Leveraging AI-Driven Neuroimaging Biomarkers for Early Detection and Social Function Prediction in Autism Spectrum Disorders: A Systematic Review
Abstract
1. Introduction
2. Literature Review
2.1. Understanding Autism Spectrum Disorder and Neuroimaging Approaches
2.2. Social Function Deficits in Autism Spectrum Disorder
2.3. Artificial Intelligence in Neuroimaging Analysis for ASD
2.4. Early Detection Biomarkers for ASD
2.5. Predicting Social Function Outcomes Using Neuroimaging Biomarkers
2.6. Research Questions
- [RQ1] How can advanced AI algorithms be optimized to identify reproducible neuroimaging biomarkers for the early detection of ASD before behavioral symptoms fully manifest?
- [RQ2] What combination of neuroimaging modalities (MRI, fMRI, EEG, and DTI) provides the most robust and sensitive biomarkers for predicting social functional outcomes in individuals with ASD?
- [RQ3] How are neuroimaging biomarkers correlated with specific dimensions of social function in ASD, and can these relationships be leveraged to develop personalized intervention approaches?
- [RQ4] To what extent can AI-driven analysis of longitudinal neuroimaging data predict developmental trajectories and clinical outcomes across different age groups with ASD?
- [RQ5] What are the key technical and methodological challenges in translating research-based neuroimaging biomarkers into clinically applicable diagnostic and prognostic tools for ASD?
- [RQ6] How can multimodal data integration (combining neuroimaging, genetic, behavioral, and clinical measures) enhance the specificity and sensitivity of AI-driven biomarkers for ASD diagnosis and social function prediction?
3. Methodology
3.1. Scope
3.2. Search Strategy
3.3. Inclusion and Exclusion Criteria
- ▪
- Original studies that focus specifically on ASD and its neurobiological correlations.
- ▪
- Research examining the application of artificial intelligence or machine learning approaches to neuroimaging data in ASD.
- ▪
- Articles exploring neuroimaging biomarkers for early detection, diagnosis, or prediction of social outcomes in ASD.
- ▪
- Studies utilizing various neuroimaging modalities (e.g., MRI, fMRI, DTI, EEG, MEG) to identify brain differences associated with ASD.
- ▪
- Peer-reviewed articles published in English.
- ▪
- Studies published between 2004 and 2024 ensuring comprehensive coverage of the evolution of AI and neuroimaging approaches in ASD research.
- ▪
- Studies presenting original data or findings directly related to at least one of the six core research questions.
- ▪
- Non-peer-reviewed articles, including preprints, conference abstracts, editorials, or commentaries.
- ▪
- Studies that do not directly address ASD or focus solely on other neurodevelopmental disorders, without an ASD-specific analysis.
- ▪
- Research on AI or neuroimaging unrelated to early detection or social function prediction in ASD.
- ▪
- Studies using only behavioral or genetic data without neuroimaging components.
- ▪
- Articles published in languages other than English.
- ▪
- Studies with insufficient methodological rigor, such as inadequate sample sizes, inappropriate control groups, or lacking cross-validation.
- ▪
- Publications focusing solely on theoretical frameworks or computational modeling without empirical validation using real neuroimaging data.
- ▪
- Duplicate publications or studies with substantially overlapping datasets.
3.4. Risk of Bias Assessment
3.5. Analytical Search Process
- 89 articles were excluded for focusing on other neurodevelopmental disorders without direct relevance to ASD or not having ASD-specific analyses
- 67 articles were excluded for not employing AI or machine learning approaches to analyze neuroimaging data
- 53 articles were excluded for lacking sufficient methodological detail to assess quality or reproducibility
- 24 articles were excluded for having inadequate sample sizes or inappropriate control groups
- 18 articles were excluded for using overlapping datasets with other included studies
- 9 articles were excluded for focusing solely on theoretical aspects without empirical validation
3.6. Data Synthesis
3.7. Software Tools
3.8. Study Classification and Methodological Overview
4. Results
4.1. [RQ1] How Can Advanced AI Algorithms Be Optimized to Identify Reproducible Neuroimaging Biomarkers for Early Detection of Autism Spectrum Disorder Before Behavioral Symptoms Fully Manifest?
4.2. [RQ2] What Combination of Neuroimaging Modalities (MRI, fMRI, EEG, DTI) Provides the Most Robust and Sensitive Biomarkers for Predicting Social Function Outcomes in Individuals with ASD?
4.3. [RQ3] How Are Neuroimaging Biomarkers Correlated with Specific Dimensions of Social Function in ASD, and Can These Relationships Be Leveraged to Develop Personalized Intervention Approaches?
4.3.1. Neural Correlates of Social Function Domains
4.3.2. Advanced Biomarker Identification Approaches
4.3.3. Translating Biomarkers to Personalized Interventions
4.3.4. Developmental and Emerging Dimensions
4.3.5. Synthesis and Implications
4.4. [RQ4] To What Extent Can AI-Driven Analysis of Longitudinal Neuroimaging Data Predict Developmental Trajectories and Clinical Outcomes Across Different Age Groups with ASD?
4.4.1. Early Infancy (0–3 Years)
4.4.2. Childhood (3–12 Years)
4.4.3. Adolescence and Intervention Outcomes
4.4.4. Technical Approaches and Algorithms
4.4.5. Methodological Challenges and Future Directions
4.5. [RQ5] What Are the Key Technical and Methodological Challenges in Translating Research-Based Neuroimaging Biomarkers into Clinically Applicable Diagnostic and Prognostic Tools for ASD?
4.6. [RQ6] How Can Multimodal Data Integration (Combining Neuroimaging, Genetic, Behavioral, and Clinical Measures) Enhance the Specificity and Sensitivity of AI-Driven Biomarkers for ASD Diagnosis and Social Function Prediction?
5. Discussion
5.1. AI-Driven Biomarkers for Early Detection of ASD
5.2. Multimodal Neuroimaging Approaches for Robust Biomarker Development
5.3. Neuroimaging Biomarkers and Social Function Correlations
5.4. Longitudinal Neuroimaging for Predicting Developmental Trajectories
5.5. Technical and Methodological Challenges in Clinical Translation
5.6. Multimodal Data Integration for Enhanced Diagnostic Accuracy
5.7. Future Research Implications
5.8. Limitations and Future Directions in AI-Driven Neuroimaging Biomarker Research
- ▪
- Heterogeneity and generalizability: The heterogeneity of ASD presentations poses challenges for developing biomarkers that generalize across diverse populations. Most studies have included relatively homogeneous samples, often underrepresenting females, minority populations, and individuals with intellectual disability or comorbid conditions.
- ▪
- Developmental considerations: Brain development is a dynamic process influenced by numerous factors, necessitating consideration of age and developmental stage in the development and validation of biomarkers. Normative developmental trajectories of neuroimaging measures need to be better established to contextualize the findings in ASD.
- ▪
- Methodological standardization: Variability in neuroimaging acquisition parameters, preprocessing pipelines, and analytical approaches limits the comparability of findings across studies. Method standardization is essential for biomarker validation and clinical translation.
- ▪
- Reproducibility and validation: Many promising findings from small-scale studies have not been replicated in independent samples. Large-scale, multi-site validation studies with prospective designs are needed to establish the reliability and validity of the proposed biomarkers.
- ▪
- Integration with clinical assessment: The optimal approach to integrating neuroimaging biomarkers with existing clinical assessment protocols remains unclear. Research is needed to determine how biomarker information can best complement behavioral assessments to improve diagnostic accuracy and treatment planning.
- ▪
- Implementation considerations: Practical issues related to cost, accessibility, and expertise requirements for advanced neuroimaging and AI analyses present barriers to clinical implementation. For widespread adoption, more accessible and cost-effective approaches must be developed.
- ▪
- Multimodal biomarker development: Integrating data from multiple neuroimaging modalities, along with genetic, behavioral, and environmental measures, may enhance the sensitivity and specificity of biomarkers for early detection and prognosis.
- ▪
- Longitudinal designs: Prospective longitudinal studies beginning in infancy and continuing through childhood and adolescence will provide critical insights into developmental trajectories and the stability of biomarkers across development.
- ▪
- Precision medicine approaches: Developing biomarkers that predict responses to specific interventions will facilitate personalized treatment planning and enhance the efficacy of interventions.
- ▪
- Explainable AI: The advancement of AI methodologies that provide interpretable and explainable results will be crucial for clinical translation and acceptance among healthcare providers.
- ▪
- Transdiagnostic approaches: Examining neuroimaging biomarkers across neurodevelopmental and psychiatric conditions may identify shared and distinct neurobiological mechanisms, thereby improving diagnostic specificity.
5.9. Comparative Analysis with Previous Systematic Reviews
- Standardized acquisition protocols for each neuroimaging modality, with particular emphasis on EEG, given its superior performance in early detection;
- Common preprocessing pipelines that implement validated quality control metrics and artifact rejection procedures;
- Benchmarked feature extraction methodologies that prioritize those techniques demonstrating the highest reproducibility.
- Retrospective validation in diverse clinical populations, ensuring biomarker efficacy across demographic variables, comorbidity profiles, and ASD subtypes.
- Development of clinician-accessible tools that integrate biomarker data with standard clinical measures, featuring interpretable outputs and appropriate quantification of uncertainty.
- Prospective studies comparing standard clinical assessment with biomarker-enhanced approaches, measuring improvements in diagnostic timing, accuracy, and predictive power.
- Development of simplified, clinical-grade EEG systems optimized for the most robust biomarkers identified in our review;
- Creation of automated analysis pipelines that minimize the need for specialized expertise;
- Implementation of explainable AI frameworks that make complex biomarker patterns interpretable to clinicians without technical backgrounds.
- Development of interdisciplinary training programs that enhance clinicians’ ability to incorporate biomarker data into diagnostic and intervention planning;
- Creation of technical training for computational scientists to ensure algorithm development addresses relevant clinical needs;
- Establishment of comprehensive ethical guidelines addressing algorithm fairness, transparency, appropriate human oversight, and equity of access.
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vogindroukas, I.; Stankova, M.; Chelas, E.N.; Proedrou, A. Language and speech characteristics in autism. Neuropsychiatr. Dis. Treat. 2022, 18, 2367–2377. [Google Scholar] [CrossRef] [PubMed]
- Hirota, T.; King, B.H. Autism spectrum disorder: A review. JAMA 2023, 329, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Pascoe, M.I.; Forbes, K.; de la Roche, L.; Derby, B.; Psaradellis, E.; Anagnostou, E.; Kelley, E. Exploring the association between social skills struggles and social communication difficulties and depression in youth with autism spectrum disorder. Autism Res. 2023, 16, 2160–2171. [Google Scholar] [CrossRef] [PubMed]
- Craig, F.; Crippa, A.; Ruggiero, M.; Rizzato, V.; Russo, L.; Fanizza, I.; Trabacca, A. Characterization of autism spectrum disorder (ASD) subtypes based on the relationship between motor skills and social communication abilities. Hum. Mov. Sci. 2021, 77, 102802. [Google Scholar] [CrossRef] [PubMed]
- Costescu, C.; Pitariu, D.; David, C.; Roșan, A. Social communication predictors in autism spectrum disorder: Theoretical review. J. Exp. Psychopathol. 2022, 13, 20438087221106955. [Google Scholar] [CrossRef]
- Bhat, A.N. Motor impairment increases in children with autism spectrum disorder as a function of social communication, cognitive and functional impairment, and repetitive behavior. Autism Res. 2021, 14, 202–219. [Google Scholar] [CrossRef] [PubMed]
- Nicoll, N. Assessing and Diagnosing Young Children with Neurodevelopmental Disorders: A DSM-5-TR Compliant Guide; Routledge: London, UK, 2025. [Google Scholar] [CrossRef]
- Di Salvo, M. From Criteria to Diagnostic Evaluation: Autism in DSM-5 and DSM-5 TER. In Autism Research between Psychology and Neuroscience: From Leo Kanner to New Frontiers; Springer Nature: Cham, Switzerland, 2024; pp. 147–165. [Google Scholar] [CrossRef]
- Li, X.; Zhang, K.; He, X.; Zhou, J.; Jin, C.; Shen, L.; Gao, Y.; Tian, M.; Zhang, H. Structural, functional, and molecular imaging of autism spectrum disorder. Neurosci. Bull. 2021, 37, 1051–1071. [Google Scholar] [CrossRef] [PubMed]
- Del Casale, A.; Ferracuti, S.; Alcibiade, A.; Simone, S.; Modesti, M.N.; Pompili, M. Neuroanatomical correlates of autism spectrum disorders: A meta-analysis of structural magnetic resonance imaging (MRI) studies. Psychiatry Res. Neuroimaging 2022, 325, 111516. [Google Scholar] [CrossRef] [PubMed]
