Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (172)

Search Parameters:
Keywords = resonant gyroscope

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1815 KB  
Article
A Comprehensive Error Modeling and On-Field Calibration Method for HRG SINS by Tumbling the Hexahedron
by Yuanxi Li, Zhennan Wei, Shunqing Ren and Qingshuang Zeng
Sensors 2025, 25(24), 7645; https://doi.org/10.3390/s25247645 - 17 Dec 2025
Viewed by 187
Abstract
On-field calibration for SINS often uses right hexahedron, but the influence of the structure errors, such as mutual position tolerances towards parallelism or the perpendicularity of two arbitrary planes of the hexahedron, on the calibration accuracy is often neglected. In this paper, a [...] Read more.
On-field calibration for SINS often uses right hexahedron, but the influence of the structure errors, such as mutual position tolerances towards parallelism or the perpendicularity of two arbitrary planes of the hexahedron, on the calibration accuracy is often neglected. In this paper, a hexahedron structure error model and a comprehensive corresponding SINS calibration error model are developed based on hemispherical resonator gyroscope (HRGs). The proposed method introduces the comprehensive hexahedron errors through defining the normal vectors of the exterior surfaces of the hexahedron. A 24-position calibration scheme is designed to identify accelerometer-related errors, while a 48-rotation scheme is developed to identify gyro-related errors. The complete calibration procedure enables simultaneous identification of hexahedron structure errors, installation misalignments, scale factor errors, and biases. Experimental validation is conducted using a high-precision three-axis turntable, which simulates the hexahedron structure errors. The results show that the proposed method significantly improves the calibration accuracy of both accelerometers and HRGs compared with traditional methods. Furthermore, it reduces the accuracy requirements for the hexahedron structure, thus lowering the cost of SINS on-field calibration. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

29 pages, 6963 KB  
Article
Low-Cost Angular-Velocity Measurements for Sustainable Dynamic Identification of Pedestrian Footbridges: A Case Study of the Footbridge in Gdynia (Poland)
by Anna Banas
Sustainability 2025, 17(23), 10456; https://doi.org/10.3390/su172310456 - 21 Nov 2025
Viewed by 334
Abstract
This study investigates the practical value of angular-velocity measurements in the dynamic identification of pedestrian footbridges, addressing the need for reliable yet cost-effective diagnostics for slender civil structures. A comprehensive experimental campaign on a steel footbridge in Gdynia combined ambient vibration tests, forced [...] Read more.
This study investigates the practical value of angular-velocity measurements in the dynamic identification of pedestrian footbridges, addressing the need for reliable yet cost-effective diagnostics for slender civil structures. A comprehensive experimental campaign on a steel footbridge in Gdynia combined ambient vibration tests, forced excitation (light and heavy shakers), and controlled pedestrian loading. Synchronous translational accelerations and rotational velocities from MEMS sensors enabled evaluation of both bending and torsional responses. Three identification techniques—Peak Picking (PP), Frequency Domain Decomposition (FDD), and Stochastic Subspace Identification (SSI)—were applied and compared with a validated beam–shell FEM developed in SOFiSTiK. The results show that rotational data improve mode-shape interpretation and classification, notably resolving a coupled torsional–vertical mode (VT2) that was ambiguous in acceleration-only analyses. The fundamental frequency of 3.1 Hz places the bridge in a resonance-prone range; field tests confirmed predominantly vertical response, with horizontal accelerations < 0.05 m/s2 and peak vertical accelerations exceeding comfort class CL3 during synchronised walking of six pedestrians (≈2.55 m/s2) and jumping (up to 3.61 m/s2). Overall, the outcomes highlight that low-cost gyroscopic sensing offers substantial benefits for structural system identification and mode-shape characterization, enriching acceleration-based diagnostics and strengthening the basis for subsequent analyses. By reducing the financial and material demands of vibration testing, the proposed approach contributes to more sustainable assessment and maintenance of pedestrian bridges, aligning with resource-efficient monitoring strategies in civil infrastructure. Full article
Show Figures

