Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,230)

Search Parameters:
Keywords = research frontier

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1909 KiB  
Review
Cassava (Manihot esculenta Crantz): Evolution and Perspectives in Genetic Studies
by Vinicius Campos Silva, Gustavo Reis de Brito, Wellington Ferreira do Nascimento, Eduardo Alano Vieira, Felipe Machado Navaes and Marcos Vinícius Bohrer Monteiro Siqueira
Agronomy 2025, 15(8), 1897; https://doi.org/10.3390/agronomy15081897 (registering DOI) - 7 Aug 2025
Abstract
Cassava (Manihot esculenta Crantz) is essential for global food security, especially in tropical regions. As an important genetic resource, its genetics plays a key role in crop breeding, enabling the development of more productive and pest- and disease-resistant varieties. Scientometrics, which quantitatively [...] Read more.
Cassava (Manihot esculenta Crantz) is essential for global food security, especially in tropical regions. As an important genetic resource, its genetics plays a key role in crop breeding, enabling the development of more productive and pest- and disease-resistant varieties. Scientometrics, which quantitatively analyzes the production and impact of scientific research, is crucial for understanding trends in cassava genetics. This study aimed to apply bibliometric methods to conduct a scientific mapping analysis based on yearly publication trends, paper classification, author productivity, journal impact factor, keywords occurrences, and omic approaches to investigate the application of genetics to the species from 1960 to 2022. From the quantitative data analyzed, 3246 articles were retrieved from the Web of Science platform, of which 654 met the inclusion criteria. A significant increase in scientific production was observed from 1993, peaking in 2018. The first article focused on genetics was published in 1969. Among the most relevant journals, Euphytica stood out with 36 articles, followed by Genetics and Molecular Research (n = 30) and Frontiers in Plant Science (n = 25). Brazil leads in the number of papers on cassava genetics (n = 143), followed by China (n = 110) and the United States (n = 75). The analysis of major methodologies (n = 185) reveals a diversified panorama during the study period. Morpho-agronomic descriptors persisted from 1978 to 2022; however, microsatellite markers were the most widely used, with 102 records. Genomics was addressed in 87 articles, and transcriptomics in 65. By clarifying the current landscape, this study supports cassava conservation and breeding, assists in public policy formulation, and guides future research in the field. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

37 pages, 2918 KiB  
Review
Guardians of Water and Gas Exchange: Adaptive Dynamics of Stomatal Development and Patterning
by Eleni Giannoutsou, Ioannis-Dimosthenis S. Adamakis and Despina Samakovli
Plants 2025, 14(15), 2405; https://doi.org/10.3390/plants14152405 - 3 Aug 2025
Viewed by 210
Abstract
Stomata, highly specialized structures that evolved on the aerial surfaces of plants, play a crucial role in regulating hydration, mitigating the effects of abiotic stress. Stomatal lineage development involves a series of coordinated events, such as initiation, stem cell proliferation, and cell fate [...] Read more.
Stomata, highly specialized structures that evolved on the aerial surfaces of plants, play a crucial role in regulating hydration, mitigating the effects of abiotic stress. Stomatal lineage development involves a series of coordinated events, such as initiation, stem cell proliferation, and cell fate determination, ultimately leading to the differentiation of guard cells. While core transcriptional regulators and signaling pathways controlling stomatal cell division and fate determination have been characterized over the past twenty years, the molecular mechanisms linking stomatal development to dynamic environmental cues remain poorly understood. Therefore, stomatal development is considered an active and compelling frontier in plant biology research. On the one hand, this review aims to provide an understanding of the molecular networks governing stomatal ontogenesis, which relies on the activation and function of the transcription factors SPEECHLESS (SPCH), MUTE, and FAMA; the EPF–TMM and ERECTA receptor systems; and downstream MAPK signaling. On the other hand, it synthesizes current discoveries of how hormonal signaling pathways regulate stomatal development in response to environmental changes. As the climate crisis intensifies, the understanding of the complex interplay between stress stimuli and key factors regulating stomatal development may reveal key mechanisms that enhance plant resilience under adverse environmental conditions. Full article
Show Figures