- Kangarani-Farahani, M.; Izadi-Najafabadi, S.; Zwicker, J.G. How does brain structure and function on MRI differ in children with autism spectrum disorder, developmental coordination disorder, and/or attention deficit hyperactivity disorder? Int. J. Dev. Neurosci. 2022, 82, 680–714. [Google Scholar] [CrossRef] [PubMed]
- Moreau, C.A.; Ching, C.R.; Kumar, K.; Jacquemont, S.; Bearden, C.E. Structural and functional brain alterations revealed by neuroimaging in CNV carriers. Curr. Opin. Genet. Dev. 2021, 68, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Rafiee, F.; Rezvani Habibabadi, R.; Motaghi, M.; Yousem, D.M.; Yousem, I.J. Brain MRI in autism spectrum disorder: Narrative review and recent advances. J. Magn. Reson. Imaging 2022, 55, 1613–1624. [Google Scholar] [CrossRef] [PubMed]
- Gkintoni, E.; Skokou, M.; Gourzis, P. Integrating Clinical Neuropsychology and Psychotic Spectrum Disorders: A Systematic Analysis of Cognitive Dynamics, Interventions, and Underlying Mechanisms. Medicina 2024, 60, 645. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ma, Z.-H.; Xu, L.-Z.; Yang, L.; Ji, Z.-Z.; Tang, X.-Z.; Liu, J.-R.; Li, X.; Cao, Q.-J.; Liu, J. Developmental brain structural atypicalities in autism: A voxel-based morphometry analysis. Child. Adolesc. Psychiatry Ment. Health 2022, 16, 7. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Tang, X.; Xiao, S.; Yan, H.; Sun, S.; Yang, Z.; Huang, L.; Chen, Z.; Wang, Y. Systematic review and meta-analysis: Multimodal functional and anatomical neural alterations in autism spectrum disorder. Mol. Autism 2024, 15, 16. [Google Scholar] [CrossRef] [PubMed]
- Gkintoni, E. Clinical neuropsychological characteristics of bipolar disorder, with a focus on cognitive and linguistic pattern: A conceptual analysis. F1000Research 2023, 12, 1235. [Google Scholar] [CrossRef] [PubMed]
- Halkiopoulos, C.; Gkintoni, E. Leveraging AI in E-Learning: Personalized Learning and Adaptive Assessment through Cognitive Neuropsychology—A Systematic Analysis. Electronics 2024, 13, 3762. [Google Scholar] [CrossRef]
- Wankhede, N.; Kale, M.; Shukla, M.; Nathiya, D.; Kaur, P.; Goyanka, B.; Rahangdale, S.; Taksande, B.; Upaganlawar, A.; Khalid, M.; et al. Leveraging AI for the diagnosis and treatment of autism spectrum disorder: Current trends and future prospects. Asian J. Psychiatry 2024, 101, 104241. [Google Scholar] [CrossRef] [PubMed]
- Solek, P.; Nurfitri, E.; Sahril, I.; Prasetya, T.; Rizqiamuti, A.F.; Rachmawati, I.; Gamayani, U.; Rusmil, K.; Chandra, L.A.; Afriandi, I.; et al. The role of artificial intelligence for early diagnostic tools of autism spectrum disorder: A systematic review. Turk. Arch. Pediatr. 2025, 60, 126. [Google Scholar] [CrossRef] [PubMed]
- Bouchouras, G.; Kotis, K. Integrating artificial intelligence, Internet of Things, and sensor-based technologies: A systematic review of methodologies in autism spectrum disorder. Algorithms 2025, 18, 34. [Google Scholar] [CrossRef]
- Elbattah, M.; Ali Sadek Ibrahim, O.; Dequen, G. Improving autism spectrum disorder diagnosis using machine learning techniques. Front. Neuroinform. 2024, 18, 1529839. [Google Scholar] [CrossRef] [PubMed]
- Bacon, E.J.; He, D.; Achi, N.A.D.; Wang, L.; Li, H.; Yao-Digba, P.D.Z.; Monkam, P.; Qi, S. Neuroimage analysis using artificial intelligence approaches: A systematic review. Med. Biol. Eng. Comput. 2024, 62, 2599–2627. [Google Scholar] [CrossRef] [PubMed]
- Ganggayah, M.D.; Zhao, D.; Liew, E.J.Y.; Mohd Nor, N.A.; Paramasivam, T.; Lee, Y.Y.; Abu Hasan, N.I.; Shaharuddin, S. Accelerating autism spectrum disorder care: A rapid review of data science applications in diagnosis and intervention. Asian J. Psychiatry 2025, 108, 104498. [Google Scholar] [CrossRef] [PubMed]
- Gadgil, A.A.; Selvakumar, P.; Gnanaselvi, G.S.; Malathi, G. AI in neuroimaging and brain analysis. In Transforming Neuropsychology and Cognitive Psychology with AI and Machine Learning; IGI Global: Hershey, PA, USA, 2025; pp. 185–212. [Google Scholar] [CrossRef]
- Di Stefano, V.; D’Angelo, M.; Monaco, F.; Vignapiano, A.; Martiadis, V.; Barone, E.; Fornaro, M.; Steardo, L.; Solmi, M.; Manchia, M.; et al. Decoding schizophrenia: How AI-enhanced fMRI unlocks new pathways for precision psychiatry. Brain Sci. 2024, 14, 1196. [Google Scholar] [CrossRef] [PubMed]
- Onciul, R.; Tataru, C.-I.; Dumitru, A.V.; Crivoi, C.; Serban, M.; Covache-Busuioc, R.-A.; Radoi, M.P.; Toader, C. Artificial intelligence and neuroscience: Transformative synergies in brain research and clinical applications. J. Clin. Med. 2025, 14, 550. [Google Scholar] [CrossRef] [PubMed]
- Halkiopoulos, C.; Gkintoni, E. The Role of Machine Learning in AR/VR-Based Cognitive Therapies: A Systematic Review for Mental Health Disorders. Electronics 2025, 14, 1110. [Google Scholar] [CrossRef]
- Baydili, İ.; Tasci, B.; Tasci, G. Artificial intelligence in psychiatry: A review of biological and behavioral data analyses. Diagnostics 2025, 15, 434. [Google Scholar] [CrossRef] [PubMed]
- Gutman, B.; Shmilovitch, A.H.; Aran, D.; Shelly, S. Twenty-five years of AI in neurology: The journey of predictive medicine and biological breakthroughs. JMIR Neurotechnol. 2024, 3, e59556. [Google Scholar] [CrossRef]
- Lock, C.; Tan, N.S.M.; Long, I.J.; Keong, N.C. Neuroimaging data repositories and AI-driven healthcare—Global aspirations vs. ethical considerations in machine learning models of neurological disease. Front. Artif. Intell. 2024, 6, 1286266. [Google Scholar] [CrossRef] [PubMed]
- Blair, R.J.R.; Mathur, A.; Haines, N.; Bajaj, S. Future directions for cognitive neuroscience in psychiatry: Recommendations for biomarker design based on recent test–retest reliability work. Curr. Opin. Behav. Sci. 2022, 44, 101102. [Google Scholar] [CrossRef]
- Chiu, F.Y.; Yen, Y. Imaging biomarkers for clinical applications in neuro-oncology: Current status and future perspectives. Biomark. Res. 2023, 11, 47. [Google Scholar] [CrossRef] [PubMed]
- Etkin, A.; Mathalon, D.H. Bringing imaging biomarkers into clinical reality in psychiatry. JAMA Psychiatry 2024, 81, 1142–1147. [Google Scholar] [CrossRef] [PubMed]
- Etkin, A.; Powell, J.; Savitz, A.J. Opportunities for use of neuroimaging in de-risking drug development and improving clinical outcomes in psychiatry: An industry perspective. Neuropsychopharmacology 2025, 50, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Ewen, J.B.; Potter, W.Z.; Sweeney, J.A. Biomarkers and neurobehavioral diagnosis. Biomark. Neuropsychiatry 2021, 5, 100029. [Google Scholar] [CrossRef] [PubMed]
- Scher, M.S. The science of uncertainty guides fetal-neonatal neurology principles and practice: Diagnostic-prognostic opportunities and challenges. Front. Neurol. 2024, 15, 1335933. [Google Scholar] [CrossRef] [PubMed]
- Booth, T.C.; Thompson, G.; Bulbeck, H.; Boele, F.; Buckley, C.; Cardoso, J.; Dos Santos Canas, L.; Jenkinson, D.; Ashkan, K.; Kreindler, J.; et al. A position statement on the utility of interval imaging in standard of care brain tumour management: Defining the evidence gap and opportunities for future research. Front. Oncol. 2021, 11, 620070. [Google Scholar] [CrossRef] [PubMed]
- Stein, D.J.; Shoptaw, S.J.; Vigo, D.V.; Lund, C.; Cuijpers, P.; Bantjes, J.; Sartorius, N.; Maj, M. Psychiatric diagnosis and treatment in the 21st century: Paradigm shifts versus incremental integration. World Psychiatry 2022, 21, 393–414. [Google Scholar] [CrossRef] [PubMed]
- Moridian, P.; Ghassemi, N.; Jafari, M.; Salloum-Asfar, S.; Sadeghi, D.; Khodatars, M.; Shoeibi, A.; Khosravi, A.; Ling, S.H.; Subasi, A.; et al. RAutomatic autism spectrum disorder detection using artificial intelligence methods with MRI neuroimaging: A review. Front. Mol. Neurosci. 2022, 15, 999605. [Google Scholar] [CrossRef] [PubMed]
- Esler, A.N.; Sample, J.; Hall-Lande, J.; Harris, B.; Rice, C.; Poynter, J.; Kirby, R.S.; Wiggins, L. Patterns of special education eligibility and age of first autism spectrum disorder (ASD) identification among US children with ASD. J. Autism Dev. Disord. 2023, 53, 1739–1754. [Google Scholar] [CrossRef] [PubMed]
- Zuvekas, S.H.; Grosse, S.D.; Lavelle, T.A.; Maenner, M.J.; Dietz, P.; Ji, X. Healthcare costs of pediatric autism spectrum disorder in the United States, 2003–2015. J. Autism Dev. Disord. 2021, 51, 2950–2958. [Google Scholar] [CrossRef] [PubMed]
- Shaw, K.A.; McArthur, D.; Hughes, M.M.; Bakian, A.V.; Lee, L.C.; Pettygrove, S.; Maenner, M.J. Progress and disparities in early identification of autism spectrum disorder: Autism and developmental disabilities monitoring network, 2002–2016. J. Am. Acad. Child. Adolesc. Psychiatry 2022, 61, 905–914. [Google Scholar] [CrossRef] [PubMed]
- Fombonne, E.; MacFarlane, H.; Salem, A.C. Epidemiological surveys of ASD: Advances and remaining challenges. J. Autism Dev. Disord. 2021, 51, 4271–4290. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, J.; Eberth, J.M.; Zgodic, A.; Federico, A.; Flory, K.; McLain, A.C. County-level prevalence estimates of autism spectrum disorder in children in the United States. J. Autism Dev. Disord. 2024, 54, 2710–2718. [Google Scholar] [CrossRef] [PubMed]
- Khadem-Reza, Z.K.; Zare, H. Evaluation of brain structure abnormalities in children with autism spectrum disorder (ASD) using structural magnetic resonance imaging. Egypt. J. Neurol. Psychiatry Neurosurg. 2022, 58, 135. [Google Scholar] [CrossRef]
- Pretzsch, C.M.; Ecker, C. Structural neuroimaging phenotypes and associated molecular and genomic underpinnings in autism: A review. Front. Neurosci. 2023, 17, 1172779. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, J.; Múnera, N.; Alvarez-Jimenez, C.; Velasco, N.; Romero, E. An exploration of structural brain differences in autism spectrum disorders: A multi-parcellation and multi-age analysis. Biomed. Signal Process. Control 2024, 92, 106043. [Google Scholar] [CrossRef]
- Yeh, C.-H.; Tseng, R.-Y.; Ni, H.-C.; Cocchi, L.; Chang, J.-C.; Hsu, M.-Y.; Tu, E.-N.; Wu, Y.-Y.; Chou, T.-L.; Gau, S.S.-F.; et al. White matter microstructural and morphometric alterations in autism: Implications for intellectual capabilities. Mol. Autism 2022, 13, 21. [Google Scholar] [CrossRef] [PubMed]
- Ambrosino, S.; Elbendary, H.; Lequin, M.; Rijkelijkhuizen, D.; Banaschewski, T.; Baron-Cohen, S.; Bast, N.; Baumeister, S.; Buitelaar, J.; Charman, T.; et al. In-depth characterization of neuroradiological findings in a large sample of individuals with autism spectrum disorder and controls. NeuroImage Clin. 2022, 35, 103118. [Google Scholar] [CrossRef] [PubMed]
- Kirkovski, M.; Singh, M.; Dhollander, T.; Fuelscher, I.; Hyde, C.; Albein-Urios, N.; Donaldson, P.H.; Enticott, P.G. An investigation of age-related neuropathophysiology in autism spectrum disorder using fixel-based analysis of corpus callosum white matter micro-and macrostructure. J. Autism Dev. Disord. 2024, 54, 2198–2210. [Google Scholar] [CrossRef] [PubMed]
- Faraji, R.; Ganji, Z.; Zamanpour, S.A.; Nikparast, F.; Akbari-Lalimi, H.; Zare, H. Impaired white matter integrity in infants and young children with autism spectrum disorder: What evidence does diffusion tensor imaging provide? Psychiatry Res. Neuroimaging 2023, 335, 111711. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, H.; Kitamura, S.; Matsuoka, K.; Takahashi, M.; Ishida, R.; Kishimoto, N.; Yasuno, F.; Yasuda, Y.; Hashimoto, R.; Miyasaka, T.; et al. Adverse childhood experience is associated with disrupted white matter integrity in autism spectrum disorder: A diffusion tensor imaging study. Front. Psychiatry 2022, 12, 823260. [Google Scholar] [CrossRef] [PubMed]
- Hung, Y.; Dallenbach, N.T.; Green, A.; Gaillard, S.; Capella, J.; Hoskova, B.; Vater, C.H.; Cooper, E.; Rudberg, N.; Takahashi, A.; et al. Distinct and shared white matter abnormalities when ADHD is comorbid with ASD: A preliminary diffusion tensor imaging study. Psychiatry Res. 2023, 320, 115039. [Google Scholar] [CrossRef] [PubMed]
- Weber, C.F.; Lake, E.M.R.; Haider, S.P.; Mozayan, A.; Mukherjee, P.; Scheinost, D.; Bamford, N.S.; Ment, L.; Constable, T.; Payabvash, S. Age-dependent white matter microstructural disintegrity in autism spectrum disorder. Front. Neurosci. 2022, 16, 957018. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Fu, Z.; Lai, Q.; Zhao, Y.; Liu, J.; Cao, Q. The shared white matter developmental trajectory anomalies of attention-deficit/hyperactivity disorder and autism spectrum disorders: A meta-analysis of diffusion tensor imaging studies. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2023, 124, 110731. [Google Scholar] [CrossRef] [PubMed]
- Bharti, D.K.; Singh, S.K.; Kumar, M.; Kanaujia, V.K.; Aeri, M. Patterns of widespread structural abnormalities in autism spectrum disorder using diffusion tensor imaging. In Proceedings of the 2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE), Gautam Buddha Nagar, India, 9–11 May 2024; IEEE: New York, NY, USA, 2024; pp. 691–696. [Google Scholar] [CrossRef]
- DiPiero, M.; Cordash, H.; Prigge, M.B.; King, C.K.; Morgan, J.; Guerrero-Gonzalez, J.; Adluru, N.; King, J.B.; Lange, N.; Bigler, E.D.; et al. Tract-and gray matter-based spatial statistics show white matter and gray matter microstructural differences in autistic males. Front. Neurosci. 2023, 17, 1231719. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, Y.; Tachibana, M.; Rahman, S.; Kagitani-Shimono, K. Atypical structural connectivity of language networks in autism spectrum disorder: A meta-analysis of diffusion tensor imaging studies. Autism Res. 2022, 15, 1585–1602. [Google Scholar] [CrossRef] [PubMed]