Figure 1

12 pages, 1820 KB  
Article
A High-Extinction-Ratio Resonator for Suppressing Polarization Noise in Hollow-Core Photonic-Crystal Fiber Optic Gyro
by Weiqi Miao, Huachuan Zhao, Fei Yu and Lingyu Li
Photonics 2025, 12(11), 1126; https://doi.org/10.3390/photonics12111126 - 14 Nov 2025
Viewed by 316
Abstract
Polarization-induced noise remains a primary source of bias drift, fundamentally limiting the performance of hollow-core photonic-crystal fiber optic gyroscopes (HC-RFOGs). To overcome this limitation, we propose and demonstrate a novel resonator design with an intrinsically high polarization extinction ratio (PER). The resonator’s core [...] Read more.
Polarization-induced noise remains a primary source of bias drift, fundamentally limiting the performance of hollow-core photonic-crystal fiber optic gyroscopes (HC-RFOGs). To overcome this limitation, we propose and demonstrate a novel resonator design with an intrinsically high polarization extinction ratio (PER). The resonator’s core innovation is a four-port coupler architecture that strategically integrates a pair of polarization beam splitters (PBSs) with conventional beam splitters (BSs). This configuration functions as a high-fidelity polarization filter, suppressing undesired polarization states for both clockwise and counter-clockwise propagating light within the hollow-core fiber loop. Our theoretical model predicts that the effective in-resonator PER can exceed 48 dB, which is sufficient to mitigate polarization-related errors for tactical-grade applications. Experimental validation of a prototype HC-RFOG incorporating this resonator yields a bias instability of 1.34°/h and an angle random walk (ARW) of 0.078°/h (with a 200 s averaging time). These results confirm that engineering a high-polarization-extinction-ratio resonator (HPERR) is a potent and direct pathway to substantially reducing polarization noise and advancing the performance of HC-RFOGs. Full article
(This article belongs to the Special Issue Optical Fiber Sensors: Design and Application)
Show Figures

Figure 1

22 pages, 3056 KB  
Article
High-Precision Simulation Analysis of Modal Characteristic Parameters of Hemispherical Resonator
by Yuqian Zhao, Qingheng Liu, Junfeng Liu, Wenhui Chen and Nan Huang
Appl. Sci. 2025, 15(22), 11904; https://doi.org/10.3390/app152211904 - 9 Nov 2025
Viewed by 400
Abstract
As a high-precision inertial device, the hemispherical resonant gyroscope (HRG) has found widespread application in critical domains including aerospace and tactical weapons, owing to its advantages of high precision, simple structure, and long service life. However, the machining form and position errors of [...] Read more.
As a high-precision inertial device, the hemispherical resonant gyroscope (HRG) has found widespread application in critical domains including aerospace and tactical weapons, owing to its advantages of high precision, simple structure, and long service life. However, the machining form and position errors of the hemispherical resonator—the core component of an HRG—are primary bottlenecks that restrict gyroscopic accuracy. To address the limitations of existing research, which include inadequate simulation accuracy, an incomplete consideration of form and position errors, and an unclear mechanism of the quality factor’s influence, this study employs a methodology comprising theoretical modeling, high-precision finite element simulation, and multi-parameter coupling analysis to undertake an in-depth investigation of the modal characteristics of hemispherical resonators. This work establishes a quantitative correlation linking machining errors to modal characteristics and subsequently to gyroscopic accuracy. This correlation provides critical guidance for controlling machining precision and achieving high-Q (quality factor) designs of hemispherical resonators, thereby offering significant engineering implications for enhancing the overall performance of HRGs. Full article
Show Figures