Figure 1

23 pages, 1693 KiB  
Review
From Vision to Illumination: The Promethean Journey of Optical Coherence Tomography in Cardiology
by Angela Buonpane, Giancarlo Trimarchi, Francesca Maria Di Muro, Giulia Nardi, Marco Ciardetti, Michele Alessandro Coceani, Luigi Emilio Pastormerlo, Umberto Paradossi, Sergio Berti, Carlo Trani, Giovanna Liuzzo, Italo Porto, Antonio Maria Leone, Filippo Crea, Francesco Burzotta, Rocco Vergallo and Alberto Ranieri De Caterina
J. Clin. Med. 2025, 14(15), 5451; https://doi.org/10.3390/jcm14155451 - 2 Aug 2025
Viewed by 281
Abstract
Optical Coherence Tomography (OCT) has evolved from a breakthrough ophthalmologic imaging tool into a cornerstone technology in interventional cardiology. After its initial applications in retinal imaging in the early 1990s, OCT was subsequently envisioned for cardiovascular use. In 1995, its ability to visualize [...] Read more.
Optical Coherence Tomography (OCT) has evolved from a breakthrough ophthalmologic imaging tool into a cornerstone technology in interventional cardiology. After its initial applications in retinal imaging in the early 1990s, OCT was subsequently envisioned for cardiovascular use. In 1995, its ability to visualize atherosclerotic plaques was demonstrated in an in vitro study, and the following year marked the acquisition of the first in vivo OCT image of a human coronary artery. A major milestone followed in 2000, with the first intracoronary imaging in a living patient using time-domain OCT. However, the real inflection point came in 2006 with the advent of frequency-domain OCT, which dramatically improved acquisition speed and image quality, enabling safe and routine imaging in the catheterization lab. With the advent of high-resolution, second-generation frequency-domain systems, OCT has become clinically practical and widely adopted in catheterization laboratories. OCT progressively entered interventional cardiology, first proving its safety and feasibility, then demonstrating superiority over angiography alone in guiding percutaneous coronary interventions and improving outcomes. Today, it plays a central role not only in clinical practice but also in cardiovascular research, enabling precise assessment of plaque biology and response to therapy. With the advent of artificial intelligence and hybrid imaging systems, OCT is now evolving into a true precision-medicine tool—one that not only guides today’s therapies but also opens new frontiers for discovery, with vast potential still waiting to be explored. Tracing its historical evolution from ophthalmology to cardiology, this narrative review highlights the key technological milestones, clinical insights, and future perspectives that position OCT as an indispensable modality in contemporary interventional cardiology. As a guiding thread, the myth of Prometheus is used to symbolize the evolution of OCT—from its illuminating beginnings in ophthalmology to its transformative role in cardiology—as a metaphor for how light, innovation, and knowledge can reveal what was once hidden and redefine clinical practice. Full article
(This article belongs to the Section Cardiology)
Show Figures

Graphical abstract

26 pages, 4349 KiB  
Article
Palazzo Farnese and Dong’s Fortified Compound: An Art-Anthropological Cross-Cultural Analysis of Architectural Form, Symbolic Ornamentation, and Public Perception
by Liyue Wu, Qinchuan Zhan, Yanjun Li and Chen Chen
Buildings 2025, 15(15), 2720; https://doi.org/10.3390/buildings15152720 - 1 Aug 2025
Viewed by 156
Abstract
This study presents a cross-cultural comparison of two fortified residences—Palazzo Farnese in Italy and Dong’s Fortified Compound in China—through a triadic analytical framework encompassing architectural form, symbolic ornamentation, and public perception. By combining field observation, iconographic interpretation, and digital ethnography, the research investigates [...] Read more.
This study presents a cross-cultural comparison of two fortified residences—Palazzo Farnese in Italy and Dong’s Fortified Compound in China—through a triadic analytical framework encompassing architectural form, symbolic ornamentation, and public perception. By combining field observation, iconographic interpretation, and digital ethnography, the research investigates how heritage meaning is constructed, encoded, and reinterpreted across distinct sociocultural contexts. Empirical materials include architectural documentation, decorative analysis, and a curated dataset of 4947 user-generated images and 1467 textual comments collected from Chinese and international platforms between 2020 and 2024. Methods such as CLIP-based visual clustering and BERTopic-enabled sentiment modelling were applied to extract patterns of perception and symbolic emphasis. The findings reveal contrasting representational logics: Palazzo Farnese encodes dynastic authority and Renaissance cosmology through geometric order and immersive frescoes, while Dong’s Compound conveys Confucian ethics and frontier identity via nested courtyards and traditional ornamentation. Digital responses diverge accordingly: international users highlight formal aesthetics and photogenic elements; Chinese users engage with symbolic motifs, family memory, and ritual significance. This study illustrates how historically fortified residences are reinterpreted through culturally specific digital practices, offering an interdisciplinary approach that bridges architectural history, symbolic analysis, and digital heritage studies. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