- Gkintoni, E.; Antonopoulou, H.; Sortwell, A.; Halkiopoulos, C. Challenging Cognitive Load Theory: The Role of Educational Neuroscience and Artificial Intelligence in Redefining Learning Efficacy. Brain Sci. 2025, 15, 203. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, M.K.; Jauk, E.; Lehmann, K.; Maliske, L.; Kanske, P. Brain activation during social cognition predicts everyday perspective-taking: A combined fMRI and ecological momentary assessment study of the social brain. NeuroImage 2021, 227, 117624. [Google Scholar] [CrossRef] [PubMed]
- Meisner, O.C.; Nair, A.; Chang, S.W.C. Amygdala connectivity and implications for social cognition and disorders. Handb. Clin. Neurol. 2022, 187, 381–403. [Google Scholar] [CrossRef] [PubMed]
- Arioli, M.; Cattaneo, Z.; Ricciardi, E.; Canessa, N. Overlapping and specific neural correlates for empathizing, affective mentalizing, and cognitive mentalizing: A coordinate-based meta-analytic study. Hum. Brain Mapp. 2021, 42, 4777–4804. [Google Scholar] [CrossRef] [PubMed]
- Lees, B.; Squeglia, L.M.; McTeague, L.M.; Forbes, M.K.; Krueger, R.F.; Sunderland, M.; Baillie, A.J.; Koch, F.; Teesson, M.; Mewton, L. Altered neurocognitive functional connectivity and activation patterns underlie psychopathology in preadolescence. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2021, 6, 387–398. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Kendrick, K.M. Effects of intranasal administration of oxytocin and vasopressin on social cognition and potential routes and mechanisms of action. Pharmaceutics 2022, 14, 323. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.N.L.; Hass, J.; Kirsch, P.; Mier, D. The human mirror neuron system—A common neural basis for social cognition? Psychophysiol. 2021, 58, e13781. [Google Scholar] [CrossRef] [PubMed]
- Sokhadze, E.M.; Shaban, M.; El-Baz, A.S.; Tasman, A.; Sears, L.; Casanova, M.F. Event-related potentials and gamma oscillations in EEG as functional diagnostic biomarkers and outcomes in autism spectrum disorder treatment research. In Neural Engineering Techniques for Autism Spectrum Disorder; Academic Press: Cambridge, MA, USA, 2023; pp. 297–319. [Google Scholar] [CrossRef]
- Neo, W.S.; Foti, D.; Keehn, B.; Kelleher, B. Resting-state EEG power differences in autism spectrum disorder: A systematic review and meta-analysis. Transl. Psychiatry 2023, 13, 389. [Google Scholar] [CrossRef] [PubMed]
- Neklyudova, A.; Smirnov, K.; Rebreikina, A.; Martynova, O.; Sysoeva, O. Electrophysiological and behavioral evidence for hyper- and hyposensitivity in rare genetic syndromes associated with autism. Genes 2022, 13, 671. [Google Scholar] [CrossRef] [PubMed]
- Cremone-Caira, A.; Braverman, Y.; MacNaughton, G.A.; Nikolaeva, J.I.; Faja, S. Reduced visual evoked potential amplitude in autistic children with co-occurring features of attention-deficit/hyperactivity disorder. J. Autism Dev. Disord. 2024, 54, 2917–2925. [Google Scholar] [CrossRef] [PubMed]
- Bo, J.; Acluche, F.; Lasutschinkow, P.C.; Augustiniak, A.; Ditchfield, N.; Lajiness-O’Neill, R. Motor networks in children with autism spectrum disorder: A systematic review on EEG studies. Exp. Brain Res. 2022, 240, 3073–3087. [Google Scholar] [CrossRef] [PubMed]
- Hecker, L.; Wilson, M.; Tebartz van Elst, L.; Kornmeier, J. Altered EEG variability on different time scales in participants with autism spectrum disorder: An exploratory study. Sci. Rep. 2022, 12, 13068. [Google Scholar] [CrossRef] [PubMed]
- Roberts, T.P.; Kuschner, E.S.; Edgar, J.C. Biomarkers for autism spectrum disorder: Opportunities for magnetoencephalography (MEG). J. Neurodev. Disord. 2021, 13, 34. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Mody, M. Abnormal brain oscillations in developmental disorders: Application of resting-state EEG and MEG in autism spectrum disorder and Fragile X syndrome. Front. Neuroimaging 2022. [Google Scholar] [CrossRef] [PubMed]
- Milovanovic, M.; Grujicic, R. Electroencephalography in Assessment of Autism Spectrum Disorders: A Review. Front. Psychiatry 2021, 12, 686021. [Google Scholar] [CrossRef] [PubMed]
- Dmytriw, A.A.; Hadjinicolaou, A.; Ntolkeras, G.; Tamilia, E.; Pesce, M.; Berto, L.F.; Grant, P.E.; Pang, E.; Ahtam, B. Magnetoencephalography for the pediatric population: Indications, acquisition and interpretation for the clinician. Neuroradiol. J. 2025, 38, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Barik, K.; Watanabe, K.; Bhattacharya, J.; Saha, G. A fusion-based machine learning approach for autism detection in young children using magnetoencephalography signals. J. Autism Dev. Disord. 2023, 53, 4830–4848. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, A.R.; Whitehouse, A.J.; Fox, A.M.; Maybery, M.T. Delayed cortical processing of auditory stimuli in children with autism spectrum disorder: A meta-analysis of electrophysiological studies. Brain Cogn. 2021, 150, 105709. [Google Scholar] [CrossRef] [PubMed]
- Arutiunian, V.; Arcara, G.; Buyanova, I.; Fedorov, M.; Davydova, E.; Pereverzeva, D.; Sorokin, A.; Tyushkevich, S.; Mamokhina, U.; Danilina, K.; et al. Abnormalities in both stimulus-induced and baseline MEG alpha oscillations in the auditory cortex of children with autism spectrum disorder. Brain Struct. Funct. 2024, 229, 1225–1242. [Google Scholar] [CrossRef] [PubMed]
- Zerbi, V.; Pagani, M.; Markicevic, M.; Matteoli, M.; Pozzi, D.; Fagiolini, M.; Bozzi, Y.; Galbusera, A.; Scattoni, M.L.; Provenzano, G.; et al. Brain mapping across 16 autism mouse models reveals a spectrum of functional connectivity subtypes. Mol. Psychiatry 2021, 26, 7610–7620. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.L. Using causal methods to map symptoms to brain circuits in neurodevelopment disorders: Moving from identifying correlates to developing treatments. J. Neurodev. Disord. 2022, 14, 19. [Google Scholar] [CrossRef] [PubMed]
- Segal, A.; Tiego, J.; Parkes, L.; Holmes, A.J.; Marquand, A.F.; Fornito, A. Embracing variability in the search for biological mechanisms of psychiatric illness. Trends Cogn. Sci. 2025, 29, 85–99. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Parayil, R.; Mishra, S.; Nongthomba, U.; Clement, J.P. Epilepsy characteristics in neurodevelopmental disorders: Research from patient cohorts and animal models focusing on autism spectrum disorder. Int. J. Mol. Sci. 2022, 23, 10807. [Google Scholar] [CrossRef] [PubMed]
- Heiney, K.; Huse Ramstad, O.; Fiskum, V.; Christiansen, N.; Sandvig, A.; Nichele, S.; Sandvig, I. Criticality, connectivity, and neural disorder: A multifaceted approach to neural computation. Front. Comput. Neurosci. 2021, 15, 611183. [Google Scholar] [CrossRef] [PubMed]
- Anbarasi, J.; Kumari, R.; Ganesh, M.; Agrawal, R. Translational connectomics: Overview of machine learning in macroscale connectomics for clinical insights. BMC Neurol. 2024, 24, 364. [Google Scholar] [CrossRef] [PubMed]
- Nayak, A.; Khuntia, R. Development and content validation of a measure to assess the parent-child social-emotional reciprocity of children with ASD. Indian. J. Psychol. Med. 2024, 46, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Saban-Bezalel, R.; Avni, E.; Ben-Itzchak, E.; Zachor, D.A. Relationship between parental concerns about social-emotional reciprocity deficits and their children’s final ASD diagnosis. Children 2023, 10, 1786. [Google Scholar] [CrossRef] [PubMed]
- Ip, H.H.S.; Wong, S.W.L.; Chan, D.F.Y.; Li, C.; Kon, L.L.; Ma, P.K.; Lau, K.S.Y.; Byrne, J. Enhance affective expression and social reciprocity for children with autism spectrum disorder: Using virtual reality headsets at schools. Interact. Learn. Environ. 2024, 32, 1012–1035. [Google Scholar] [CrossRef]
- Chung, E.Y.H.; Sin, K.K.F.; Chow, D.H.K. Qualitative outcomes and impact of a robotic intervention on children with autism spectrum disorder: A multiple embedded case study. Br. J. Occup. Ther. 2024, 87, 574–582. [Google Scholar] [CrossRef] [PubMed]
- Aydin, A.; Yildirim, A. Assessing the impact of transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex on social communication in children and adolescents with ASD. Res. Dev. Disabil. 2025, 161, 104958. [Google Scholar] [CrossRef] [PubMed]
- Tomfohrde, O.; Hudock, R.L.; Kremer, K.B.; Fatiha, N.; Weiler, L. Fostering social connectedness among adolescents and adults with autism: A qualitative analysis. Psychol. Sch. 2023, 60, 23–39. [Google Scholar] [CrossRef]
- Güeita-Rodríguez, J.; Ogonowska-Slodownik, A.; Morgulec-Adamowicz, N.; Martín-Prades, M.L.; Cuenca-Zaldívar, J.N.; Palacios-Ceña, D. Effects of aquatic therapy for children with autism spectrum disorder on social competence and quality of life: A mixed methods study. Int. J. Environ. Res. Public Health 2021, 18, 3126. [Google Scholar] [CrossRef] [PubMed]
- Posar, A.; Visconti, P. Early motor signs in autism spectrum disorder. Children 2022, 9, 294. [Google Scholar] [CrossRef] [PubMed]
- Berenguer, C.; Rosa, E.; De Stasio, S.; Olsson, N.C. Sleep quality relates to language impairment in children with autism spectrum disorder without intellectual disability. Sleep. Med. 2024, 117, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Xu, Q.; Li, H.; Zhang, Y.; Li, D.; Dong, P.; Wang, Y.; Lu, P.; Zhu, Y.; Xu, X. Motor impairments in Chinese toddlers with autism spectrum disorder and its relationship with social communicative skills. Front. Psychiatry 2022, 13, 938047. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, N.N.; Jashar, D.T.; Sheperd, K.; Pineda, J.L.; Previ, D.; Reesman, J.; Holingue, C.; Gerner, G.J. Considerations for the identification of autism spectrum disorder in children with vision or hearing impairment: A critical review of the literature and recommendations for practice. Clin. Neuropsychol. 2022, 36, 1049–1068. [Google Scholar] [CrossRef] [PubMed]
- Morison, L.D.; Braden, R.O.; Amor, D.J.; Brignell, A.; van Bon, B.W.; Morgan, A.T. Social motivation: A relative strength in DYRK1A syndrome on a background of significant speech and language impairments. Eur. J. Hum. Genet. 2022, 30, 800–811. [Google Scholar] [CrossRef] [PubMed]
- de Giambattista, C.; Ventura, P.; Trerotoli, P.; Margari, F.; Margari, L. Sex differences in autism spectrum disorder: Focus on high-functioning children and adolescents. Front. Psychiatry 2021, 12, 539835. [Google Scholar] [CrossRef] [PubMed]
- Arioli, M.; Basso, G.; Carne, I.; Poggi, P.; Canessa, N. Increased pSTS activity and decreased pSTS-mPFC connectivity when processing negative social interactions. Behav. Brain Res. 2021, 399, 113027. [Google Scholar] [CrossRef] [PubMed]
- Duvall, L.; May, K.E.; Waltz, A.; Kana, R.K. The neurobiological map of theory of mind and pragmatic communication in autism. Soc. Neurosci. 2023, 18, 191–204. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, C.; Silveira, S.; Meindl, T.; Musil, R.; Austerschmidt, K.L.; Eilert, D.W.; Müller, N.; Möller, H.-J.; Engel, R.; Reiser, M.; et al. Two sides of theory of mind: Mental state attribution to moving shapes in paranoid schizophrenia is independent of the severity of positive symptoms. Brain Sci. 2024, 14, 461. [Google Scholar] [CrossRef] [PubMed]
- Sultan, S. Translating neuroimaging changes to neuro-endophenotypes of autistic spectrum disorder: A narrative review. Egypt. J. Neurol. Psychiatry Neurosurg. 2022, 58, 139. [Google Scholar] [CrossRef]
- Kliemann, D.; Adolphs, R.; Paul, L.K.; Tyszka, J.M.; Tranel, D. Reorganization of the social brain in individuals with only one intact cerebral hemisphere. Brain Sci. 2021, 11, 965. [Google Scholar] [CrossRef] [PubMed]
- Janouschek, H.; Chase, H.W.; Sharkey, R.J.; Peterson, Z.J.; Camilleri, J.A.; Abel, T.; Eickhoff, S.B.; Nickl-Jockschat, T. The functional neural architecture of dysfunctional reward processing in autism. NeuroImage Clin. 2021, 31, 102700. [Google Scholar] [CrossRef] [PubMed]
- Baumeister, S.; Moessnang, C.; Bast, N.; Hohmann, S.; Aggensteiner, P.; Kaiser, A.; Tillmann, J.; Goyard, D.; Charman, T.; Ambrosino, S.; et al. Processing of social and monetary rewards in autism spectrum disorders. Br. J. Psychiatry 2023, 222, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Goodwill, A.M.; Low, L.T.; Fox, P.T.; Fox, P.M.; Poon, K.K.; Bhowmick, S.S.; Chen, S.A. Meta-analytic connectivity modelling of functional magnetic resonance imaging studies in autism spectrum disorders. Brain Imaging Behav. 2023, 17, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Chiappini, E.; Massaccesi, C.; Korb, S.; Steyrl, D.; Willeit, M.; Silani, G. Neural hyperresponsivity during the anticipation of tangible social and nonsocial rewards in autism spectrum disorder: A concurrent neuroimaging and facial electromyography study. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2024, 9, 948–957. [Google Scholar] [CrossRef] [PubMed]
- Caria, A.; Dall’Ò, G.M. Functional neuroimaging of the human hypothalamus in socioemotional behavior: A systematic review. Brain Sci. 2022, 12, 707. [Google Scholar] [CrossRef] [PubMed]
- Fortier, A.V.; Meisner, O.C.; Nair, A.R.; Chang, S.W. Prefrontal circuits guiding social preference: Implications in autism spectrum disorder. Neurosci. Biobehav. Rev. 2022, 141, 104803. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Xu, Y.; Kat, S.; Sun, A.; Yin, T.; Zhao, L.; Su, X.; Chen, J.; Wang, H.; Gong, X.; et al. Exploring the most discriminative brain structural abnormalities in ASD with multi-stage progressive feature refinement approach. Front. Psychiatry 2024, 15, 1463654. [Google Scholar] [CrossRef] [PubMed]
