threats from natural disasters, conflicts, climate change, and neglect, and some sites are both contested and physically difficult to access or document, posing the issue of “challenging heritage”. A range of innovative digital methods have emerged, offering practical, low-cost, efficient techniques for the 3D documentation of threatened heritage, including smart phone-based mobile light detection and ranging (LiDAR) and photogrammetry. Such techniques offer quick, accessible, and cost-effective alternatives to terrestrial laser scanners, albeit with reduced accuracy and detail, offering practical solutions in cases with restricted funding, limited time for access, complex architectural geometries, or the unavailability of high-end equipment on site. This paper presents a real-world case study integrating iPhone LiDAR with aerial photogrammetry for the rapid documentation of Sourp Magar Monastery, a Medieval site located in a forested slopes of the Kyrenia Range, Cyprus. Due to its poor state of preservation and years of abandonment, as well as its remote nature and location, the monastery is considered a “challenging heritage” monument. In the context of a recent international restoration initiative, a preliminary digital survey was undertaken to both document the current condition of Sourp Magar and contribute to a better understanding of its construction history. This paper outlines the workflow integrating the use of smartphone LiDAR and aerial photogrammetry, evaluates its efficacy in challenging heritage sites, and discusses its potential implications for rapid, low-cost documentation. Finally, the present paper aims to show the multifaceted benefit of easy-to-use, low-cost technologies in the preliminary study of sites and monuments. Full article
(This article belongs to the Topic 3D Documentation of Natural and Cultural Heritage)
Show Figures

Figure 1

21 pages, 3142 KB  
Article
From Ruin to Resource: The Role of Heritage and Structural Rehabilitation in the Economic and Territorial Regeneration of Rural Areas
by Emma Barelles-Vicente, María Eugenia Torner-Feltrer, Jaime Llinares Millán and Carolina Aparicio-Fernández
Land 2025, 14(9), 1765; https://doi.org/10.3390/land14091765 - 30 Aug 2025
Viewed by 680
Abstract
Rural depopulation and the abandonment of historic settlements are pressing challenges for contemporary spatial planning, particularly in regions with a rich architectural and cultural heritage. This article examines the ruins of Moya, in Cuenca (Spain), as a case study to develop an integrated [...] Read more.
Rural depopulation and the abandonment of historic settlements are pressing challenges for contemporary spatial planning, particularly in regions with a rich architectural and cultural heritage. This article examines the ruins of Moya, in Cuenca (Spain), as a case study to develop an integrated rural revitalisation strategy. The research combines historical building analysis, assessment of structural deterioration, and planning for economic reactivation to create a comprehensive framework for transforming abandoned sites into a viable cultural resource. The proposed model favours temporary and flexible occupation over permanent repopulation, promoting forms of use that respect and preserve the site’s historical identity. The approach builds on principles of activating monumental heritage, integrating the vernacular fabric, and organising the site into distinct functional areas. Moya is thus presented not only as an example of abandonment, but also as a replicable prototype for intervention in other declining rural environments, where heritage can serve as a strategic resource for sustainable development and territorial cohesion. The main objectives are to develop and test an integrated strategy for rural regeneration that goes beyond physical restoration, combining adaptive reuse, heritage conservation, and educational and cultural programmes to stimulate the local economy and reinforce territorial identity. The approach is evaluated through the case of Moya and contrasted with other national and international experiences to assess its replicability. Full article
Show Figures