Figure 1

21 pages, 8957 KB  
Article
Autonomous Navigation of Unmanned Ground Vehicles Based on Micro-Shell Resonator Gyroscope Rotary INS Aided by LDV
by Hangbin Cao, Yuxuan Wu, Longkang Chang, Yunlong Kong, Hongfu Sun, Wenqi Wu, Jiangkun Sun, Yongmeng Zhang, Xiang Xi and Tongqiao Miao
Drones 2025, 9(10), 706; https://doi.org/10.3390/drones9100706 - 13 Oct 2025
Viewed by 2533
Abstract
Micro-Shell Resonator Gyroscopes have obvious SWaP (Size, Weight and Power) advantages and applicable accuracy for the autonomous navigation of Unmanned Ground Vehicles (UGVs), especially under GNSS-denied environments. When the Micro-Shell Resonator Gyroscope Rotary Inertial Navigation System (MSRG–RINS) operates in the whole-angle mode, its [...] Read more.
Micro-Shell Resonator Gyroscopes have obvious SWaP (Size, Weight and Power) advantages and applicable accuracy for the autonomous navigation of Unmanned Ground Vehicles (UGVs), especially under GNSS-denied environments. When the Micro-Shell Resonator Gyroscope Rotary Inertial Navigation System (MSRG–RINS) operates in the whole-angle mode, its bias varies as an even-harmonic function of the pattern angle, which leads to difficulty in estimating and compensating the bias based on the MSRG in the process of attitude measurement. In this paper, an attitude measurement method based on virtual rotation self-calibration and rotary modulation is proposed for the MSRG–RINS to address this problem. The method utilizes the characteristics of the two operating modes of the MSRG, the force-rebalanced mode and whole-angle mode, to perform virtual rotation self-calibration, thereby eliminating the characteristic bias of the MSRG. In addition, the reciprocating rotary modulation method is used to suppress the residual bias of the MSRG. Furthermore, the magnetometer-aided initial alignment of the MSRG–RINS is carried out and the state-transformation extended Kalman filter is adopted to solve the large misalignment-angle problem under magnetometer assistance so as to enhance the rapidity and accuracy of initial attitude acquisition. Results from real-world experiments substantiated that the proposed method can effectively suppress the influence of MSRG’s bias on attitude measurement, thereby achieving high-precision autonomous navigation in GNSS-denied environments. In the 1 h, 3.7 km, long-range in-vehicle autonomous navigation experiments, the MSRG–RINS, integrated with a Laser Doppler Velocimetry (LDV), attained a heading accuracy of 0.35° (RMS), a horizontal positioning error of 4.9 m (RMS), and a distance-traveled accuracy of 0.24% D. Full article
Show Figures

Figure 1

19 pages, 20836 KB  
Article
Design and Flight Experiment of a Motor-Directly-Driven Flapping-Wing Micro Air Vehicle with Extension Springs
by Seungik Choi, Changyong Oh, Taesam Kang and Jungkeun Park
Biomimetics 2025, 10(10), 686; https://doi.org/10.3390/biomimetics10100686 - 12 Oct 2025
Viewed by 937
Abstract
This study presents the design, control, and flight experiments of a motor-directly-driven flapping-wing micro air vehicle with extension springs (MDD-FWMAVES). The flapping wing actuation utilizes the resonance of a linear extension spring and a flapping wing. The analysis results of the proposed MDD-FWMAVES [...] Read more.
This study presents the design, control, and flight experiments of a motor-directly-driven flapping-wing micro air vehicle with extension springs (MDD-FWMAVES). The flapping wing actuation utilizes the resonance of a linear extension spring and a flapping wing. The analysis results of the proposed MDD-FWMAVES revealed a resonant frequency of 19.59 Hz for the flapping-wing mechanism, and actual flapping experiments confirmed this to be 20 Hz. Using a six-axis load cell, we demonstrated the ability to generate roll, pitch, and yaw moments for attitude control based on wing flapping variations. All roll, pitch, and yaw moments were linearly proportional to the wing flapping variations. MEMS gyroscopes and accelerometers were used to measure roll, pitch, and yaw angular velocities and the gravity. A complementary filter was applied to these measurements to obtain the roll and pitch angles required for attitude control. A microprocessor, two motor drive circuits, one MEMS gyroscope/accelerometer, and one EEPROM for flight data storage were implemented on a single, ultra-compact electronic control board and mounted on the MDD-FWMAVES. Simple roll and pitch PD controllers were implemented on this electronic control board, and the controlled flight feasibility of the MDD-FWMAVES was explored. Flight tests demonstrated stable hovering for approximately 6 s. While yaw control was not achieved, the onboard feedback control system demonstrated stable roll and pitch control. Therefore, the MDD-FWMAVES holds the potential to be developed into a high-performance flapping-wing micro air vehicle if its flight system and controller are improved. Full article
(This article belongs to the Special Issue Bio-Inspired Flight Systems and Bionic Aerodynamics 2.0)
Show Figures