- Frogner, L.; Hellfeldt, K.; Ångström, A.K.; Andershed, A.K.; Källström, Å.; Fanti, K.A.; Andershed, H. Stability and change in early social skills development in relation to early school performance: A longitudinal study of a Swedish cohort. Early Educ. Dev. 2022, 33, 17–37. [Google Scholar] [CrossRef]
- Hofman, J.M.; Watts, D.J.; Athey, S.; Garip, F.; Griffiths, T.L.; Kleinberg, J.; Margetts, H.; Mullainathan, S.; Salganik, M.J.; Vazire, S.; et al. Integrating explanation and prediction in computational social science. Nature 2021, 595, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Tang, Y.; Zheng, Y. How the home learning environment contributes to children’s social-emotional competence: A moderated mediation model. Front. Psychol. 2023, 14, 1065978. [Google Scholar] [CrossRef] [PubMed]
- Cannon, J.; O’Brien, A.M.; Bungert, L.; Sinha, P. Prediction in autism spectrum disorder: A systematic review of empirical evidence. Autism Res. 2021, 14, 604–630. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.; Badcock, P.; Friston, K.J. Recent advances in the application of predictive coding and active inference models within clinical neuroscience. Psychiatry Clin. Neurosci. 2021, 75, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Hiremath, C.S.; Sagar, K.J.V.; Yamini, B.K.; Girimaji, A.S.; Kumar, R.; Sravanti, S.L.; Padmanabha, H.; Vykunta Raju, K.N.; Kishore, M.T.; Jacob, P.; et al. Emerging behavioral and neuroimaging biomarkers for early and accurate characterization of autism spectrum disorders: A systematic review. Transl. Psychiatry 2021, 11, 42. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Chen, P.; Alexander-Bloch, A.; Wei, Y.; Dyrba, M.; Yang, F.; Kang, X.; Wang, D.; Fan, D.; Ye, S.; et al. A neuroimaging biomarker for Individual Brain-Related Abnormalities In Neurodegeneration (IBRAIN): A cross-sectional study. EClinicalMedicine 2023, 65, 102276. [Google Scholar] [CrossRef] [PubMed]
- Ayoub, M.J.; Keegan, L.; Tager-Flusberg, H.; Gill, S.V. Neuroimaging techniques as descriptive and diagnostic tools for infants at risk for autism spectrum disorder: A systematic review. Brain Sci. 2022, 12, 602. [Google Scholar] [CrossRef] [PubMed]
- Traut, N.; Heuer, K.; Lemaître, G.; Beggiato, A.; Germanaud, D.; Elmaleh, M.; Bethegnies, A.; Bonnasse-Gahot, L.; Cai, W.; Chambon, S.; et al. Insights from an autism imaging biomarker challenge: Promises and threats to biomarker discovery. NeuroImage 2022, 255, 119171. [Google Scholar] [CrossRef] [PubMed]
- Guldner, S.; Ernst, J.; Nees, F.; Holz, N. The Utility of Biomarkers for Assessment and Intervention in Neurodevelopmental Disorders. In Digital Technologies for Learning and Psychological Interventions; Springer Nature: Cham, Switzerland, 2024; pp. 43–81. [Google Scholar] [CrossRef]
- Cortese, S.; Solmi, M.; Michelini, G.; Bellato, A.; Blanner, C.; Canozzi, A.; Eudave, L.; Farhat, L.C.; Højlund, M.; Köhler-Forsberg, O.; et al. Candidate diagnostic biomarkers for neurodevelopmental disorders in children and adolescents: A systematic review. World Psychiatry 2023, 22, 129–149. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Wood, D.; Grzeda, M.; Suresh, C.; Din, M.; Cole, J.; Modat, M.; Booth, T.C. Systematic review of artificial intelligence for abnormality detection in high-volume neuroimaging and subgroup meta-analysis for intracranial hemorrhage detection. Clin. Neuroradiol. 2023, 33, 943–956. [Google Scholar] [CrossRef] [PubMed]
- Farahani, F.V.; Fiok, K.; Lahijanian, B.; Karwowski, W.; Douglas, P.K. Explainable AI: A review of applications to neuroimaging data. Front. Neurosci. 2022, 16, 906290. [Google Scholar] [CrossRef] [PubMed]
- Halkiopoulos, C.; Gkintoni, E.; Aroutzidis, A.; Antonopoulou, H. Advances in Neuroimaging and Deep Learning for Emotion Detection: A Systematic Review of Cognitive Neuroscience and Algorithmic Innovations. Diagnostics 2025, 15, 456. [Google Scholar] [CrossRef] [PubMed]
- Etekochay, M.O.; Amaravadhi, A.R.; González, G.V.; Atanasov, A.G.; Matin, M.; Mofatteh, M.; Steinbusch, H.W.; Tesfaye, T.; Praticò, D. Unveiling new strategies facilitating the implementation of artificial intelligence in neuroimaging for the early detection of Alzheimer’s disease. J. Alzheimer’s Dis. 2024, 99, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Khosravi, P.; Mohammadi, S.; Zahiri, F.; Khodarahmi, M.; Zahiri, J. AI-enhanced detection of clinically relevant structural and functional anomalies in MRI: Traversing the landscape of conventional to explainable approaches. J. Magn. Reson. Imaging 2024, 60, 2272–2289. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Niu, J.; Xing, Y.; Li, B.; Calhoun, V.D. Neuroimage analysis methods and artificial intelligence techniques for reliable biomarkers and accurate diagnosis of schizophrenia: Achievements made by Chinese researchers. Schizophr. Bull. 2024, 51, 325–342. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Jiang, Z.-Q.; Hu, L.-F.; Li, W.-H.; Liu, X.-L.; Wang, Y.-Y.; Jin, W.-Y.; Zhu, Z.-W. A machine learning-based diagnostic model for children with autism spectrum disorders complicated with intellectual disability. Front. Psychiatry 2022, 13, 993077. [Google Scholar] [CrossRef] [PubMed]
- Vakadkar, K.; Purkayastha, D.; Krishnan, D. Detection of autism spectrum disorder in children using machine learning techniques. SN Comput. Sci. 2021, 2, 776. [Google Scholar] [CrossRef] [PubMed]
- Bala, M.; Ali, M.H.; Satu, M.S.; Hasan, K.F.; Moni, M.A. Efficient machine learning models for early-stage detection of autism spectrum disorder. Algorithms 2022, 15, 166. [Google Scholar] [CrossRef]
- Rubio-Martín, S.; García-Ordás, M.T.; Bayón-Gutiérrez, M.; Prieto-Fernández, N.; Benítez-Andrades, J.A. Enhancing ASD detection accuracy: A combined approach of machine learning and deep learning models with natural language processing. Health Inf. Sci. Syst. 2024, 12, 20. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.S.; Tehseen, R.; Sabir, M.; Atal, Z. Detection of autism spectrum disorder (ASD) in children and adults using machine learning. Sci. Rep. 2023, 13, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Khudhur, D.D.; Khudhur, S.D. The classification of autism spectrum disorder by machine learning methods on multiple datasets for four age groups. Meas. Sens. 2023, 25, 100774. [Google Scholar] [CrossRef]
- Alsuliman, M.; Al-Baity, H.H. Efficient diagnosis of autism with optimized machine learning models: An experimental analysis on genetic and personal characteristic datasets. Appl. Sci. 2022, 12, 3812. [Google Scholar] [CrossRef]
- Mohan, P.; Paramasivam, I. Feature reduction using SVM-RFE technique to detect autism spectrum disorder. Evol. Intell. 2021, 14, 1337–1345. [Google Scholar] [CrossRef]
- Bahathiq, R.A.; Banjar, H.; Jarraya, S.K.; Bamaga, A.K.; Almoallim, R. Efficient diagnosis of autism spectrum disorder using optimized machine learning models based on structural MRI. Appl. Sci. 2024, 14, 473. [Google Scholar] [CrossRef]
- Alves, C.L.; Martinelli, T.; Sallum, L.F.; Rodrigues, F.A.; Toutain TGLde, O.; Porto, J.A.M.; Thielemann, C.; Aguiar PMde, C.; Moeckel, M. Multiclass classification of Autism Spectrum Disorder, attention deficit hyperactivity disorder, and typically developed individuals using fMRI functional connectivity analysis. PLoS ONE 2024, 19, e0305630. [Google Scholar] [CrossRef] [PubMed]
- Chola Raja, K.; Kannimuthu, S. Deep learning-based feature selection and prediction system for autism spectrum disorder using a hybrid meta-heuristics approach. J. Intell. Fuzzy Syst. 2023, 45, 797–807. [Google Scholar] [CrossRef]
- Alharthi, A.G.; Alzahrani, S.M. Multi-slice generation sMRI and fMRI for autism spectrum disorder diagnosis using 3D-CNN and vision transformers. Brain Sci. 2023, 13, 1578. [Google Scholar] [CrossRef] [PubMed]
- Vyškovský, R.; Schwarz, D.; Churová, V.; Kašpárek, T. Structural MRI-based schizophrenia classification using autoencoders and 3D convolutional neural networks in combination with various pre-processing. Brain Sci. 2022, 12, 615. [Google Scholar] [CrossRef] [PubMed]
- Tomassini, S.; Sbrollini, A.; Covella, G.; Sernani, P.; Falcionelli, N.; Müller, H.; Morettini, M.; Burattini, L.; Dragoni, A.F. Brain-on-Cloud for automatic diagnosis of Alzheimer’s disease from 3D structural magnetic resonance whole-brain scans. Comput. Methods Programs Biomed. 2022, 227, 107191. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.; Kelly, C. 3D CNN for neuropsychiatry: Predicting Autism with interpretable Deep Learning applied to minimally preprocessed structural MRI data. PLoS ONE 2024, 19, e0276832. [Google Scholar] [CrossRef] [PubMed]
- Mattia, G.M.; Sarton, B.; Villain, E.; Vinour, H.; Ferre, F.; Buffieres, W.; Le Lann, M.-V.; Franceries, X.; Peran, P.; Silva, S. Multimodal MRI-based whole-brain assessment in patients in anoxoischemic coma by using 3D convolutional neural networks. Neurocritical Care 2022, 37 (Suppl. 2), 303–312. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Peng, A.; Duan, Y.; Chen, M.; Zheng, T.; Zhang, M.; Chen, L.; Sun, H. Associations of Postencephalitic Epilepsy Using Multi-Contrast Whole Brain MRI: A Large Self-Supervised Vision Foundation Model Strategy. J. Magn. Reson. Imaging 2025. [Google Scholar] [CrossRef] [PubMed]
- Prasad, D.; Jayanthi, K.; Tilakan, P. A Novel 3D-CNN with DAG Framework for Enhanced Alzheimer’s Disease Diagnosis Using Structural MRI. In Proceedings of the 2025 3rd International Conference on Intelligent Systems, Advanced Computing and Communication (ISACC), Silchar, India, 27–28 February 2025; IEEE: New York, NY, USA, 2025; pp. 1335–1340. [Google Scholar] [CrossRef]
- Tang, J.; Chen, J.; Hu, M.; Hu, Y.; Zhang, Z.; Xiao, L. Diagnosis of Autism Spectrum Disorder (ASD) by Dynamic Functional Connectivity Using GNN-LSTM. Sensors 2024, 25, 156. [Google Scholar] [CrossRef] [PubMed]
- Koc, E.; Kalkan, H.; Bilgen, S. Autism Spectrum Disorder Detection by Hybrid Convolutional Recurrent Neural Networks from Structural and Resting State Functional MRI Images. Autism Res. Treat. 2023, 2023, 4136087. [Google Scholar] [CrossRef] [PubMed]
- Wadhera, T.; Bedi, J.; Sharma, S. Autism spectrum disorder prediction using bidirectional stacked gated recurrent unit with time-distributor wrapper: An EEG study. Neural Comput. Appl. 2023, 35, 9803–9818. [Google Scholar] [CrossRef]
- Sidulova, M.; Park, C.H. Conditional variational autoencoder for functional connectivity analysis of autism spectrum disorder functional magnetic resonance imaging data. Bioengineering 2023, 10, 1209. [Google Scholar] [CrossRef] [PubMed]
- Cheekaty, S.; Muneeswari, G. Enhanced multilevel autism classification for children using eye-tracking and hybrid CNN-RNN deep learning models. Neural Comput. Appl. 2024. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, L.; Yu, J. Classification of autism based on short-term spontaneous hemodynamic fluctuations using an adaptive graph neural network. J. Neurosci. Methods 2023, 394, 109901. [Google Scholar] [CrossRef] [PubMed]
- Park, K.W.; Cho, S.B. A residual graph convolutional network with spatio-temporal features for autism classification from fMRI brain images. Appl. Soft Comput. 2023, 136, 110363. [Google Scholar] [CrossRef]
- Yin, W.; Li, L.; Wu, F.X. A semi-supervised autoencoder for autism disease diagnosis. Neurocomputing 2022, 481, 93–102. [Google Scholar] [CrossRef]
- Avberšek, L.K.; Repovš, G. Deep learning in neuroimaging data analysis: Applications, challenges, and solutions. Front. Neuroimaging 2022, 1, 981642. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Sciarra, A.; Dünnwald, M.; Tummala, P.; Agrawal, S.K.; Jauhari, A.; Kalra, A.; Oeltze-Jafra, S.; Speck, O.; Nürnberger, A. StRegA: Unsupervised anomaly detection in brain MRIs using a compact context-encoding variational autoencoder. Comput. Biol. Med. 2022, 149, 106093. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Qu, G.; Hu, W.; Abrol, A.; Cai, B.; Qiao, C.; Plis, S.M.; Wang, Y.-P.; Sui, J.; Calhoun, V.D. Deep learning in neuroimaging: Promises and challenges. IEEE Signal Process. Mag. 2022, 39, 87–98. [Google Scholar] [CrossRef]
- Fernandez-Iriondo, I.; Jimenez-Marin, A.; Sierra, B.; Aginako, N.; Bonifazi, P.; Cortes, J.M. Brain mapping of behavioral domains using multi-scale networks and canonical correlation analysis. Front. Neurosci. 2022, 16, 889725. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Chen, Z.; Wei, Y.; Tang, F.; Nong, X.; Li, C.; Yu, B.; Duan, G.; Su, J.; Mai, W.; et al. Fusion analysis of gray matter and white matter in subjective cognitive decline and mild cognitive impairment by multimodal CCA-joint ICA. NeuroImage Clin. 2021, 32, 102874. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, H.; Zhao, Y.; Guo, L.; Du, L.; Alzheimer’s Disease Neuroimaging Initiative. Identification of multimodal brain imaging association via a parameter decomposition-based sparse multi-view canonical correlation analysis method. BMC Bioinform. 2022, 23 (Suppl. 3). [Google Scholar] [CrossRef] [PubMed]
- Saha, R.; Saha, D.K.; Fu, Z.; Duda, M.; Silva, R.F.; Calhoun, V.D. Analysis of Longitudinal Change Patterns in Developing Brain Using Functional and Structural Magnetic Resonance Imaging via Multimodal Fusion. bioRxiv 2024. [Google Scholar] [CrossRef] [PubMed]
- Lorenzi, M.; Deprez, M.; Balelli, I.; Aguila, A.L.; Altmann, A. Integration of multimodal data. In Machine Learning for Brain Disorders; Springer Nature: Cham, Switzerland, 2023; pp. 573–597. [Google Scholar] [CrossRef]