Figure 1

19 pages, 2022 KB  
Article
Q-Switched Nd:YAG Laser Treatment of Nocardia sp. Black Biofilm: Complete Biodeterioration Reversal in Limestone Heritage Conservation
by Shimaa Ibrahim, Rageh K. Hussein, Hesham Abdulla, Ghada Omar, Sharif Abu Alrub, Paola Grenni and Dina M. Atwa
Int. J. Mol. Sci. 2025, 26(16), 8064; https://doi.org/10.3390/ijms26168064 - 20 Aug 2025
Viewed by 1232
Abstract
Stone cleaning for cultural heritage monuments is a critical conservation intervention that must effectively eliminate harmful surface contaminants while preserving the material’s physical, chemical, and historical integrity. This study investigated the removal of tenacious black biofilms formed by Nocardia species previously isolated from [...] Read more.
Stone cleaning for cultural heritage monuments is a critical conservation intervention that must effectively eliminate harmful surface contaminants while preserving the material’s physical, chemical, and historical integrity. This study investigated the removal of tenacious black biofilms formed by Nocardia species previously isolated from deteriorated limestone from the Bastet tomb in Tell Basta, Zagazig City, Egypt, using a Q-switched 1064 nm Nd:YAG laser. Experimental limestone specimens were systematically inoculated with Nocardia sp. under controlled laboratory conditions to simulate biodeterioration processes. Comprehensive testing revealed that a laser fluence of 0.03 J/cm2 with a 5 ns pulse duration, applied under wet conditions with 500 pulses, achieved the complete elimination of the biological black film without damaging the underlying stone substrate. The cleaning efficacy was evaluated through an integrated analytical framework combining stereomicroscopy, scanning electron microscopy coupled with energy-dispersive X-ray analysis (SEM-EDX), X-ray diffraction (XRD), and laser-induced plasma spectroscopy (LIPS). These analyses demonstrated a remarkable transformation from a compromised mineralogical composition dominated by gypsum (62%) and anhydrite (13%) to a restored state of 98% calcite, confirming the laser treatment’s effectiveness in reversing biodeterioration processes. SEM micrographs revealed the complete elimination of mycelial networks that had penetrated to depths between 984 μm and 1.66 mm, while LIPS analysis confirmed the restoration of elemental signatures to near-control levels. The successful application of LIPS for real-time monitoring during cleaning provides a valuable tool for preventing overcleaning, addressing a significant concern in laser conservation interventions. This research establishes evidence-based protocols for the non-invasive removal of Nocardia-induced black biofilms from limestone artifacts, offering conservation professionals a precise, effective, and environmentally sustainable alternative to traditional chemical treatments for preserving irreplaceable cultural heritage. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

15 pages, 4422 KB  
Article
Advanced Deep Learning Methods to Generate and Discriminate Fake Images of Egyptian Monuments
by Daniyah Alaswad and Mohamed A. Zohdy
Appl. Sci. 2025, 15(15), 8670; https://doi.org/10.3390/app15158670 - 5 Aug 2025
Viewed by 616
Abstract
Artificial intelligence technologies, particularly machine learning and computer vision, are being increasingly utilized to preserve, restore, and create immersive virtual experiences with cultural artifacts and sites, thus aiding in conserving cultural heritage and making it accessible to a global audience. This paper examines [...] Read more.
Artificial intelligence technologies, particularly machine learning and computer vision, are being increasingly utilized to preserve, restore, and create immersive virtual experiences with cultural artifacts and sites, thus aiding in conserving cultural heritage and making it accessible to a global audience. This paper examines the performance of Generative Adversarial Networks (GAN), especially Style-Based Generator Architecture (StyleGAN), as a deep learning approach for producing realistic images of Egyptian monuments. We used Sigmoid loss for Language–Image Pre-training (SigLIP) as a unique image–text alignment system to guide monument generation through semantic elements. We also studied truncation methods to regulate the generated image noise and identify the most effective parameter settings based on architectural representation versus diverse output creation. An improved discriminator design that combined noise addition with squeeze-and-excitation blocks and a modified MinibatchStdLayer produced 27.5% better Fréchet Inception Distance performance than the original discriminator models. Moreover, differential evolution for latent-space optimization reduced alignment mistakes during specific monument construction tasks by about 15%. We checked a wide range of truncation values from 0.1 to 1.0 and found that somewhere between 0.4 and 0.7 was the best range because it allowed for good accuracy while retaining many different architectural elements. Our findings indicate that specific model optimization strategies produce superior outcomes by creating better-quality and historically correct representations of diverse Egyptian monuments. Thus, the developed technology may be instrumental in generating educational and archaeological visualization assets while adding virtual tourism capabilities. Full article
(This article belongs to the Special Issue Novel Applications of Machine Learning and Bayesian Optimization)
Show Figures