18 pages, 10032 KiB  
Article
Design and Efficiency Analysis of High Maneuvering Underwater Gliders for Kuroshio Observation
by Zhihao Tian, Bing He, Heng Zhang, Cunzhe Zhang, Tongrui Zhang and Runfeng Zhang
Oceans 2025, 6(3), 48; https://doi.org/10.3390/oceans6030048 - 1 Aug 2025
Viewed by 213
Abstract
The Kuroshio Current’s flow velocity imposes exacting requirements on underwater vehicle propulsive systems. Ecological preservation necessitates low-noise propeller designs to mitigate operational disturbances. As technological evolution advances toward greater intelligence and system integration, intelligent unmanned systems are positioning themselves as a critical frontier [...] Read more.
The Kuroshio Current’s flow velocity imposes exacting requirements on underwater vehicle propulsive systems. Ecological preservation necessitates low-noise propeller designs to mitigate operational disturbances. As technological evolution advances toward greater intelligence and system integration, intelligent unmanned systems are positioning themselves as a critical frontier in marine innovation. In recent years, the global research community has increased its efforts towards the development of high-maneuverability underwater vehicles. However, propeller design optimization ignores the key balance between acoustic performance and hydrodynamic efficiency, as well as the appropriate speed threshold for blade rotation. In order to solve this problem, the propeller design of the NACA 65A010 airfoil is optimized by using OpenProp v3.3.4 and XFlow 2022 software, aiming at innovating the propulsion system of shallow water agile submersibles. The study presents an integrated design framework combining lattice Boltzmann method (LBM) simulations synergized with fully Lagrangian-LES modeling, implementing rotational speed thresholds to detect cavitation inception, followed by advanced acoustic propagation analysis. Through rigorous comparative assessment of hydrodynamic metrics, we establish an optimization protocol for propeller selection tailored to littoral zone operational demands. Studies have shown that increasing the number of propeller blades can reduce the single-blade load and delay cavitation, but too many blades will aggravate the complexity of the flow field, resulting in reduced efficiency and noise rebound. It is concluded that the propeller with five blades, a diameter of 234 mm, and a speed of 500 RPM exhibits the best performance. Under these conditions, the water efficiency is 69.01%, and the noise is the lowest, which basically realizes the balance between hydrodynamic efficiency and acoustic performance. This paradigm-shifting research carries substantial implications for next-generation marine vehicles, particularly in optimizing operational stealth and energy efficiency through intelligent propulsion architecture. Full article
Show Figures