- Liu, X.; Tyler, L.K.; Cam-CAN; Rowe, J.B.; Tsvetanov, K.A. Multimodal fusion analysis of functional, cerebrovascular and structural neuroimaging in healthy aging subjects. Hum. Brain Mapp. 2022, 43, 5490–5508. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wei, L.; Hu, Y.; Wu, Y.; Hu, L.; Nie, S. Classification of Parkinson’s disease based on multi-modal features and stacking ensemble learning. J. Neurosci. Methods 2021, 350, 109019. [Google Scholar] [CrossRef] [PubMed]
- Remzan, N.; Hachimi, Y.E.; Tahiry, K.; Farchi, A. Ensemble learning-based features extraction for brain MR images classification with machine learning classifiers. Multimed. Tools Appl. 2024, 83, 57661–57684. [Google Scholar] [CrossRef]
- Shukla, A.; Tiwari, R.; Tiwari, S. Alzheimer’s disease detection from fused PET and MRI modalities using an ensemble classifier. Mach. Learn. Knowl. Extr. 2023, 5, 512–538. [Google Scholar] [CrossRef]
- Chilla, G.S.; Yeow, L.Y.; Chew, Q.H.; Sim, K.; Prakash, K.N.B. Machine learning classification of schizophrenia patients and healthy controls using diverse neuroanatomical markers and ensemble methods. Sci. Rep. 2022, 12, 6651. [Google Scholar] [CrossRef] [PubMed]
- Saeed, Z.; Torfeh, T.; Aouadi, S.; Ji, X.; Bouhali, O. An efficient ensemble approach for brain tumors classification using magnetic resonance imaging. Information 2024, 15, 641. [Google Scholar] [CrossRef]
- Ardalan, Z.; Subbian, V. Transfer learning approaches for neuroimaging analysis: A scoping review. Front. Artif. Intell. 2022, 5, 780405. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, A.; Qingjie, Z.; Bangyal, W.H.K.; Iqbal, M. Analysis of brain imaging data for the detection of early age autism spectrum disorder using transfer learning approaches for Internet of Things. IEEE Trans. Consum. Electron. 2023, 70, 4478–4489. [Google Scholar] [CrossRef]
- Dufumier, B.; Gori, P.; Petiton, S.; Louiset, R.; Mangin, J.F.; Grigis, A.; Duchesnay, E. Exploring the potential of representation and transfer learning for anatomical neuroimaging: Application to psychiatry. NeuroImage 2024, 296, 120665. [Google Scholar] [CrossRef] [PubMed]
- Contreras, R.C.; Viana, M.S.; Bernardino, V.J.S.; Santos, F.L.D.; Toygar, Ö.; Guido, R.C. A multi-filter deep transfer learning framework for image-based autism spectrum disorder detection. Sci. Rep. 2025, 15, 14253. [Google Scholar] [CrossRef] [PubMed]
- Valverde, J.M.; Imani, V.; Abdollahzadeh, A.; De Feo, R.; Prakash, M.; Ciszek, R.; Tohka, J. Transfer learning in magnetic resonance brain imaging: A systematic review. J. Imaging 2021, 7, 66. [Google Scholar] [CrossRef] [PubMed]
- Almars, A.M.; Badawy, M.; Elhosseini, M.A. ASD2-TL∗ GTO: Autism spectrum disorders detection via transfer learning with gorilla troops optimizer framework. Heliyon 2023, 9, e21530. [Google Scholar] [CrossRef] [PubMed]
- Warren, S.L.; Moustafa, A.A.; Alzheimer’s Disease Neuroimaging Initiative. Towards Clinical Diagnoses: Classifying Alzheimer’s Disease Using Single fMRI, Small Datasets, and Transfer Learning. Brain Behav. 2025, 15, e70427. [Google Scholar] [CrossRef] [PubMed]
- Parui, S.; Samanta, D.; Chakravorty, N.; Ghosh, U.; Rodrigues, J.J. Artificial intelligence and sensor-based autism spectrum disorder diagnosis using brain connectivity analysis. Comput. Electr. Eng. 2023, 108, 108720. [Google Scholar] [CrossRef]
- Helmy, E.; Elnakib, A.; ElNakieb, Y.; Khudri, M.; Abdelrahim, M.; Yousaf, J.; Ghazal, M.; Contractor, S.; Barnes, G.N.; El-Baz, A. Role of artificial intelligence for autism diagnosis using DTI and fMRI: A survey. Biomedicines 2023, 11, 1858. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Li, Y.; Ding, N.; Zang, Y.; Sun, S.; Shen, G.; Song, X. Quantitative assessment of brain structural abnormalities in children with autism spectrum disorder based on artificial intelligence automatic brain segmentation technology and machine learning methods. Psychiatry Res. Neuroimaging 2024, 345, 111901. [Google Scholar] [CrossRef] [PubMed]
- Huda, S.; Khan, D.M.; Masroor, K.; Warda; Rashid, A.; Shabbir, M. Advancements in automated diagnosis of autism spectrum disorder through deep learning and resting-state functional MRI biomarkers: A systematic review. Cogn. Neurodyn. 2024, 18, 3585–3601. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, A.; Schiavi, S.; La Rosa, P.; Rossi-Espagnet, M.C.; Petrillo, S.; Bottino, F.; Tagliente, E.; Longo, D.; Lupi, E.; Casula, L.; et al. Sex differences in autism spectrum disorder: Diagnostic, neurobiological, and behavioral features. Front. Psychiatry 2022, 13, 889636. [Google Scholar] [CrossRef] [PubMed]
- Jensen, A.R.; Lane, A.L.; Werner, B.A.; McLees, S.E.; Fletcher, T.S.; Frye, R.E. Modern biomarkers for autism spectrum disorder: Future directions. Mol. Diagn. Ther. 2022, 26, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Garic, D.; McKinstry, R.C.; Rutsohn, J.; Slomowitz, R.; Wolff, J.; MacIntyre, L.C.; Weisenfeld, L.A.H.; Kim, S.H.; Pandey, J.; St John, T.; et al. Enlarged perivascular spaces in infancy and autism diagnosis, cerebrospinal fluid volume, and later sleep problems. JAMA Netw. Open 2023, 6, e2348341. [Google Scholar] [CrossRef] [PubMed]
- Cirnigliaro, L.; Clericò, L.; Russo, L.C.; Prato, A.; Caruso, M.; Rizzo, R.; Barone, R. Head circumference growth in children with Autism Spectrum Disorder: Trend and clinical correlates in the first five years of life. Front. Psychiatry 2024, 15, 1431693. [Google Scholar] [CrossRef] [PubMed]
- Dawson, G.; Rieder, A.D.; Johnson, M.H. Prediction of autism in infants: Progress and challenges. Lancet Neurol. 2022, 22, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, A.; McDonald, N.; Dapretto, M.; Campos, E.; Senturk, D.; Jeste, S. Accelerated Infant Brain Rhythm Maturation in Autism. Dev. Sci. 2025, 28, e13593. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Moerman, F.; Niu, H.; Warreyn, P.; Roeyers, H. Atypical brain network development of infants at elevated likelihood for autism spectrum disorder during the first year of life. Autism Res. 2022, 15, 2223–2237. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, J.; Schwichtenberg, A.J.; Iverson, J.M. Capturing the complexity of autism: Applying a developmental cascades framework. Child. Dev. Perspect. 2022, 16, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Linke, A.; Olson, L.; Kohli, J.; Kinnear, M.; Sereno, M.; Müller, R.; Carper, R.; Fishman, I. Cortical myelination in toddlers and preschoolers with autism spectrum disorder. Dev. Neurobiol. 2022, 82, 261–274. [Google Scholar] [CrossRef] [PubMed]
- Stallworthy, I.C.; Berry, D.; Davis, S.; Wolff, J.J.; Burrows, C.A.; Swanson, M.R.; Grzadzinski, R.L.; Botteron, K.; Dager, S.R.; Estes, A.M.; et al. Quantifying latent social motivation and its associations with joint attention and language in infants at high and low likelihood for autism spectrum disorder. Dev. Sci. 2023, 26, e13336. [Google Scholar] [CrossRef] [PubMed]
- Faizo, N.L. A narrative review of MRI changes correlated to signs and symptoms of autism. Medicine 2022, 101, e30059. [Google Scholar] [CrossRef] [PubMed]
- Andrews, D.S.; Lee, J.K.; Harvey, D.J.; Waizbard-Bartov, E.; Solomon, M.; Rogers, S.J.; Nordahl, C.W.; Amaral, D.G. A longitudinal study of white matter development in relation to changes in autism severity across early childhood. Biol. Psychiatry 2021, 89, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Godel, M.; Andrews, D.S.; Amaral, D.G.; Ozonoff, S.; Young, G.S.; Lee, J.K.; Wu Nordahl, C.; Schaer, M. Altered gray-white matter boundary contrast in toddlers at risk for autism relates to later diagnosis of autism spectrum disorder. Front. Neurosci. 2021, 15, 669194. [Google Scholar] [CrossRef] [PubMed]
- McFayden, T.C.; Rutsohn, J.; Cetin, G.; Forsen, E.; Swanson, M.R.; Meera, S.S.; Wolff, J.J.; Elison, J.T.; Shen, M.D.; Botteron, K.; et al. White matter development and language abilities during infancy in autism spectrum disorder. Mol. Psychiatry 2024, 29, 2095–2104. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Ming, Y.; Zhao, W.; Feng, R.; Zhou, Y.; Wu, L.; Wang, J.; Xiao, J.; Li, L.; Shan, X.; et al. Developmental prediction modeling based on diffusion tensor imaging uncovering age-dependent heterogeneity in early childhood autistic brain. Mol. Autism 2023, 14, 41. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Li, X.; Huang, X.; Xu, J.; Qu, Z.; Su, Y.; Li, Y.; Han, Y.; Cui, T.; Zhang, X. Impaired motor and social skill development in infancy predict high autistic traits in toddlerhood. Neuroscience 2024, 558, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Becker, B.; Kendrick, K.M. Reduced inter-hemispheric resting state functional connectivity and its association with social deficits in autism. Front. Psychiatry 2021. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Zhou, M.; Zhang, Y.; Zhou, F.; Zhang, Q.; Zhao, Z.; Jiang, X.; Xu, X.; Becker, B.; Kendrick, K.M. Decreased homotopic interhemispheric functional connectivity in children with autism spectrum disorder. Autism Res. 2021, 14, 1609–1620. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Wen, T.H.; Kupis, L.; Eyler, L.T.; Taluja, V.; Troxel, J.; Goel, D.; Lombardo, M.V.; Pierce, K.; Courchesne, E. Atypical functional connectivity of temporal cortex with precuneus and visual regions may be an early-age signature of ASD. Mol. Autism 2023, 14, 11. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, L.; Chen, S.; Xue, H.; Du, M.; Xu, Y.; Liu, S.; Ming, D. Individuals with high autistic traits exhibit altered interhemispheric brain functional connectivity patterns. Cogn. Neurodyn. 2025, 19, 9. [Google Scholar] [CrossRef] [PubMed]
- Bogéa Ribeiro, L.; da Silva Filho, M. Systematic review on EEG analysis to diagnose and treat autism by evaluating functional connectivity and spectral power. Neuropsychiatr. Dis. Treat. 2023, 19, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Girault, J.B.; Donovan, K.; Hawks, Z.; Talovic, M.; Forsen, E.; Elison, J.T.; Shen, M.D.; Swanson, M.R.; Wolff, J.J.; Kim, S.H.; et al. Infant visual brain development and inherited genetic liability in autism. Am. J. Psychiatry 2022, 179, 573–585. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Lee, J.Y.; Jeong, B.C.; Ahn, J.; Kim, J.I.; Lee, E.S.; Kim, H.; Lee, H.J.; Han, C.E. Overconnectivity of the right Heschl’s and inferior temporal gyrus correlates with symptom severity in preschoolers with autism spectrum disorder. Autism Res. 2021, 14, 2314–2329. [Google Scholar] [CrossRef] [PubMed]
- Hankus, M.; Ochman-Pasierbek, P.; Brzozowska, M.; Striano, P.; Paprocka, J. Electroencephalography in Autism Spectrum Disorder. J. Clin. Med. 2025, 14, 1882. [Google Scholar] [CrossRef] [PubMed]
- Pierce, S.; Kadlaskar, G.; Edmondson, D.A.; McNally Keehn, R.; Dydak, U.; Keehn, B. Associations between sensory processing and electrophysiological and neurochemical measures in children with ASD: An EEG-MRS study. J. Neurodev. Disord. 2021, 13, 5. [Google Scholar] [CrossRef] [PubMed]
- Gkintoni, E.; Aroutzidis, A.; Antonopoulou, H.; Halkiopoulos, C. From Neural Networks to Emotional Networks: A Systematic Review of EEG-Based Emotion Recognition in Cognitive Neuroscience and Real-World Applications. Brain Sci. 2025, 15, 220. [Google Scholar] [CrossRef] [PubMed]
- Shan, J.; Gu, Y.; Zhang, J.; Hu, X.; Wu, H.; Yuan, T.; Zhao, D. A scoping review of physiological biomarkers in autism. Front. Neurosci. 2023, 17, 1269880. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.B.; Vangala, S.; Elashoff, D.; Safari, T.; Smith, B.A. Using wearable sensor technology to measure motion complexity in infants at high familial risk for autism spectrum disorder. Sensors 2021, 21, 616. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, N.; Schrader, P. A study of brain networks for autism spectrum disorder classification using resting-state functional connectivity. Mach. Learn. Appl. 2022. [Google Scholar] [CrossRef]
- Marsicano, G.; Bertini, C.; Ronconi, L. Decoding cognition in neurodevelopmental, psychiatric and neurological conditions with multivariate pattern analysis of EEG data. Neurosci. Biobehav. Rev. 2024, 164, 105795. [Google Scholar] [CrossRef] [PubMed]
- Ding, N.; Fu, L.; Qian, L.; Sun, B.; Li, C.; Gao, H.; Lei, T.; Ke, X. The correlation between brain structure characteristics and emotion regulation ability in children at high risk of autism spectrum disorder. Eur. Child. Adolesc. Psychiatry 2024, 33, 3247–3262. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.S.; Galatzer-Levy, I.R.; Bigio, B.; Nasca, C.; Zhang, Y. Modern views of machine learning for precision psychiatry. Patterns 2022, 3, 100602. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Xu, J. Detection of ASD children through deep-learning application of fMRI. Children 2023, 10, 1654. [Google Scholar] [CrossRef] [PubMed]
- Guttikonda, K.; Ashvitha, Y.; Reddy, V.S.R.; Krishna, R.M.; Sandeep, P. Integrating Convolutional Neural Networks (CNN) and Machine Learning for Accurate Identification of Autism Spectrum Disorder Using Facial Biomarkers. In Proceedings of the 2024 International Conference on Emerging Systems and Intelligent Computing (ESIC), Bhubaneswar, India, 9–10 February 2024; IEEE: New York, NY, USA, 2024; pp. 343–348. [Google Scholar] [CrossRef]