Figure 1

18 pages, 285 KB  
Review
The Historical Evolution of the Role of Vegetation in the Enhancement and Conservation of Archaeological Sites: A Landscape Architecture Perspective Focused Mainly on Cases from Italy and Greece
by Electra Kanellou and Maria Papafotiou
Plants 2025, 14(15), 2302; https://doi.org/10.3390/plants14152302 - 25 Jul 2025
Viewed by 612
Abstract
Vegetation plays a multifaceted role in the enhancement and conservation of archaeological sites, functioning not only as an aesthetic element but also as a core component of landscape architecture practice. This review traces the historical evolution of vegetation management, though the lens of [...] Read more.
Vegetation plays a multifaceted role in the enhancement and conservation of archaeological sites, functioning not only as an aesthetic element but also as a core component of landscape architecture practice. This review traces the historical evolution of vegetation management, though the lens of landscape architecture, highlighting its potential as a design and planning tool for historical interpretation and sustainable integration of heritage sites into broader contexts. From Romantic landscaping ideals to modern interdisciplinary conservation frameworks, the review draws on key milestones such as the Athens and Venice Charters, and examines case studies like Rome’s Passeggiata Archeologica, the Acropolis slopes, Ruffenhofen Park, and Campo Lameiro. These examples illustrate how landscape architectural approaches can use vegetation to reconstruct lost architectural forms, enhance visitor engagement, and provide ecosystem functions. The article also addresses challenges related to historical authenticity, species selection, and ecological performance, arguing for future strategies that integrate archaeological sites into dynamic, living heritage systems, through collaborative, ecologically informed design. Full article
(This article belongs to the Special Issue Floriculture and Landscape Architecture—2nd Edition)
18 pages, 3365 KB  
Article
Novel Methodology to Assess Salt Movement Between Mortar and Stones from Heritage in Spain
by Linde Pollet, Andrea Antolín-Rodríguez, Josep Gisbert-Aguilar, Gabriel Búrdalo-Salcedo, Andrés Juan-Valdés, César García-Álvarez, Angel Raga-Martín, Wouter Schroeyers, Víctor Calvo and María Fernández-Raga
Materials 2025, 18(14), 3340; https://doi.org/10.3390/ma18143340 - 16 Jul 2025
Viewed by 535
Abstract
The development of sustainable cementitious materials is crucial to reduce the environmental footprint of the construction industry. Alkali-activated materials (AAMs) have emerged as promising environmentally friendly alternatives; however, their compatibility with natural stone in heritage structures remains poorly understood, especially regarding salt migration [...] Read more.
The development of sustainable cementitious materials is crucial to reduce the environmental footprint of the construction industry. Alkali-activated materials (AAMs) have emerged as promising environmentally friendly alternatives; however, their compatibility with natural stone in heritage structures remains poorly understood, especially regarding salt migration and related damage to stones. This study presents a novel methodology for assessing salt movement in solid materials between two types of stones—Boñar and Silos—and two types of binders: blended Portland cement (BPC) and an AAM. The samples underwent capillarity and immersion tests to evaluate water absorption, salt transport, and efflorescence behavior. The capillarity of the Silos stone was 0.148 kg·m−2·t−0.5, whereas this was 0.0166 kg·m−2·t−0.5 for the Boñar stone, a ninefold difference. Conductivity mapping and XRD analysis revealed that AAM-based mortars exhibit a significantly higher release of salts, primarily sodium sulfate, which may pose a risk to adjacent porous stones. In contrast, BPC showed lower salt mobility and different salt compositions. These findings highlight the importance of evaluating the compatibility between alternative binders and heritage stones. The use of AAMs may pose significant risks due to their tendency to release soluble salts. Although, in the current experiments, no pore damage or mechanical degradation was observed, additional studies are required to confirm this. A thorough understanding of salt transport mechanisms is therefore essential to ensure that sustainable restoration materials do not inadvertently accelerate the deterioration of structures, a process more problematic when the deterioration affects heritage monuments. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

16 pages, 1877 KB  
Review
Capillary Rise and Salt Weathering in Spain: Impacts on the Degradation of Calcareous Materials in Historic Monuments
by Elías Afif-Khouri, Alfonso Lozano-Martínez, José Ignacio López de Rego, Belén López-Gallego and Rubén Forjan-Castro
Buildings 2025, 15(13), 2285; https://doi.org/10.3390/buildings15132285 - 29 Jun 2025
Viewed by 1161
Abstract
The crystallization of soluble salts is one of the most significant agents of deterioration affecting porous building materials in historical architecture. This process not only compromises the physical integrity of the materials but also results in considerable aesthetic, structural, and economic consequences. Soluble [...] Read more.
The crystallization of soluble salts is one of the most significant agents of deterioration affecting porous building materials in historical architecture. This process not only compromises the physical integrity of the materials but also results in considerable aesthetic, structural, and economic consequences. Soluble salts involved in these processes may originate from geogenic sources—including soil leachate, marine aerosols, and the natural weathering of parent rocks—or from anthropogenic factors such as air pollution, wastewater infiltration, and the use of incompatible restoration materials. This study examines the role of capillary rise as a primary mechanism responsible for the vertical migration of saline solutions from the soil profile into historic masonry structures, especially those constructed with calcareous stones. It describes how water retained or sustained within the soil matrix ascends via capillarity, carrying dissolved salts that eventually crystallize within the pore network of the stone. This phenomenon leads to a variety of damage types, ranging from superficial staining and efflorescence to more severe forms such as subflorescence, microfracturing, and progressive mass loss. By adopting a multidisciplinary approach that integrates concepts and methods from soil physics, hydrology, petrophysics, and conservation science, this paper examines the mechanisms that govern saline water movement, salt precipitation patterns, and their cumulative effects on stone durability. It highlights the influence of key variables such as soil texture and structure, matric potential, hydraulic conductivity, climatic conditions, and stone porosity on the severity and progression of deterioration. This paper also addresses regional considerations by focusing on the context of Spain, which holds one of the highest concentrations of World Heritage Sites globally and where many monuments are constructed from vulnerable calcareous materials such as fossiliferous calcarenites and marly limestones. Special attention is given to the types of salts most commonly encountered in Spanish soils—particularly chlorides and sulfates—and their thermodynamic behavior under fluctuating environmental conditions. Ultimately, this study underscores the pressing need for integrated, preventive conservation strategies. These include the implementation of drainage systems, capillary barriers, and the use of compatible materials in restoration, as well as the application of non-destructive diagnostic techniques such as electrical resistivity tomography and hyperspectral imaging. Understanding the interplay between soil moisture dynamics, salt crystallization, and material degradation is essential for safeguarding the cultural and structural value of historic buildings in the face of ongoing environmental challenges and climate variability. Full article
(This article belongs to the Special Issue Selected Papers from the REHABEND 2024 Congress)
Show Figures