Graphical abstract

41 pages, 5621 KB  
Review
Review of Research Advances in Gyroscopes’ Structural Forms and Processing Technologies Viewed from Performance Indices
by Hang Luo, Hongbin Su, Qiwen Tang, Fazal ul Nisa, Liang He, Tao Zhang, Xiaoyu Liu and Zhen Liu
Sensors 2025, 25(19), 6193; https://doi.org/10.3390/s25196193 - 6 Oct 2025
Viewed by 4547
Abstract
As typical examples of rotational rate sensors, microelectromechanical system (MEMS) gyroscopes have been widely applied as inertial devices in various fields, including national defense, aerospace, healthcare, etc. This review systematically summarizes research advancements in MEMS gyroscope structural forms and processing technologies, which are [...] Read more.
As typical examples of rotational rate sensors, microelectromechanical system (MEMS) gyroscopes have been widely applied as inertial devices in various fields, including national defense, aerospace, healthcare, etc. This review systematically summarizes research advancements in MEMS gyroscope structural forms and processing technologies, which are evaluated through performance indices. The review encompasses several areas. First, it outlines the modelling principles and processes of gyroscopes on the basis of the Coriolis force and resonance, establishing a theoretical foundation for MEMS gyroscope development. Second, it introduces and analyzes the latest research advances in MEMS gyroscope structures and corresponding processing technologies. On the basis of published research advances, this review categorically discusses multidisciplinary technology properties, statistical results, the existence of errors, and compensation methods. Additionally, it identifies challenges in MEMS gyroscope technologies through classification analysis. Full article
(This article belongs to the Collection Inertial Sensors and Applications)
Show Figures

Figure 1

14 pages, 2495 KB  
Article
Research on a Feedthrough Suppression Scheme for MEMS Gyroscopes Based on Mixed-Frequency Excitation Signals
by Xuhui Chen, Zhenzhen Pei, Chenchao Zhu, Jiaye Hu, Hongjie Lei, Yidian Wang and Hongsheng Li
Micromachines 2025, 16(10), 1120; https://doi.org/10.3390/mi16101120 - 30 Sep 2025
Viewed by 3053
Abstract
Feedthrough interference is inevitably introduced in MEMS gyroscopes due to non-ideal factors such as circuit layout design and fabrication processes, exerting non-negligible impacts on gyroscope performance. This study proposes a feedthrough suppression scheme for MEMS gyroscopes based on mixed-frequency excitation signals. Leveraging the [...] Read more.
Feedthrough interference is inevitably introduced in MEMS gyroscopes due to non-ideal factors such as circuit layout design and fabrication processes, exerting non-negligible impacts on gyroscope performance. This study proposes a feedthrough suppression scheme for MEMS gyroscopes based on mixed-frequency excitation signals. Leveraging the quadratic relationship between excitation voltage and electrostatic force in capacitive resonators, the resonator is excited with a modulated signal at a non-resonant frequency while sensing vibration signals at the resonant frequency. This approach achieves linear excitation without requiring backend demodulation circuits, effectively separating desired signals from feedthrough interference in the frequency domain. A mixed-frequency excitation-based measurement and control system for MEMS gyroscopes is constructed. The influence of mismatch phenomena under non-ideal conditions on the control system is analyzed with corresponding solutions provided. Simulations and experiments validate the scheme’s effectiveness, demonstrating feedthrough suppression through both amplitude-frequency characteristics and scale factor perspectives. Test results confirm the scheme eliminates the zero introduced by feedthrough interference in the gyroscope’s amplitude-frequency response curve and reduces force-to-rebalanced detection scale factor fluctuations caused by frequency split variations by a factor of 21. Under this scheme, the gyroscope achieves zero-bias stability of 0.3118 °/h and angle random walk of 0.2443 °/h/√Hz. Full article
Show Figures