- Gkintoni, E.; Vantaraki, F.; Skoulidi, C.; Anastassopoulos, P.; Vantarakis, A. Gamified Health Promotion in Schools: The Integration of Neuropsychological Aspects and CBT—A Systematic Review. Medicina 2024, 60, 2085. [Google Scholar] [CrossRef] [PubMed]
- Haweel, R.; Shalaby, A.; Mahmoud, A.; Seada, N.; Ghoniemy, S.; Ghazal, M.; Casanova, M.F.; Barnes, G.N.; El-Baz, A. A robust DWT-CNN-based CAD system for early diagnosis of autism using task-based fMRI. Med. Phys. 2021, 48, 2315–2326. [Google Scholar] [CrossRef] [PubMed]
- Bahathiq, R.A.; Banjar, H.; Bamaga, A.K.; Jarraya, S.K. Machine learning for autism spectrum disorder diagnosis using structural magnetic resonance imaging: Promising but challenging. Front. Neuroinform. 2022, 16, 949926. [Google Scholar] [CrossRef] [PubMed]
- Almuqhim, F.; Saeed, F. ASD-SAENet: A sparse autoencoder, and deep-neural network model for detecting autism spectrum disorder (ASD) using fMRI data. Front. Comput. Neurosci. 2021, 15, 654315. [Google Scholar] [CrossRef]
- Alam, S.; Raja, P.; Gulzar, Y. Investigation of machine learning methods for early prediction of neurodevelopmental disorders in children. Wirel. Commun. Mob. Comput. 2022, 2022, 5766386. [Google Scholar] [CrossRef]
- Liu, C.; Fan, J.; Bailey, B.; Müller, R.A.; Linke, A. Assessing predictive ability of dynamic time warping functional connectivity for ASD classification. Int. J. Biomed. Imaging 2023, 2023, 8512461. [Google Scholar] [CrossRef] [PubMed]
- Moreau, C.; Deruelle, C.; Auzias, G. Machine learning for neurodevelopmental disorders. In Machine Learning for Brain Disorders; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar] [CrossRef]
- Del Bianco, T.; Mason, L.; Charman, T.; Tillman, J.; Loth, E.; Hayward, H.; Shic, F.; Buitelaar, J.; Johnson, M.H.; Jones, E.J.H.; et al. Temporal profiles of social attention are different across development in autistic and neurotypical people. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2021, 6, 813–824. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Rizzo, D.M.; Hanley, J.P.; Coderre, E.L.; Prelock, P.A. Identifying neuroanatomical and behavioral features for autism spectrum disorder diagnosis in children using machine learning. PLoS ONE 2022, 17, e0269773. [Google Scholar] [CrossRef] [PubMed]
- Gkintoni, E.; Vassilopoulos, S.P.; Nikolaou, G. Brain-Inspired Multisensory Learning: A Systematic Review of Neuroplasticity and Cognitive Outcomes in Adult Multicultural and Second Language Acquisition. Biomimetics 2025, 10, 397. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, L.; Zhu, D.; Alzheimer’s Disease Neuroimaging Initiative. Predicting brain structural network using functional connectivity. Med. Image Anal. 2022, 79, 102463. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhou, J.; Ke, P.; Huang, J.; Xiong, D.; Huang, Y.; Ma, G.; Ning, Y.; Wu, F.; Wu, K. Classification of schizophrenia patients using a graph convolutional network: A combined functional MRI and connectomics analysis. Biomed. Signal Process. Control 2023, 80, 104293. [Google Scholar] [CrossRef]
- Mill, R.D.; Winfield, E.C.; Cole, M.W.; Ray, S. Structural MRI and functional connectivity features predict current clinical status and persistence behavior in prescription opioid users. NeuroImage Clin. 2021, 30, 102663. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Yan, W.; Luo, N.; Zhi, D.; Fu, Z.; Du, Y.; Yu, S.; Jiang, T.; Calhoun, V.D.; Sui, J. An attention-based hybrid deep learning framework integrating brain connectivity and activity of resting-state functional MRI data. Med. Image Anal. 2022, 78, 102413. [Google Scholar] [CrossRef] [PubMed]
- Yao, D.; Sui, J.; Wang, M.; Yang, E.; Jiaerken, Y.; Luo, N.; Yap, P.-T.; Liu, M.; Shen, D. A mutual multi-scale triplet graph convolutional network for classification of brain disorders using functional or structural connectivity. IEEE Trans. Med. Imaging 2021, 40, 1279–1289. [Google Scholar] [CrossRef] [PubMed]
- Mengi, M.; Malhotra, D. A systematic literature review on traditional to artificial intelligence based socio-behavioral disorders diagnosis in India: Challenges and future perspectives. Appl. Soft Comput. 2022. [Google Scholar] [CrossRef]
- Jeyarani, R.A.; Senthilkumar, R. Eye tracking biomarkers for autism spectrum disorder detection using machine learning and deep learning techniques. Res. Autism Spectr. Disord. 2023. [Google Scholar] [CrossRef]
- Han, M.; Jiang, G.; Luo, H.; Shao, Y. Neurobiological bases of social networks. Front. Psychol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Lieberz, J.; Shamay-Tsoory, S.G.; Saporta, N. Loneliness and the social brain: How perceived social isolation impairs human interactions. Adv. Sci. 2021, 8, 2102076. [Google Scholar] [CrossRef] [PubMed]
- Babinet, M.N.; Cublier, M.; Demily, C.; Michael, G.A. Eye direction detection and perception as premises of a social brain: A narrative review of behavioral and neural data. Cogn. Affect. Behav. Neurosci. 2022, 22, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Maliske, L.; Kanske, P. The social connectome—Moving toward complexity in the study of brain networks and their interactions in social cognitive and affective neuroscience. Front. Psychiatry 2022, 13, 845492. [Google Scholar] [CrossRef] [PubMed]
- Carter, S.; Childers, E.; Norris, S.M.P. Multimodal Biomarkers for Central Nervous System Disorders; The National Academies Press: Washington, DC, USA, 2023. [Google Scholar] [CrossRef]
- Gkintoni, E.; Vassilopoulos, S.P.; Nikolaou, G.; Vantarakis, A. Neurotechnological Approaches to Cognitive Rehabilitation in Mild Cognitive Impairment: A Systematic Review of Neuromodulation, EEG, Virtual Reality, and Emerging AI Applications. Brain Sci. 2025, 15, 582. [Google Scholar] [CrossRef] [PubMed]
- Saks, D.G.; Smith, E.E.; Sachdev, P.S. National and international collaborations to advance research into vascular contributions to cognitive decline. Cereb. Circ. Cogn. Behav. 2024, 6, 100195. [Google Scholar] [CrossRef] [PubMed]
- Tuominen, R.K.; Renko, J.M. Biomarkers of Parkinson’s disease in perspective of early diagnosis and translation of neurotrophic therapies. Basic. Clin. Pharmacol. Toxicol. 2024, 135, 271–284. [Google Scholar] [CrossRef] [PubMed]
- Montagnese, F.; de Valle, K.; Lemmers, R.J.L.F.; Mul, K.; Dumonceaux, J.; Voermans, N.; Tasca, G.; Gomez-Rodulfo, M.; Voermans, N.; Sacconi, S.; et al. 268th ENMC workshop—Genetic diagnosis, clinical classification, outcome measures, and biomarkers in Facioscapulohumeral Muscular Dystrophy (FSHD): Relevance for clinical trials. Neuromuscul. Disord. 2023, 33, 447–462. [Google Scholar] [CrossRef] [PubMed]
- Grabb, M.C.; Brady, L.S. Biomarker Methodologies: A NIMH Perspective. In Neurophysiologic Biomarkers in Neuropsychiatric Disorders: Etiologic and Treatment Considerations; Springer Nature: Cham, Switzerland, 2024; pp. 3–44. [Google Scholar] [CrossRef]
- Gkintoni, E.; Vantarakis, A.; Gourzis, P. Neuroimaging Insights into the Public Health Burden of Neuropsychiatric Disorders: A Systematic Review of Electroencephalography-Based Cognitive Biomarkers. Medicina 2025, 61, 1003. [Google Scholar] [CrossRef] [PubMed]
- Scheinost, D.; Pollatou, A.; Dufford, A.J.; Jiang, R.; Farruggia, M.C.; Rosenblatt, M.; Peterson, H.; Rodriguez, R.X.; Dadashkarimi, J.; Liang, Q.; et al. Machine learning and prediction in fetal, infant, and toddler neuroimaging: A review and primer. Biol. Psychiatry 2023, 93, 893–904. [Google Scholar] [CrossRef] [PubMed]
- Loosen, A.M.; Kato, A.; Gu, X. Revisiting the role of computational neuroimaging in the era of integrative neuroscience. Neuropsychopharmacology 2024, 50, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Leve, L.D.; Kanamori, M.; Humphreys, K.L.; Jaffee, S.R.; Nusslock, R.; Oro, V.; Hyde, L.W. The promise and challenges of integrating biological and prevention sciences: A community-engaged model for the next generation of translational research. Prev. Sci. 2024, 25, 1177–1199. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Woo, C.W.; Qi, S.; Wu, J.; Sui, J. Interpreting brain biomarkers: Challenges and solutions in interpreting machine learning-based predictive neuroimaging. IEEE Signal Process. Mag. 2022, 39, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Kovacevic, M.; Macuzic, I.Z.; Milosavljevic, J.; Lukovic, T.; Aleksic, D.; Gavrilovic, J.; Milosavljevic, M.; Jankovic, S.; Pejcic, A. Amygdala volumes in autism spectrum disorders: Meta-analysis of magnetic resonance imaging studies. Rev. J. Autism Dev. Disord. 2023, 10, 169–183. [Google Scholar] [CrossRef]
- Ibrahim, K.; Kalvin, C.; Morand-Beaulieu, S.; He, G.; Pelphrey, K.A.; McCarthy, G.; Sukhodolsky, D.G. Amygdala-prefrontal connectivity in children with maladaptive aggression is modulated by social impairment. Cereb. Cortex 2022, 32, 4371–4385. [Google Scholar] [CrossRef] [PubMed]
- De Brito, S.A.; McDonald, D.; Camilleri, J.A.; Rogers, J.C. Cortical and subcortical gray matter volume in psychopathy: A voxel-wise meta-analysis. J. Abnorm. Psychol. 2021, 130, 627. [Google Scholar] [CrossRef] [PubMed]
- Berluti, K.; Ploe, M.L.; Marsh, A.A. Emotion processing in youths with conduct problems: An fMRI meta-analysis. Transl. Psychiatry 2023, 13, 105. [Google Scholar] [CrossRef] [PubMed]
- Arioli, M.; Gianelli, C.; Canessa, N. Neural representation of social concepts: A coordinate-based meta-analysis of fMRI studies. Brain Imaging Behav. 2021, 15, 1912–1921. [Google Scholar] [CrossRef] [PubMed]
- Hyon, R.; Chavez, R.S.; Chwe, J.A.H.; Wheatley, T.; Kleinbaum, A.M.; Parkinson, C. White matter connectivity in brain networks supporting social and affective processing predicts real-world social network characteristics. Commun. Biol. 2022, 5, 1048. [Google Scholar] [CrossRef] [PubMed]
- Costanzo, A.; van der Velpen, I.F.; Ikram, M.A.; Vernooij-Dassen, M.J.; Niessen, W.J.; Vernooij, M.W.; Kas, M.J. Social health is associated with tract-specific brain white matter microstructure in community-dwelling older adults. Biol. Psychiatry Glob. Open Sci. 2023, 3, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Elandaloussi, Y.; Floris, D.L.; Coupé, P.; Duchesnay, E.; Mihailov, A.; Grigis, A.; Bègue, I.; Victor, J.; Frouin, V.; Leboyer, M.; et al. Understanding the relationship between cerebellar structure and social abilities. Mol. Autism 2023, 14, 18. [Google Scholar] [CrossRef] [PubMed]
- Veerareddy, A.; Fang, H.; Safari, N.; Xu, P.; Krueger, F. Social network size, empathy, and white matter: A diffusion tensor imaging (DTI) study. Cogn. Affect. Behav. Neurosci. 2024. [Google Scholar] [CrossRef] [PubMed]
- Deferm, W.; Tang, T.; Moerkerke, M.; Daniels, N.; Steyaert, J.; Alaerts, K.; Ortibus, E.; Naulaers, G.; Boets, B. Subtle microstructural alterations in white matter tracts involved in socio-emotional processing after very preterm birth. NeuroImage Clin. 2024, 41, 103580. [Google Scholar] [CrossRef] [PubMed]
- Zekelman, L.R.; Zhang, F.; Makris, N.; He, J.; Chen, Y.; Xue, T.; Liera, D.; Drane, D.L.; Rathi, Y.; Golby, A.J.; et al. White matter association tracts underlying language and theory of mind: An investigation of 809 brains from the Human Connectome Project. NeuroImage 2022, 246, 118739. [Google Scholar] [CrossRef] [PubMed]
- Wilkes, B.J.; Archer, D.B.; Farmer, A.L.; Bass, C.; Korah, H.; Vaillancourt, D.E.; Lewis, M.H. Cortico-basal ganglia white matter microstructure is linked to restricted repetitive behavior in autism spectrum disorder. Mol. Autism 2024, 15, 6. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro da Costa, C.; Soares, J.M.; Oliveira-Silva, P.; Sampaio, A.; Coutinho, J.F. Interplay between the salience and the default mode network in a social-cognitive task toward a close other. Front. Psychiatry 2022, 12, 718400. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Kim, T.; Ha, M.; Moon, S.Y.; Lho, S.K.; Kim, M.; Kwon, J.S. Intrinsic cerebellar functional connectivity of social cognition and theory of mind in first-episode psychosis patients. npj Schizophr. 2021, 7, 59. [Google Scholar] [CrossRef] [PubMed]
- Soares, C.; Lima, G.; Pais, M.L.; Teixeira, M.; Cabral, C.; Castelo-Branco, M. Increased functional connectivity between brain regions involved in social cognition, emotion and affective-value in psychedelic states induced by N, N-Dimethyltryptamine (DMT). Front. Pharmacol. 2024, 15, 1454628. [Google Scholar] [CrossRef] [PubMed]
- Massalha, Y.; Maggioni, E.; Callari, A.; Brambilla, P.; Delvecchio, G. A review of resting-state fMRI correlations with executive functions and social cognition in bipolar disorder. J. Affect. Disord. 2023, 334, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Bai, C.; Wang, Y.; Zhang, Y.; Wang, X.; Chen, Z.; Yu, W.; Zhang, H.; Li, X.; Zhu, K.; Wang, Y.; et al. Abnormal gray matter volume and functional connectivity patterns in social cognition-related brain regions of young children with autism spectrum disorder. Autism Res. 2023, 16, 1124–1137. [Google Scholar] [CrossRef] [PubMed]
- Geng, L.; Meng, J.; Feng, Q.; Li, Y.; Qiu, J. Functional connectivity induced by social cognition task predict individual differences in loneliness. Neuroscience 2025, 565, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Lu, P.; Kang, J.; Liu, F.; Liu, X.; Song, Y.; Wu, W.; Cai, K.; Ru, S.; Cao, J.; et al. Abnormal hypothalamic functional connectivity associated with cognitive impairment in craniopharyngiomas. Cortex 2024, 178, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Valera-Bermejo, J.M.; De Marco, M.; Mitolo, M.; Cerami, C.; Dodich, A.; Venneri, A. Large-scale functional networks, cognition and brain structures supporting social cognition and theory of mind performance in prodromal to mild Alzheimer’s disease. Front. Aging Neurosci. 2021, 13, 766703. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, S.; Taridashti, S.; Farahani, H.; Watson, P.; Rezvani, E. Multilayer perceptron modeling for social dysfunction prediction based on general health factors in an Iranian women sample. Front. Psychiatry 2023, 14, 1283095. [Google Scholar] [CrossRef] [PubMed]