Figure 1

26 pages, 12914 KB  
Article
Copy/Past: A Hauntological Approach to the Digital Replication of Destroyed Monuments
by Giovanni Lovisetto
Heritage 2025, 8(7), 255; https://doi.org/10.3390/heritage8070255 - 27 Jun 2025
Viewed by 1380
Abstract
This article offers a critical analysis of two ‘replicas’ of monuments destroyed by ISIL in 2015: the Institute for Digital Archaeology’s Arch of Palmyra (2016) and the lamassu from Nimrud, exhibited in the Rinascere dalle Distruzioni exhibition (2016). Drawing on Jacques Derrida’s formulation [...] Read more.
This article offers a critical analysis of two ‘replicas’ of monuments destroyed by ISIL in 2015: the Institute for Digital Archaeology’s Arch of Palmyra (2016) and the lamassu from Nimrud, exhibited in the Rinascere dalle Distruzioni exhibition (2016). Drawing on Jacques Derrida’s formulation of hauntology and Umberto Eco’s theory of forgery, this study examines the ontological, ethical, and ideological stakes of digitally mediated replication. Rather than treating digital and physical ‘copies’ as straightforward reproductions of ancient ‘originals’, the essay reframes them as specters: material re-appearances haunted by loss, technological mediation, and political discourses. Through a close analysis of production methods, rhetorical framings, media coverage, and public reception, it argues that presenting such ‘replicas’ as faithful restorations or acts of cultural resurrection collapses a hauntological relationship into a false ontology. The article thus shows how, by concealing the intermediary, spectral role of digital modeling, such framings enable the symbolic use of these ‘replicas’ as instruments of Western technological triumphalism and digital colonialism. This research calls for a critical approach that recognizes the ontological peculiarities of such replicas, foregrounds their reliance on interpretive rather than purely mechanical processes, and acknowledges the ideological weight they carry. Full article
(This article belongs to the Special Issue Past for the Future: Digital Pathways in Cultural Heritage)
Show Figures

Figure 1

29 pages, 4333 KB  
Article
Characterization of Bricks from Baroque Monuments in Northeastern Poland: A Comparative Study of Hygric Behavior and Microstructural Properties for Restoration Applications
by Joanna Misiewicz, Maria Tunkiewicz, Gergő Ballai and Ákos Kukovecz
Materials 2025, 18(13), 3023; https://doi.org/10.3390/ma18133023 - 26 Jun 2025
Viewed by 533
Abstract
This study presents a comprehensive material characterization, including physical, hygric, and mechanical properties, of historical ceramic bricks to enhance the understanding of heritage masonry structures and support the effective planning of conservation interventions. The primary objective is to systematize the knowledge of constituent [...] Read more.
This study presents a comprehensive material characterization, including physical, hygric, and mechanical properties, of historical ceramic bricks to enhance the understanding of heritage masonry structures and support the effective planning of conservation interventions. The primary objective is to systematize the knowledge of constituent materials in brick walls from different historical periods and to evaluate the compatibility of modern repair materials with the original fabric. To this end, a comprehensive experimental protocol was employed, which included the determination of fundamental physical properties such as density, water absorption, and sorptivity. Additionally, chemical and thermogravimetric analyses were performed, followed by freeze–thaw resistance testing and compressive strength measurements. Microstructural analysis was conducted using mercury intrusion porosimetry. The results identified the pore size ranges most susceptible to frost-induced degradation and revealed correlations between the physical, hygric, and mechanical properties of the tested ceramic materials. These findings provide essential data on the physico-mechanical characteristics of historical bricks, establishing a basis for the informed selection of compatible materials in conservation practice. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