Figure 1

2 pages, 149 KiB  
Correction
Correction: Pogorelsky, I.V.; Polyanskiy, M.N. Harnessing Ultra-Intense Long-Wave Infrared Lasers: New Frontiers in Fundamental and Applied Research. Photonics 2025, 12, 221
by Igor V. Pogorelsky and Mikhail N. Polyanskiy
Photonics 2025, 12(8), 777; https://doi.org/10.3390/photonics12080777 - 31 Jul 2025
Viewed by 86
Abstract
There were some text errors in the original publication [...] Full article
(This article belongs to the Special Issue High-Power Ultrafast Lasers: Development and Applications)
24 pages, 11280 KiB  
Article
Identifying Landscape Character in Multi-Ethnic Areas in Southwest China: The Case of the Miao Frontier Corridor
by Yanjun Liu, Xiaomei Li, Shangjun Lu, Liyun Xie and Zongsheng Huang
Land 2025, 14(8), 1571; https://doi.org/10.3390/land14081571 - 31 Jul 2025
Viewed by 353
Abstract
The landscapes of China’s multi-ethnic areas are rich in natural and cultural value, but they are threatened by homogenization and urbanization. This study aims to establish a method for identifying and classifying the landscape characters in China’s multi-ethnic areas to support the protection [...] Read more.
The landscapes of China’s multi-ethnic areas are rich in natural and cultural value, but they are threatened by homogenization and urbanization. This study aims to establish a method for identifying and classifying the landscape characters in China’s multi-ethnic areas to support the protection and sustainable development of the landscape in these areas. Taking the Miao Frontier Corridor as an example, the study optimized a parameterization method of landscape character assessment (LCA), integrated relevant cultural and natural elements, and used the K-means clustering algorithm to determine the landscape character types and regions of the Miao Frontier Corridor. The results show that (1) the natural conditions, ethnic exchanges, and historical institutions of the Miao Frontier Corridor have had a significant impact on its overall landscape; and (2) using ethnic group culture as a cultural element in LCA helps to reveal the unique cultural value of areas with different landscape characters. This study expands the LCA framework and applies it to multi-ethnic areas in China, thereby establishing a database that can serve as the basis for cross-regional landscape protection, management, and development planning in these areas. The research methods can be widely used in other multi-ethnic areas in China. Full article
Show Figures

Figure 1

21 pages, 1019 KiB  
Review
Macrophage Reprogramming: Emerging Molecular Therapeutic Strategies for Nephrolithiasis
by Meng Shu, Yiying Jia, Shuwei Zhang, Bangyu Zou, Zhaoxin Ying, Xu Gao, Ziyu Fang and Xiaofeng Gao
Biomolecules 2025, 15(8), 1090; https://doi.org/10.3390/biom15081090 - 28 Jul 2025
Viewed by 545
Abstract
Nephrolithiasis, predominantly driven by calcium oxalate (CaOx) crystal deposition, poses a significant global health burden due to its high prevalence and recurrence rates and limited preventive/therapeutic options. Recent research has underscored a pivotal role for macrophage polarization in nephrolithiasis pathogenesis. Pro-inflammatory phenotype macrophages [...] Read more.
Nephrolithiasis, predominantly driven by calcium oxalate (CaOx) crystal deposition, poses a significant global health burden due to its high prevalence and recurrence rates and limited preventive/therapeutic options. Recent research has underscored a pivotal role for macrophage polarization in nephrolithiasis pathogenesis. Pro-inflammatory phenotype macrophages exacerbate crystal-induced injury and foster stone formation by amplifying crystal adhesion via an NF-κB–IL-1β positive-feedback axis that sustains ROS generation and NLRP3 inflammasome activation, whereas anti-inflammatory phenotype macrophages facilitate crystal clearance and tissue repair. We have summarized the research on treating nephrolithiasis and related renal injury by targeting macrophage polarization in recent years, including therapeutic approaches through pharmacological methods, epigenetic regulation, and advanced biomaterials. At the same time, we have critically evaluated the novel therapeutic strategies for macrophage reprogramming and explored the future development directions of targeting macrophage reprogramming for nephrolithiasis treatment, such as using single-cell/spatial omics to reveal the heterogeneity of macrophages in the stone microenvironment, chimeric antigen receptor macrophages (CAR-Ms) as a potential therapy for specific crystal phagocytosis in certain areas, and multi-omics integration to address inter-patient immune differences. This review highlights that macrophage reprogramming is a transformative frontier in nephrolithiasis management and underscores the need for further research to translate these molecular insights into effective clinical applications. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