- Miley, K.; Michalowski, M.; Yu, F.; Leng, E.; McMorris, B.J.; Vinogradov, S. Predictive models for social functioning in healthy young adults: A machine learning study integrating neuroanatomical, cognitive, and behavioral data. Soc. Neurosci. 2022, 17, 414–427. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wu, X.; Hu, A.; He, G.; Ju, G. Social prediction: A new research paradigm based on machine learning. J. Chin. Sociol. 2021, 8, 15. [Google Scholar] [CrossRef]
- Durkut, M.; Blok, E.; Suleri, A.; White, T. The longitudinal bidirectional relationship between autistic traits and brain morphology from childhood to adolescence: A population-based cohort study. Mol. Autism 2022, 13, 31. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.; Green, H.L.; McNamee, M.; Franzen, R.E.; DiPiero, M.; Berman, J.I.; Ku, M.; Bloy, L.; Liu, S.; Airey, M.; et al. White matter microstructure as a potential contributor to differences in resting state alpha activity between neurotypical and autistic children: A longitudinal multimodal imaging study. Mol. Autism 2025, 16, 19. [Google Scholar] [CrossRef] [PubMed]
- Feldman, D.; Prigge, M.; Alexander, A.; Zielinski, B.; Lainhart, J.; King, J. Flexible nonlinear modeling reveals age-related differences in resting-state functional brain connectivity in autistic males from childhood to mid-adulthood. Mol. Autism 2025, 16, 24. [Google Scholar] [CrossRef] [PubMed]
- Almulla, M.A.; Al-Rahmi, W.M. Integrated social cognitive theory with learning input factors: The effects of problem-solving skills and critical thinking skills on learning performance sustainability. Sustainability 2023, 15, 3978. [Google Scholar] [CrossRef]
- Kilroy, E.; Ring, P.; Hossain, A.; Nalbach, A.; Butera, C.; Harrison, L.; Jayashankar, A.; Vigen, C.; Aziz-Zadeh, L.; Cermak, S.A. Motor performance, praxis, and social skills in autism spectrum disorder and developmental coordination disorder. Autism Res. 2022, 15, 1649–1664. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.A.; Petrulla, V.; Zampella, C.J.; Waller, R.; Schultz, R.T. Gross motor impairment and its relation to social skills in autism spectrum disorder: A systematic review and two meta-analyses. Psychol. Bull. 2022, 148, 273. [Google Scholar] [CrossRef] [PubMed]
- Braconnier, M.L.; Siper, P.M. Neuropsychological assessment in autism spectrum disorder. Curr. Psychiatry Rep. 2021, 23, 63. [Google Scholar] [CrossRef] [PubMed]
- Parke, E.M.; Becker, M.L.; Graves, S.J.; Baily, A.R.; Paul, M.G.; Freeman, A.J.; Allen, D.N. Social cognition in children with ADHD. J. Atten. Disord. 2021, 25, 519–529. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, M.V.; Busuoli, E.M.; Schreibman, L.; Stahmer, A.C.; Pramparo, T.; Landi, I.; Mandelli, V.; Bertelsen, N.; Barnes, C.C.; Gazestani, V.; et al. Pre-treatment clinical and gene expression patterns predict developmental change in early intervention in autism. Mol. Psychiatry 2021, 26, 7641–7651. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, K.; Soorya, L.V.; Halpern, D.B.; Gorenstein, M.; Siper, P.M.; Wang, A.T. Social cognitive skills groups increase medial prefrontal cortex activity in children with autism spectrum disorder. Autism Res. 2021, 14, 2495–2511. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Ming, Y.; Li, L.; Huang, X.; Zhou, Y.; Ou, J.; Kou, J.; Feng, R.; Ma, R.; Zheng, Q.; et al. Personalized theta-burst stimulation enhances social skills in young minimally verbal children with autism: A double-blind randomized controlled trial. Biol. Psychiatry 2025, 97, 1139–1149. [Google Scholar] [CrossRef] [PubMed]
- Fang, A.; Baran, B.; Feusner, J.D.; Phan, K.L.; Beatty, C.C.; Crane, J.; Jacoby, R.J.; Manoach, D.S.; Wilhelm, S. Self-focused brain predictors of cognitive behavioral therapy response in a transdiagnostic sample. J. Psychiatr. Res. 2024, 171, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Asta, L.; Di Bella, T.; La Fauci Belponer, F.; Bruschetta, M.; Martines, S.; Basile, E.; Boncoddo, M.; Bellomo, F.; Cucinotta, F.; Ricciardello, A.; et al. Cognitive, behavioral and socio-communication skills as predictors of response to Early Start Denver Model: A prospective study in 32 young children with Autism Spectrum Disorder. Front. Psychiatry 2024, 15, 1358419. [Google Scholar] [CrossRef] [PubMed]
- Gkintoni, E.; Vassilopoulos, S.P.; Nikolaou, G.; Boutsinas, B. Digital and AI-Enhanced Cognitive Behavioral Therapy for Insomnia: Neurocognitive Mechanisms and Clinical Outcomes. J. Clin. Med. 2025, 14, 2265. [Google Scholar] [CrossRef] [PubMed]
- Ran, M.; Zhang, H.; Jin, M.; Tao, Y.; Xu, H.; Zou, S.; Wang, Z.; Deng, F.; Huang, L.; Zhang, H.; et al. Dynamic functional connectivity patterns predict early antidepressant treatment response in drug-naïve, first-episode adolescent MDD. Front. Neurosci. 2025, 19, 1487754. [Google Scholar] [CrossRef] [PubMed]
- Lamanna, J.; Meldolesi, J. Autism Spectrum Disorder: Brain areas involved, neurobiological mechanisms, diagnoses and therapies. Int. J. Mol. Sci. 2024, 25, 2423. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, H.; Liang, Z.; Ma, G.; Qureshi, A.; Ran, X.; Feng, C.; Liu, X.; Yan, X.; Shen, L. Autism spectrum disorder: Pathogenesis, biomarker, and intervention therapy. MedComm 2024, 5, e497. [Google Scholar] [CrossRef] [PubMed]
- Ressa, H.J.; Newman, B.T.; Jacokes, Z.; McPartland, J.C.; Kleinhans, N.M.; Druzgal, T.J.; Pelphrey, K.A.; Van Horn, J.D. Widespread associations between behavioral metrics and brain microstructure in ASD suggest age mediates subtypes of ASD. bioRxiv 2024. [Google Scholar] [CrossRef] [PubMed]
- Perdue, M.V.; Mahaffy, K.; Vlahcevic, K.; Wolfman, E.; Erbeli, F.; Richlan, F.; Landi, N. Reading intervention and neuroplasticity: A systematic review and meta-analysis of brain changes associated with reading intervention. Neurosci. Biobehav. Rev. 2022, 132, 465–494. [Google Scholar] [CrossRef] [PubMed]
- Kral, T.R.A.; Davis, K.; Korponay, C.; Hirshberg, M.J.; Hoel, R.; Tello, L.Y.; Goldman, R.I.; Rosenkranz, M.A.; Lutz, A.; Davidson, R.J. Absence of structural brain changes from mindfulness-based stress reduction: Two combined randomized controlled trials. Sci. Adv. 2022, 8, eabk3316. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.Y.; Shin, S.A.; Jeong, J.H.; Hong, C.H.; Park, Y.K.; Na, H.R.; Song, H.-S.; Park, H.K.; Choi, M.; Lee, S.M.; et al. Impact of a multidomain lifestyle intervention on regional spontaneous brain activity. Front. Aging Neurosci. 2022, 14, 926077. [Google Scholar] [CrossRef] [PubMed]
- Klepits, P.; Koschutnig, K.; Zussner, T.; Fink, A. Changes in hippocampal volume and affective functioning after a moderate intensity running intervention. Brain Struct. Funct. 2025, 230, 2. [Google Scholar] [CrossRef] [PubMed]
- Su, W.C.; Amonkar, N.; Cleffi, C.; Srinivasan, S.; Bhat, A. Neural effects of physical activity and movement interventions in individuals with developmental disabilities—A systematic review. Front. Psychiatry 2022, 13, 794652. [Google Scholar] [CrossRef] [PubMed]
- Mesleh, A.G.; Abdulla, S.A.; El-Agnaf, O. The way toward personalized medicine: Current advances and challenges in multi-OMICS approach in autism spectrum disorder for biomarkers discovery and patient stratification. J. Pers. Med. 2021, 11, 41. [Google Scholar] [CrossRef] [PubMed]
- Gkintoni, E.; Vassilopoulos, S.P.; Nikolaou, G. Mindfulness-Based Cognitive Therapy in Clinical Practice: A Systematic Review of Neurocognitive Outcomes and Applications for Mental Health and Well-Being. J. Clin. Med. 2025, 14, 1703. [Google Scholar] [CrossRef] [PubMed]
- Haddaway, N.R.; Page, M.J.; Pritchard, C.C.; McGuinness, L.A. PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Syst. Rev. 2022, 18, e1230. [Google Scholar] [CrossRef] [PubMed]
- Abdolzadegan, D.; Moattar, M.H.; Ghoshuni, M. A robust method for early diagnosis of autism spectrum disorder from EEG signals based on feature selection and DBSCAN method. Biomed. Eng. 2020, 39, 22–30. [Google Scholar] [CrossRef]
- Al-Qazzaz, N.; Aldoori, A.; Buniya, A.; Ali, S.H.; Ahmad, S.A. Transfer learning and hybrid deep convolutional neural networks models for autism spectrum disorder classification from EEG signals. IEEE Access 2024, 12, 37976–37988. [Google Scholar] [CrossRef]
- Als, H.; Duffy, F.H.; McAnulty, G.B. A stable pattern of EEG spectral coherence distinguishes children with autism from neurotypical controls: A large case control study. BMC Med. 2012, 10, 64. [Google Scholar] [CrossRef]
- Alturki, F.A.; Aljalal, M.A.; Abdurraqeeb, A.M.; Alsharabi, K.; Al-Shamma’a, A.A. Common spatial pattern technique with EEG signals for diagnosis of autism and epilepsy disorders. IEEE Access 2021, 9, 22494–22504. [Google Scholar] [CrossRef]
- Ardakani, H.A.; Taghizadeh, M.; Shayegh, F. Diagnosis of autism disorder based on deep network trained by augmented EEG signals. Int. J. Neural Syst. 2022, 32, 2250046. [Google Scholar] [CrossRef] [PubMed]
- Ari, B.; Sobahi, N.; Alçin, Ö.; Şengur, A.; Acharya, U.R. Accurate detection of autism using Douglas-Peucker algorithm, sparse coding-based feature mapping, and convolutional neural network techniques with EEG signals. Comput. Biol. Med. 2022, 147, 105311. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, R.; Sharma, L.V. An automatic framework for detecting autism spectrum disorder from EEG signals using TFD. IEEE Sens. J. 2024, 24, 8941–8949. [Google Scholar] [CrossRef]
- Bajestani, G.S.; Golpayegani, M.R.; Sheikhani, A.; Ashrafzadeh, F. Poincaré section analysis of the electroencephalogram in autism spectrum disorder using complement plots. Kybernetes 2017, 46, 431–442. [Google Scholar] [CrossRef]
- Baker, E.; Veytsman, E.; Choy, T.; Blacher, J.; Stavropoulos, K. Investigating changes in reward-related neural correlates after PEERS intervention in adolescents with ASD: Preliminary evidence of a “precision medicine” approach. Front. Psychiatry 2021, 12, 742280. [Google Scholar] [CrossRef] [PubMed]
- Barttfeld, P.; Amoruso, L.; Ais, J.; Cukier, S.; Bavassi, L.; Tomio, A.; Manes, F.; Ibanez, A.; Sigman, M. Organization of brain networks governed by long-range connections index autistic traits in the general population. J. Neurodev. Disord. 2013, 5, 16. [Google Scholar] [CrossRef] [PubMed]
- Bitsika, V.; Sharpley, C.F.; Evans, I.D.; Vessey, K.A. Neurological validation of ASD diagnostic criteria using frontal alpha and theta asymmetry. J. Clin. Med. 2024, 13, 4876. [Google Scholar] [CrossRef] [PubMed]
- Bochet, A.; Sperdin, H.F.; Rihs, T.; Kojovic, N.; Franchini, M.; Jan, R.K.; Michel, C.M.; Schaer, M. Early alterations of large-scale brain networks temporal dynamics in young children with autism. Commun. Biol. 2020, 3, 462. [Google Scholar] [CrossRef] [PubMed]
- Bolton, C.F.; Pacey, P. Neural connectivity abnormalities in autism: Insights from the Tuberous Sclerosis model. BMC Med. 2013, 11, 55. [Google Scholar] [CrossRef] [PubMed]
- Bosl, W.; Tager-Flusberg, H.; Nelson, C.A. EEG analytics for early detection of autism spectrum disorder: A data-driven approach. Sci. Rep. 2018, 8, 24318. [Google Scholar] [CrossRef] [PubMed]
- Bosl, W.; Tierney, A.L.; Tager-Flusberg, H.; Nelson, C.A. EEG complexity as a biomarker for autism spectrum disorder risk. BMC Med. 2011, 9, 18. [Google Scholar] [CrossRef] [PubMed]
- Bosl, W.; Tierney, A.L.; Tager-Flusberg, H.; Nelson, C.A. Response: Infant EEG activity as a biomarker for autism: A promising approach or a false promise? BMC Med. 2011, 9, 60. [Google Scholar] [CrossRef] [PubMed]
- Bruining, H.; Hardstone, R.; Juarez-Martinez, E.; Sprengers, J.; Avramiea, A.; Simpraga, S.; Houtman, S.J.; Poil, S.; Dallares, E.; Palva, S.; et al. Measurement of excitation-inhibition ratio in autism spectrum disorder using critical brain dynamics. Sci. Rep. 2020, 10, 9195. [Google Scholar] [CrossRef] [PubMed]
- Bruining, H.; Juarez-Martinez, E.; Sprengers, J.; Andel, D.; Simpraga, S.; Poil, S.; Dallares, E.; Mansvelder, H.; Oranje, B.; Hardstone, R.; et al. 220. Non-invasive estimation of excitation-inhibition balance facilitates physiological dissection of autism spectrum disorder. Biol. Psychiatry 2019, 85, S220. [Google Scholar] [CrossRef]
- Burnette, C.P.; Henderson, H.A.; Inge, A.P.; Zahka, N.E.; Schwartz, C.B.; Mundy, P.C. Anterior EEG asymmetry and the modifier model of autism. J. Autism Dev. Disord. 2010, 41, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Castelhano, J.; Tavares, P.; Mouga, S.; Oliveira, G.; Castelo-Branco, M. Stimulus dependent neural oscillatory patterns show reliable statistical identification of autism spectrum disorder in a face perceptual decision task. Clin. Neurophysiol. 2018, 129, 1458–1466. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.M.; Choi, C.X.; Tsoi, T.C.; Shea, C.K.S.; Yiu, K.W.; Han, Y.M.Y. Effects of multisession cathodal transcranial direct current stimulation with cognitive training on sociocognitive functioning and brain dynamics in autism: A double-blind, sham-controlled, randomized EEG study. Brain Stimul. 2023, 16, 1710–1719. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhu, D. Identification of atypical sleep microarchitecture biomarkers in children with autism spectrum disorder. Front. Psychiatry 2023, 14, 1115374. [Google Scholar] [CrossRef] [PubMed]