Figure 1

18 pages, 8240 KB  
Article
Low Loss and High Polarization-Maintaining Single-Mode Hollow-Core Anti-Resonant Fibers with S+C+L+U Communication Bands
by Hongxiang Xu, Yuan Yang, Jinhui Yuan, Dongxin Wu, Yilin Huang, Shengbao Luo, Zhiyong Ren, Changming Xia, Jiantao Liu, Guiyao Zhou and Zhiyun Hou
Photonics 2025, 12(9), 846; https://doi.org/10.3390/photonics12090846 - 24 Aug 2025
Cited by 1 | Viewed by 1598
Abstract
In this paper, a low loss and high polarization-maintaining single-mode hollow-core anti-resonant fiber (PM-HC-ARF) is designed. The elliptical core in the PM-HC-ARF is formed by strategically enlarging selected cladding air holes along the y-axis. Additionally, the variations in the wall thickness in both [...] Read more.
In this paper, a low loss and high polarization-maintaining single-mode hollow-core anti-resonant fiber (PM-HC-ARF) is designed. The elliptical core in the PM-HC-ARF is formed by strategically enlarging selected cladding air holes along the y-axis. Additionally, the variations in the wall thickness in both the x and y directions generate the distinct surface modes. By simultaneously employing an elliptical core and asymmetric core-wall thickness, we enhance the phase birefringence. Theoretical analysis results show that the proposed PM-HC-ARF achieves a transmission loss of 0.00082 dB/m at wavelength 1450 nm, along with a birefringence of 1.38 × 10−4; it demonstrates CL levels an order of magnitude below state-of-the-art polarization-maintaining HC-ARFs. Moreover, within the S+C+L+U communication bands, it achieves a bandwidth exceeding 380 nm (1420–1800 nm) while maintaining a birefringence of greater than 1.45 × 10−4. In particular, this PM-HC-ARF demonstrates a maximum higher-order mode extinction ratio of over 32,070; the single-mode transmission characteristics are excellent, along with exceptional bending resistance characteristics. When the bending radius exceeds 3 cm, the impacts on the loss and birefringence are negligible; this also demonstrates that the fiber structure shows good robustness when subjected to harsh environment interference. The proposed PM-HC-ARF is believed to have important applications in fiber optic gyroscopes, optical amplifiers, and hydrophones. Full article
Show Figures

Figure 1

20 pages, 5650 KB  
Article
The In-Plane Deformation and Free Vibration Analysis of a Rotating Ring Resonator of a Gyroscope with Evenly Distributed Mass Imperfections
by Dongsheng Zhang and Shuming Li
Sensors 2025, 25(15), 4764; https://doi.org/10.3390/s25154764 - 1 Aug 2025
Viewed by 2880
Abstract
A rotating imperfect ring resonator of the gyroscope is modeled by a rotating thin ring with evenly distributed point masses. The free response of the rotating ring structure at constant speed is investigated, including the steady elastic deformation and wave response. The dynamic [...] Read more.
A rotating imperfect ring resonator of the gyroscope is modeled by a rotating thin ring with evenly distributed point masses. The free response of the rotating ring structure at constant speed is investigated, including the steady elastic deformation and wave response. The dynamic equations are formulated by using Hamilton’s principle in the ground-fixed coordinates. The coordinate transformation is applied to facilitate the solution of the steady deformation, and the displacements and tangential tension for the deformation are calculated by the perturbation method. Employing Galerkin’s method, the governing equation of the free vibration is casted in matrix differential operator form after the separation of the real and imaginary parts with the inextensional assumption. The natural frequencies are calculated through the eigenvalue analysis, and the numerical results are obtained. The effects of the point masses on the natural frequencies of the forward and backward traveling wave curves of different orders are discussed, especially on the measurement accuracy of gyroscopes for different cases. In the ground-fixed coordinates, the frequency splitting results in a crosspoint of the natural frequencies of the forward and backward traveling waves. The finite element method is applied to demonstrate the validity and accuracy of the model. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Graphical abstract