20 pages, 7024 KiB  
Article
A Bibliometric Analysis of Research on Chinese Wooden Architecture Based on CNKI and Web of Science
by Dongyu Wei, Meng Lv, Haoming Yu, Jun Li, Changxin Guo, Xingbiao Chu, Qingtao Liu and Guang Wu
Buildings 2025, 15(15), 2651; https://doi.org/10.3390/buildings15152651 - 27 Jul 2025
Viewed by 273
Abstract
In the context of the growing emphasis on sustainable development and building safety performance, wooden architecture will attract increasing attention due to its low-carbon characteristics and excellent seismic resistance. In this study, the bibliometric software Citespace is used for data visualization analysis based [...] Read more.
In the context of the growing emphasis on sustainable development and building safety performance, wooden architecture will attract increasing attention due to its low-carbon characteristics and excellent seismic resistance. In this study, the bibliometric software Citespace is used for data visualization analysis based on the literature related to Chinese wooden architecture in the China National Knowledge Infrastructure (CNKI) and the Web of Science (WOS) databases, aiming to construct an analytical framework that integrates quantitative visualization and qualitative thematic interpretation which could reveal the current status, hotspots, and frontier trends of research in this field. The results show the following: Research on Chinese wooden architecture has shown a steady growth trend, indicating that it has received attention from an increasing number of scholars. Researchers and institutions are mainly concentrated in higher learning and research institutions in economically developed regions. Research hotspots cover subjects such as seismic performance, mortise–tenon structures, imitation wood structures, Dong architecture, Liang Sicheng, and the Society for the Study of Chinese Architecture. The research process of Chinese wooden architecture can be divided into three stages: the macro stage, the specific deepening stage, and the inheritance application and interdisciplinary integration stage. In the future, the focus will be on interdisciplinary research on wooden architecture from ethnic minority cultures and traditional dwellings. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

8 pages, 1122 KiB  
Proceeding Paper
Recent Developments in Four-In-Wheel Electronic Differential Systems in Electrical Vehicles
by Anouar El Mourabit and Ibrahim Hadj Baraka
Comput. Sci. Math. Forum 2025, 10(1), 17; https://doi.org/10.3390/cmsf2025010017 - 25 Jul 2025
Viewed by 130
Abstract
This manuscript investigates the feasibility of Four-In-Wheel Electronic Differential Systems (4 IW-EDSs) within contemporary electric vehicles (EVs), emphasizing their benefits for stability regulation predicated on steering angles. Through an extensive literature review, we conduct a comparative analysis of various in-wheel-motor models in terms [...] Read more.
This manuscript investigates the feasibility of Four-In-Wheel Electronic Differential Systems (4 IW-EDSs) within contemporary electric vehicles (EVs), emphasizing their benefits for stability regulation predicated on steering angles. Through an extensive literature review, we conduct a comparative analysis of various in-wheel-motor models in terms of power output, efficiency, and torque characteristics. Furthermore, we explore the distinctions between IW-EDSs and steer-by-wire systems, as well as conventional systems, while evaluating recent research findings to determine their implications for the evolution of electric mobility. Moreover, this paper addresses the necessity for fault-tolerant methodologies to boost reliability in practical applications. The findings yield valuable insights into the challenges and impacts associated with the implementation of differential steering control in four-wheel independent-drive electric vehicles. This study aims to explore the interaction between these systems, optimize torque distribution, and discover the most ideal control strategy that will improve maneuverability, stability, and energy efficiency, thereby opening up new frontiers in the development of next-generation electric vehicles with unparalleled performance and safety features. Full article
Show Figures

Figure 1

20 pages, 4490 KiB  
Article
Mapping Trends in Green Finance: A Bibliometric and Topic Modeling Analysis
by Orlando Joaqui-Barandica, Jesús Heredia-Carroza, Sebastian López-Estrada and Daniela-Tatiana Agheorghiesei
Int. J. Financial Stud. 2025, 13(3), 137; https://doi.org/10.3390/ijfs13030137 - 25 Jul 2025
Viewed by 719
Abstract
This study presents a comprehensive bibliometric and topic modeling analysis of the academic literature on green and sustainable finance. Using 1372 peer-reviewed articles indexed in the Web of Science up to 2024, we identify key publication trends, influential authors, prominent journals, and thematic [...] Read more.
This study presents a comprehensive bibliometric and topic modeling analysis of the academic literature on green and sustainable finance. Using 1372 peer-reviewed articles indexed in the Web of Science up to 2024, we identify key publication trends, influential authors, prominent journals, and thematic clusters shaping the field. The analysis reveals an exponential growth in publications since 2017 and highlights the dominance of journals such as Journal of Sustainable Finance & Investment and Sustainability. Text mining techniques, including TF-IDF and Latent Dirichlet Allocation (LDA), are applied to abstracts to extract the most relevant terms and classify articles into four latent topics. The findings suggest a growing focus on the impact of green finance on carbon emissions, energy efficiency, and firm performance, particularly in the context of China. This study offers valuable insights for researchers and policymakers by mapping the intellectual structure and identifying emerging research frontiers in the rapidly evolving field of green finance. Full article
Show Figures