16 pages, 1995 KB  
Article
Numerical and Experimental Multi-Approach Models for a Stone Pinnacle Reinforcement
by Miquel Llorens, Miquel Àngel Chamorro, Irieix Costa, Joan Fontàs and Ester Gifra
Buildings 2025, 15(13), 2148; https://doi.org/10.3390/buildings15132148 - 20 Jun 2025
Viewed by 435
Abstract
The church of Saint Felix in Girona (Spain) is crowned by an octagonal bell tower with a stone pinnacle at each corner. It was built using dry-joint stone masonry, a technique that involves laying stones in a precise pattern to create a solid [...] Read more.
The church of Saint Felix in Girona (Spain) is crowned by an octagonal bell tower with a stone pinnacle at each corner. It was built using dry-joint stone masonry, a technique that involves laying stones in a precise pattern to create a solid and durable structure. In order to strengthen the connection between the stone blocks of the pinnacles, a wooden bar was placed through a central hole carved in the stone structure. Today, the inner structure has completely disappeared. During maintenance and repair work, it was decided to restore the functionality of the disappeared reinforcement by installing a titanium bar in its place. Due to the uncertainty associated with the pinnacle’s behaviour and the lack of both, a proper numerical model of the monument, and an extensive characterization of the materials, a strategy based on multiple approaches was designed. The proposed strategy was based on combining numerical and experimental models, the final objective being to determine the length and mechanical properties of the metallic inclusion, considering the effects of gravity, wind, and seismic forces. A scale model of the pinnacle was evaluated in laboratory conditions. The results were used to calibrate a numerical model representing the scale specimen. After calibration, the results were extrapolated to a full-scale numerical model. The experimental and numerical results showed that the pinnacles needed to be reinforced along their entire height. The tensile stresses cause by wind and seismic forces at different levels, could not be compensated without the contribution of the titanium bar inserted into the pinnacle. Full article
(This article belongs to the Special Issue Mechanics of Masonry Towers)
Show Figures

Figure 1

20 pages, 8100 KB  
Article
Characterization of Red Sandstone and Black Crust to Analyze Air Pollution Impacts on a Cultural Heritage Building: Red Fort, Delhi, India
by Gaurav Kumar, Lucia Rusin, Pavan Kumar Nagar, Sanjay Kumar Manjul, Michele Back, Alvise Benedetti, Bhola Ram Gurjar, Chandra Shekhar Prasad Ojha, Mukesh Sharma and Eleonora Balliana
Heritage 2025, 8(6), 236; https://doi.org/10.3390/heritage8060236 - 19 Jun 2025
Viewed by 2973
Abstract
Urban air pollution poses significant risks to cultural heritage buildings, particularly in polluted megacities like Delhi, India. The Red Fort, a UNESCO World Heritage Site and a symbol of India’s rich history, is highly susceptible to degradation caused by air pollutants. Despite its [...] Read more.
Urban air pollution poses significant risks to cultural heritage buildings, particularly in polluted megacities like Delhi, India. The Red Fort, a UNESCO World Heritage Site and a symbol of India’s rich history, is highly susceptible to degradation caused by air pollutants. Despite its great importance as an Indian and world heritage site, no studies have focused on characterizing its constituent materials or the degradation phenomena taking place. This study was developed in the framework of the MAECI (Italian Ministry of Foreign Affairs) and the Department of Science and Technology under the Ministry of Science and Technology, India, project: Indo—Italian Centre of Excellence for Restoration and Assessment of Environmental Impacts on Cultural Heritage Monuments. To understand their composition and degradation, Vindhyan sandstone and black crust samples were studied. Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDX), X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) indicated that the red sandstone predominantly consisted of quartz and microcline, while the black crusts mainly comprised gypsum, bassanite, weddellite, quartz, and microcline. The analysis attributed the formation of gypsum to exogenous sources, such as construction activities and cement factory emissions. This pioneering study provides a basis for further research into the impacts of air pollution on Indian patrimony and promotes conservation strategies. Full article
(This article belongs to the Special Issue Deterioration and Conservation of Materials in Built Heritage)
Show Figures

Figure 1

Back to TopTop