13 pages, 4900 KB  
Article
Comparative Noise Analysis of Readout Circuit in Hemispherical Resonator Gyroscope
by Zhihao Yu, Libin Zeng, Changda Xing, Lituo Shang, Xiuyue Yan and Jingyu Li
Micromachines 2025, 16(7), 802; https://doi.org/10.3390/mi16070802 - 9 Jul 2025
Viewed by 846
Abstract
In high-precision Hemispherical Resonator Gyroscope (HRG) control systems, readout circuit noise critically determines resonator displacement detection precision. Addressing noise issues, this paper compares the noise characteristics and contribution mechanisms of the Transimpedance Amplifier (TIA) and Charge-Sensitive Amplifier (CSA). By establishing a noise model [...] Read more.
In high-precision Hemispherical Resonator Gyroscope (HRG) control systems, readout circuit noise critically determines resonator displacement detection precision. Addressing noise issues, this paper compares the noise characteristics and contribution mechanisms of the Transimpedance Amplifier (TIA) and Charge-Sensitive Amplifier (CSA). By establishing a noise model and analyzing circuit bandwidth, the dominant role of feedback resistor thermal noise in the TIA is revealed. These analyses further demonstrate the significant suppression of high-frequency noise by the CSA capacitive feedback network. Simulation and experimental results demonstrate that the measured noise of the TIA and CSA is consistent with the theoretical model. The TIA output noise is 25.8 μVrms, with feedback resistor thermal noise accounting for 99.8%, while CSA output noise is reduced to 13.2 μVrms, a reduction of 48.8%. Near resonant frequency, the equivalent displacement noise of the CSA is 1.69×1014m/Hz, a reduction of 86.7% compared to the TIA’s 1.27×1013m/Hz, indicating the CSA is more suitable for high-precision applications. This research provides theoretical guidance and technical references for the topological selection and parameter design of HRG readout circuits. Full article
Show Figures

Figure 1

12 pages, 6408 KB  
Article
Automatic Mode-Matching Method for MEMS Gyroscope Based on Fast Mode Reversal
by Feng Bu, Bo Fan, Rui Feng, Ming Zhou and Yiwang Wang
Micromachines 2025, 16(6), 704; https://doi.org/10.3390/mi16060704 - 12 Jun 2025
Cited by 1 | Viewed by 3622
Abstract
Processing errors can result in an asymmetric stiffness distribution within a microelectromechanical system (MEMS) disk resonator gyroscope (DRG) and thereby cause a mode mismatch and reduce the mechanical sensitivity and closed-loop scale factor stability. This paper proposes an automatic mode-matching method that utilizes [...] Read more.
Processing errors can result in an asymmetric stiffness distribution within a microelectromechanical system (MEMS) disk resonator gyroscope (DRG) and thereby cause a mode mismatch and reduce the mechanical sensitivity and closed-loop scale factor stability. This paper proposes an automatic mode-matching method that utilizes mode reversal to obtain the true resonant frequency of the operating state of a gyroscope for high-precision matching. This method constructs a gyroscope control system that contains a drive closed loop, sense force-to-rebalance (FTR) closed loop, and quadrature error correction closed loop. After the gyroscope was powered on and started up, the x- and y-axes were quickly switched to obtain the resonant frequencies of the two axes through a phase-locked loop (PLL), and the x-axis tuning voltage was automatically adjusted to match the two-axis frequency. The experimental results show that the method takes only 5 s to execute, the frequency matching accuracy reaches 0.01 Hz, the matching state can be maintained in the temperature range of −20 to 60 °C, and the fluctuation of the frequency split does not exceed 0.005 Hz. Full article
(This article belongs to the Special Issue Advances in MEMS Inertial Sensors)
Show Figures

Figure 1

20 pages, 6756 KB  
Article
Optimization of Film Thickness Uniformity in Hemispherical Resonator Coating Process Based on Simulation and Reinforcement Learning Algorithms
by Jingyu Pan, Dongsheng Zhang, Shijie Liu, Jianguo Wang and Jianda Shao
Coatings 2025, 15(6), 700; https://doi.org/10.3390/coatings15060700 - 10 Jun 2025
Viewed by 1157
Abstract
Hemispherical resonator gyroscopes (HRGs) are critical components in high-precision inertial navigation systems, typically used in fields such as navigation, weaponry, and deep space exploration. Film thickness uniformity affects device performance through its impact on the resonator’s Q value. Due to the irregular structure [...] Read more.
Hemispherical resonator gyroscopes (HRGs) are critical components in high-precision inertial navigation systems, typically used in fields such as navigation, weaponry, and deep space exploration. Film thickness uniformity affects device performance through its impact on the resonator’s Q value. Due to the irregular structure of the resonator, there has been limited research on the uniformity of film thickness on the inner wall of the resonator. This study addresses the challenge of thickness non-uniformity in metallization coatings, particularly in the meridional direction of the resonator. By integrating COMSOL-based finite element simulations with reinforcement learning-driven optimization through the Proximal Policy Optimization (PPO) algorithm, a new paradigm for coating process optimization is established. Furthermore, a correction mask is designed to address the issue of low coating rate. Finally, a Zygo white-light interferometer is used to measure film thickness uniformity. The results show that the optimized coating process achieves a film thickness uniformity of 11.0% in the meridional direction across the resonator. This study provides useful information and guidelines for the design and optimization of the coating process for hemispherical resonators, and the presented optimization method constitutes a process flow framework that can also be used for precision coating engineering in semiconductor components and optical elements. Full article
(This article belongs to the Special Issue AI-Driven Surface Engineering and Coating)
Show Figures