Figure 1

23 pages, 2992 KiB  
Article
Research on Two-Stage Investment Decision-Making in Park-Level Integrated Energy Projects Considering Multi-Objectives
by Jiaxuan Yu, Wei Sun, Rongwei Ma and Bingkang Li
Processes 2025, 13(8), 2362; https://doi.org/10.3390/pr13082362 - 24 Jul 2025
Viewed by 377
Abstract
The scientific investment decision of Park-level Integrated Energy System (PIES) projects is of great significance to energy enterprises for improving the efficient utilization of funds, promoting green and low-carbon transformation, and achieving the goal of carbon neutrality. This paper proposed a two-stage investment [...] Read more.
The scientific investment decision of Park-level Integrated Energy System (PIES) projects is of great significance to energy enterprises for improving the efficient utilization of funds, promoting green and low-carbon transformation, and achieving the goal of carbon neutrality. This paper proposed a two-stage investment framework that integrates a multi-objective 0–1 programming model with a multi-criteria decision-making (MCDM) technique to determine the optimal PIES project investment portfolios under the constraint of quota investment. First, a multi-objective (MO) 0–1 programming model was constructed for typical PIES projects in Stage-I, which considers economic and environmental benefits to obtain Pareto frontier solutions, i.e., PIES project portfolios. Second, an evaluation index system from multiple dimensions was established, and a hybrid MCDM technique was adopted to comprehensively evaluate the Pareto frontier solutions in Stage-II. Finally, the proposed model was applied to an empirical case, and the simulation results show that the decision framework can achieve the best overall benefit of PIES project portfolios with maximal economic benefit and minimum carbon emissions. In addition, the robustness analysis was performed by changing the indicator weights to verify the stability of the proposed framework. This research work could provide a theoretical tool for investment decisions regarding PIES projects for energy enterprises. Full article
Show Figures

Figure 1

30 pages, 3932 KiB  
Article
Banking on the Metaverse: Systemic Disruption or Techno-Financial Mirage?
by Alina Georgiana Manta and Claudia Gherțescu
Systems 2025, 13(8), 624; https://doi.org/10.3390/systems13080624 - 24 Jul 2025
Viewed by 454
Abstract
This study delivers a rigorous and in-depth bibliometric examination of 693 scholarly publications addressing the intersection of metaverse technologies and banking, retrieved from the Web of Science Core Collection. Through advanced scientometric tools, including VOSviewer and Bibliometrix, the research systematically unpacks the evolving [...] Read more.
This study delivers a rigorous and in-depth bibliometric examination of 693 scholarly publications addressing the intersection of metaverse technologies and banking, retrieved from the Web of Science Core Collection. Through advanced scientometric tools, including VOSviewer and Bibliometrix, the research systematically unpacks the evolving intellectual and thematic contours of this interdisciplinary frontier. The co-occurrence analysis of keywords reveals a landscape shaped by seven core thematic clusters, encompassing immersive user environments, digital infrastructure, experiential design, and ethical considerations. Factorial analysis uncovers a marked bifurcation between experience-driven narratives and technology-centric frameworks, with integrative concepts such as technology, information, and consumption serving as conceptual bridges. Network visualizations of authorship patterns point to the emergence of high-density collaboration clusters, particularly centered around influential contributors such as Dwivedi and Ooi, while regional distribution patterns indicate a tri-continental dominance led by Asia, North America, and Western Europe. Temporal analysis identifies a significant surge in academic interest beginning in 2022, aligning with increased institutional and commercial experimentation in virtual financial platforms. Our findings argue that the incorporation of metaverse paradigms into banking is not merely a technological shift but a systemic transformation in progress—one that blurs the boundaries between speculative innovation and tangible implementation. This work contributes foundational insights for future inquiry into digital finance systems, algorithmic governance, trust architecture, and the wider socio-economic consequences of banking in virtualized environments. Whether a genuine leap toward financial evolution or a sophisticated illusion, the metaverse in banking must now be treated as a systemic phenomenon worthy of serious scrutiny. Full article
Show Figures

Figure 1

28 pages, 20978 KiB  
Article
From Painting to Cinema: Archetypes of the European Woman as a Cultural Mediator in the Western genre
by Olga Kosachova
Arts 2025, 14(4), 83; https://doi.org/10.3390/arts14040083 - 23 Jul 2025
Viewed by 450
Abstract
The Western genre has traditionally been associated with American identity and male-dominated narratives. However, recent decades have seen increasing attention to female protagonists, particularly the European woman as a cultural mediator within the frontier context. This study aims to identify the archetypes of [...] Read more.
The Western genre has traditionally been associated with American identity and male-dominated narratives. However, recent decades have seen increasing attention to female protagonists, particularly the European woman as a cultural mediator within the frontier context. This study aims to identify the archetypes of the European woman in the Western genre through a diachronic and comparative analysis of the visual language found in European painting from the late 17th to early 19th centuries and in 20th–21st century cinema. The research methodology combines narrative, visual, and semiotic analysis, with a focus on intermedial and intertextual parallels between visual art and film. The study identifies nine archetypal models corresponding to goddesses of the Greek pantheon and traces their transformation across different aesthetic systems. These archetypes, rooted in artistic traditions such as Baroque, Classicism, Romanticism, and others, reappear in Western films through compositional, symbolic, and iconographic strategies, demonstrating their persistence and ability to transcend temporal, medial, and geographical boundaries. The findings suggest that the woman in the Western genre is not merely a central character, but a visual sign that activates cultural memory and engages with deep archetypal structures embedded in the collective unconscious. Full article
(This article belongs to the Special Issue What is ‘Art’ Cinema?)
Show Figures

Figure 1

81 pages, 4295 KiB  
Systematic Review
Leveraging AI-Driven Neuroimaging Biomarkers for Early Detection and Social Function Prediction in Autism Spectrum Disorders: A Systematic Review
by Evgenia Gkintoni, Maria Panagioti, Stephanos P. Vassilopoulos, Georgios Nikolaou, Basilis Boutsinas and Apostolos Vantarakis
Healthcare 2025, 13(15), 1776; https://doi.org/10.3390/healthcare13151776 - 22 Jul 2025
Viewed by 790
Abstract
Background: This systematic review examines artificial intelligence (AI) applications in neuroimaging for autism spectrum disorder (ASD), addressing six research questions regarding biomarker optimization, modality integration, social function prediction, developmental trajectories, clinical translation challenges, and multimodal data enhancement for earlier detection and improved [...] Read more.
Background: This systematic review examines artificial intelligence (AI) applications in neuroimaging for autism spectrum disorder (ASD), addressing six research questions regarding biomarker optimization, modality integration, social function prediction, developmental trajectories, clinical translation challenges, and multimodal data enhancement for earlier detection and improved outcomes. Methods: Following PRISMA guidelines, we conducted a comprehensive literature search across 8 databases, yielding 146 studies from an initial 1872 records. These studies were systematically analyzed to address key questions regarding AI neuroimaging approaches in ASD detection and prognosis. Results: Neuroimaging combined with AI algorithms demonstrated significant potential for early ASD detection, with electroencephalography (EEG) showing promise. Machine learning classifiers achieved high diagnostic accuracy (85–99%) using features derived from neural oscillatory patterns, connectivity measures, and signal complexity metrics. Studies of infant populations have identified the 9–12-month developmental window as critical for biomarker detection and the onset of behavioral symptoms. Multimodal approaches that integrate various imaging techniques have substantially enhanced predictive capabilities, while longitudinal analyses have shown potential for tracking developmental trajectories and treatment responses. Conclusions: AI-driven neuroimaging biomarkers represent a promising frontier in ASD research, potentially enabling the detection of symptoms before they manifest behaviorally and providing objective measures of intervention efficacy. While technical and methodological challenges remain, advancements in standardization, diverse sampling, and clinical validation could facilitate the translation of findings into practice, ultimately supporting earlier intervention during critical developmental periods and improving outcomes for individuals with ASD. Future research should prioritize large-scale validation studies and standardized protocols to realize the full potential of precision medicine in ASD. Full article
Show Figures

Graphical abstract

Back to TopTop