Figure 1

16 pages, 8112 KB  
Article
Identification and Compensation of Detection Gain Asymmetry Errors for Hemispherical Resonant Gyroscopes in Whole-Angle Mode
by Ruizhao Cheng, Gongliu Yang, Qingzhong Cai, Xiaodi Yi and Yongqiang Tu
Actuators 2025, 14(6), 275; https://doi.org/10.3390/act14060275 - 3 Jun 2025
Viewed by 1099
Abstract
Detection gain asymmetry error is one of the primary errors of the hemispherical resonator gyroscope (HRG) in whole-angle (WA) mode. This paper analyzes the influence of detection gain asymmetry error and its coupling error with damping and stiffness asymmetry on the performance of [...] Read more.
Detection gain asymmetry error is one of the primary errors of the hemispherical resonator gyroscope (HRG) in whole-angle (WA) mode. This paper analyzes the influence of detection gain asymmetry error and its coupling error with damping and stiffness asymmetry on the performance of HRG and proposes a novel compensation method for detection gain asymmetry error. Firstly, the nonlinear error model of HRG considering the detection gain asymmetry error and its coupling error is established by using the average method. The influence of the angle-dependent scale factor error (ADS) and angle-dependent bias error (ADB) caused by the detection gain asymmetry error is analyzed by numerical simulation. Secondly, a parameter estimation algorithm based on force-to-rebalance (FTR) mode is proposed to decouple and identify the detection gain asymmetry error and damping asymmetry error. The identified parameters are used for the calibration of the HRG. Finally, the method is applied to the HRG operating in WA mode. The effectiveness of the proposed method is verified by experiments. After compensation, the bias instability is reduced from 3.6°/h to 0.6°/h, the scale factor nonlinearity is reduced from 646.57 ppm to 207.43 ppm, and the maximum pattern angle deviation is reduced from 0.6° to 0.05°. Full article
(This article belongs to the Section Precision Actuators)
Show Figures

Figure 1

21 pages, 18629 KB  
Article
High-Precision Control of Control Moment Gyroscope Gimbal Servo Systems via a Proportional–Integral–Resonant Controller and Noise Reduction Extended Disturbance Observer
by Zhihao Lu and Zhong Wu
Actuators 2025, 14(4), 196; https://doi.org/10.3390/act14040196 - 18 Apr 2025
Cited by 1 | Viewed by 1535
Abstract
Speed control accuracy of gimbal servo systems for control moment gyroscopes (CMGs) is crucial for spacecraft attitude control. However, multiple disturbances from internal and external factors severely degrade the speed control accuracy of gimbal servo systems. To suppress the effects of these complex [...] Read more.
Speed control accuracy of gimbal servo systems for control moment gyroscopes (CMGs) is crucial for spacecraft attitude control. However, multiple disturbances from internal and external factors severely degrade the speed control accuracy of gimbal servo systems. To suppress the effects of these complex disturbances on speed control accuracy, a control method based on a proportional–integral–resonant (PIR) controller and a noise reduction extended disturbance observer (NREDO) is proposed in this paper. First, the disturbance dynamic model of an (n+1)th-order NREDO is derived. The integral of the virtual measurement of the lumped disturbance is an augmented state in the model. NREDO states are updated by using the estimation error of the augmented state. The NREDO significantly enhances the measurement noise suppression performance compared with an EDO. Second, a resonant controller is introduced to suppress the high-frequency rotor dynamic imbalance torque. The PIR controller is composed of a resonant controller in parallel with a PI controller. Numerical simulation and experimental results demonstrate the effectiveness of the proposed method. Full article
(This article belongs to the Special Issue New Control Schemes for Actuators—2nd Edition)
Show Figures

Figure 1

Back to TopTop