- Coben, R.; Clarke, A.R.; Hudspeth, W.; Barry, R.J. EEG power and coherence in autistic spectrum disorder. Clin. Neurophysiol. 2008, 119, 1002–1009. [Google Scholar] [CrossRef] [PubMed]
- Cociu, B.A.; Das, S.; Billeci, L.; Jamal, W.; Maharatna, K.; Calderoni, S.; Narzisi, A.; Muratori, F. Multimodal functional and structural brain connectivity analysis in autism: A preliminary integrated approach with EEG, fMRI, and DTI. IEEE Trans. Cogn. Dev. Syst. 2018, 10, 362–374. [Google Scholar] [CrossRef]
- Cole, E.J.; Barraclough, N.E.; Enticott, P.G. Investigating mirror system activity in adults with ASD when inferring others’ intentions using both TMS and EEG. J. Autism Dev. Disord. 2018, 48, 1526–1537. [Google Scholar] [CrossRef] [PubMed]
- Cook, I.A.; Wilson, A.C.; Peters, J.M.; Goyal, M.S.; Bebin, E.M.; Northrup, H.; Krueger, D.A.; Leuchter, A.F.; Sahin, M. EEG spectral features in sleep of autism spectrum disorders in children with tuberous sclerosis complex. J. Autism Dev. Disord. 2019, 49, 3868–3877. [Google Scholar] [CrossRef] [PubMed]
- Daoust, A.M.; Limoges, É.; Bolduc, C.; Mottron, L.; Godbout, R. EEG spectral analysis of wakefulness and REM sleep in high functioning autistic spectrum disorders. Clin. Neurophysiol. 2004, 115, 1368–1373. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Zomorrodi, R.; Mirjalili, M.; Kirkovski, M.; Blumberger, D.M.; Rajji, T.K.; Desarkar, P. Machine learning approaches for electroencephalography and magnetoencephalography analyses in autism spectrum disorder: A systematic review. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2022, 117, 110705. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, A.; Jeste, S.S.; Milne, E. Electrophysiological signatures of brain aging in autism spectrum disorder. Cortex 2021. [Google Scholar] [CrossRef] [PubMed]
- Diessen, E.; Senders, J.; Jansen, F.E.; Boersma, M.; Bruining, H. Increased power of resting-state gamma oscillations in autism spectrum disorder detected by routine electroencephalography. Eur. Arch. Psychiatry Clin. Neurosci. 2015, 265, 537–540. [Google Scholar] [CrossRef] [PubMed]
- Donck, S.V.d.; Dzhelyova, M.; Vettori, S.; Thielen, H.; Steyaert, J.; Rossion, B.; Boets, B. Fast periodic visual stimulation EEG reveals reduced neural sensitivity to fearful faces in children with autism. J. Autism Dev. Disord. 2019, 49, 3288–3301. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Chen, D.; Chen, Y.; Tang, Y.; Yin, D.; Li, X. A multi-task learning model with reinforcement optimization for ASD comorbidity discrimination. Comput. Biol. Med. 2023, 158, 107865. [Google Scholar] [CrossRef] [PubMed]
- Eldeeb, S.M.; Susam, B.T.; Akçakaya, M.; Conner, C.M.; White, S.W.; Mazefsky, C.A. Trial by trial EEG based BCI for distress versus non-distress classification in individuals with ASD. Sci. Rep. 2021, 11, 5170. [Google Scholar] [CrossRef] [PubMed]
- Eldridge, J.; Lane, A.; Belkin, M.; Dennis, S. Robust features for the automatic identification of autism spectrum disorder in children. J. Neurodev. Disord. 2014, 6, 12. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Wade, J.W.; Key, A.P.; Warren, Z.; Sarkar, N. EEG-based affect and workload recognition in a virtual driving environment for ASD intervention. IEEE Trans. Biomed. Eng. 2018, 65, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Fiebelkorn, I.C.; Foxe, J.J.; McCourt, M.E.; Dumas, K.N.; Molholm, S. Atypical category processing and hemispheric asymmetries in high-functioning children with autism: Revealed through high-density EEG mapping. Cortex 2013, 49, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Fogelson, N.; Li, L.; Díaz-Brage, P.; Amatriain-Fernández, S.; Valle-Inclán, F. Altered predictive contextual processing of emotional faces versus abstract stimuli in adults with autism spectrum disorder. Clin. Neurophysiol. 2019, 130, 1339–1348. [Google Scholar] [CrossRef] [PubMed]
- Foss-Feig, J.H.; Guillory, S.B.; Stone, W.L.; Wallace, M.T.; Key, A.P. Biomarker development in ASD: Electrophysiological response during auditory gap detection is associated with symptom severity and may index excitatory/inhibitory imbalance. Biol. Psychiatry 2018, 83 (Suppl. 9), S24–S25. [Google Scholar] [CrossRef]
- Foss-Feig, J.H.; Velthorst, E.; Guillory, S.B.; Hamilton, H.K.; Roach, B.J.; Bachman, P.; Belger, A.; Carrión, R.E.; Duncan, E.J.; Johannesen, J.K.; et al. Architecture of psychosis symptoms and neural predictors of conversion among clinical high risk individuals with autism spectrum disorder. Schizophr. Bull. 2018, 44 (Suppl. 1), S17–S18. [Google Scholar] [CrossRef]
- Foss-Feig, J.; Guillory, S.; Roach, B.J.; Velthorst, E.; Hamilton, H.; Bachman, P.; Belger, A.; Carrión, R.E.; Duncan, E.J.; Johannesen, J.K.; et al. Abnormally large baseline P300 amplitude is associated with conversion to psychosis in clinical high risk individuals with a history of autism: A pilot study. Front. Psychiatry 2021, 12, 591127. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, E.V.C.; Sivanathan, A.; Lim, T.; Suttie, N.; Louchart, S.; Pillen, S.; Pineda, J.A. An effective neurofeedback intervention to improve social interactions in children with autism spectrum disorder. J. Autism Dev. Disord. 2015, 45, 4084–4100. [Google Scholar] [CrossRef] [PubMed]
- Frohlich, J.; Senturk, D.; Saravanapandian, V.; Golshani, P.; Reiter, L.T.; Sankar, R.; Thibert, R.L.; DiStefano, C.; Huberty, S.; Cook, E.H.; et al. A quantitative electrophysiological biomarker of duplication 15q11.2-q13.1 syndrome. PLoS ONE 2016, 11, e0167179. [Google Scholar] [CrossRef] [PubMed]
- Gabard-Durnam, L.; Tierney, A.L.; Vogel-Farley, V.; Tager-Flusberg, H.; Nelson, C.A. Alpha asymmetry in infants at risk for autism spectrum disorders. J. Autism Dev. Disord. 2013, 43, 2341–2349. [Google Scholar] [CrossRef] [PubMed]
- Gabard-Durnam, L.; Wilkinson, C.; Kapur, K.; Tager-Flusberg, H.; Levin, A.; Nelson, C.A. Longitudinal EEG power in the first postnatal year differentiates autism outcomes. Nat. Commun. 2019, 10, 1222. [Google Scholar] [CrossRef] [PubMed]
- Garcés, P.; Baumeister, S.; Mason, L.; Chatham, C.H.; Holiga, Š.; Dukart, J.; Jones, E.J.H.; Banaschewski, T.; Baron-Cohen, S.; Bölte, S.; et al. Resting state EEG power spectrum and functional connectivity in autism: A cross-sectional analysis. Mol. Autism 2022, 13, 16. [Google Scholar] [CrossRef] [PubMed]
- Ghanbari, Y.; Bloy, L.; Edgar, J.C.; Blaskey, L.; Verma, R.; Roberts, T.P.L. Joint analysis of band-specific functional connectivity and signal complexity in autism. J. Autism Dev. Disord. 2015, 45, 444–460. [Google Scholar] [CrossRef] [PubMed]
- Gialloreti, L.E.; Benvenuto, A.; Battan, B.; Benassi, F.; Curatolo, P. Can biological components predict short-term evolution in autism spectrum disorders? A proof-of-concept study. Ital. J. Pediatr. 2016, 42, 95. [Google Scholar] [CrossRef] [PubMed]
- Glauser, J.; Wilkinson, C.; Gabard-Durnam, L.; Choi, B.; Tager-Flusberg, H.; Nelson, C.A. Neural correlates of face processing associated with development of social communication in 12-month infants with familial risk of autism spectrum disorder. J. Neurodev. Disord. 2022, 14, 1. [Google Scholar] [CrossRef] [PubMed]
- Golob, E.J.; Edgington, D. Atypical sensory reactivity influences auditory attentional control in adults with autism spectrum disorders. Autism Res. 2016, 9, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Grossi, E.; Olivieri, C.; Buscema, P. Diagnosis of autism through EEG processed by advanced computational algorithms: A pilot study. Comput. Methods Programs Biomed. 2017, 142, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Gurau, O.; Bosl, W.; Newton, C.R. How useful is electroencephalography in the diagnosis of autism spectrum disorders and the delineation of subtypes: A systematic review. Front. Psychiatry 2017, 8, 121. [Google Scholar] [CrossRef] [PubMed]
- Haartsen, R.; Jones, E.J.H.; Orekhova, E.V.; Charman, T.; Johnson, M.H.; the BASIS Team. Functional EEG connectivity in infants associates with later restricted and repetitive behaviours in autism: A replication study. Transl. Psychiatry 2019, 9, 41. [Google Scholar] [CrossRef] [PubMed]
- Hadoush, H.; Alafeef, M.; Almasri, N.; Abdulhay, E. Resting-state EEG changes after bilateral anodal transcranial direct current stimulation over mirror neurons in children with autism spectrum disorders: A pilot study. Brain Stimul. 2019, 12, 1537. [Google Scholar] [CrossRef]
- Halliday, A.R.; Vucic, S.N.; Georges, B.; LaRoche, M.; Pardo, M.A.M.; Swiggard, L.O.; McDonald, K.; Olofsson, M.; Menon, S.N.; Francis, S.M.; et al. Heterogeneity and convergence across seven neuroimaging modalities: A review of the autism spectrum disorder literature. Front. Psychiatry 2024, 15, 1474003. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Jiang, G.; Ouyang, G.; Li, X. A multimodal approach for identifying autism spectrum disorders in children. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Hasenstab, K.; Scheffler, A.; Telesca, D.; Sugar, C.A.; Jeste, S.S.; DiStefano, C.; Şentürk, D. A multi-dimensional functional principal components analysis of EEG data. Biometrics 2017, 73, 1261–1272. [Google Scholar] [CrossRef] [PubMed]
- Hasenstab, K.; Sugar, C.A.; Telesca, D.; Jeste, S.S.; Şentürk, D. Robust functional clustering of ERP data with application to a study of implicit learning in autism. Biostatistics 2016, 17, 66–81. [Google Scholar] [CrossRef] [PubMed]
- Heunis, T.; Aldrich, C.; Peters, J.M.; Jeste, S.S.; Sahin, M.; Scheffer, C.; de Vries, P.J. Recurrence quantification analysis of resting-state EEG signals in autism spectrum disorder: A systematic methodological exploration of technical and demographic confounders in the search for biomarkers. BMC Med. 2018, 16, 101. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Jiang, G.; Han, J.; Li, X.; Xie, P. Regional-asymmetric adaptive graph convolutional neural network for diagnosis of autism in children with resting-state EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 2987–2997. [Google Scholar] [CrossRef] [PubMed]
- Huberty, S.; Leno, V.C.; van Noordt, S.J.R.; Bedford, R.; Pickles, A.; Desjardins, J.; Webb, S.J.; Elsabbagh, M. Association between spectral electroencephalography power and autism risk and diagnosis in early development. Autism Res. 2021, 14, 252–267. [Google Scholar] [CrossRef] [PubMed]
- Hudac, C.M.; Kresse, A.; Aaronson, B.; DesChamps, T.D.; Webb, S.J.; Bernier, R.A. Modulation of mu attenuation to social stimuli in children and adults with 16p11.2 deletions and duplications. J. Neurodev. Disord. 2015, 7, 24. [Google Scholar] [CrossRef] [PubMed]
- Isaev, D.; Major, S.; Murias, M.; Carpenter, K.L.H.; Carlson, D.; Sapiro, G.; Dawson, G. Relative average look duration and its association with neurophysiological activity in young children with autism spectrum disorder. Sci. Rep. 2020, 10, 20381. [Google Scholar] [CrossRef] [PubMed]
- Ja, M.; Ortiz, T.; Palau-Baduell, M.; Martín-Muñoz, L.; Salvadó-Salvadó, B.; Valls-Santasusana, A.; Perich-Alsina, J.; Cristóbal, I.; Fernández, A.; Maestú, F.; et al. Magnetoencephalographic pattern of epileptiform activity in children with early-onset autism spectrum disorders. Clin. Neurophysiol. 2008, 119, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Jaime, M.; McMahon, C.M.; Davidson, B.C.; Newell, L.C.; Mundy, P.C.; Henderson, H.A. Brief Report: Reduced temporal-central EEG alpha coherence during joint attention perception in adolescents with autism spectrum disorder. J. Autism Dev. Disord. 2016, 46, 1472–1480. [Google Scholar] [CrossRef] [PubMed]
- Jamal, W.; Das, S.; Oprescu, I.; Maharatna, K.; Apicella, F.; Sicca, F. Classification of autism spectrum disorder using supervised learning of brain connectivity measures extracted from synchrostates. J. Neural Eng. 2014, 11, 046019. [Google Scholar] [CrossRef] [PubMed]
- Jeste, S.S.; Frohlich, J.; Loo, S.K. Electrophysiological biomarkers of diagnosis and outcome in neurodevelopmental disorders. Curr. Opin. Neurol. 2015, 28, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; He, R.; Li, Y.; Yi, C.; Peng, Y.; Yao, D.; Wang, Y.; Li, F.; Xu, P.; Yang, Y. Predicting the long-term after-effects of rTMS in autism spectrum disorder using temporal variability analysis of scalp EEG. J. Neural Eng. 2022, 19, 066051. [Google Scholar] [CrossRef] [PubMed]
- Jones, E.J.H.; Dawson, G.; Kelly, J.; Estes, A.; Webb, S.J. Parent-delivered early intervention in infants at risk for ASD: Effects on electrophysiological and habituation measures of social attention. Autism Res. 2017, 10, 961–972. [Google Scholar] [CrossRef] [PubMed]
- Kala, S.; Rolison, M.J.; Trevisan, D.A.; Naples, A.J.; Pelphrey, K.A.; Ventola, P.; McPartland, J.C. Brief report: Preliminary evidence of the N170 as a biomarker of response to treatment in autism spectrum disorder. Front. Psychiatry 2021, 12, 709382. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Han, X.; Song, J.; Niu, Z.; Li, X. The identification of children with autism spectrum disorder by SVM approach on EEG and eye-tracking data. Comput. Biol. Med. 2020, 120, 103722. [Google Scholar] [CrossRef] [PubMed]
- Kayarian, F.B.; Jannati, A.; Rotenberg, A.; Santarnecchi, E. Targeting gamma-related pathophysiology in autism spectrum disorder using transcranial electrical stimulation: Opportunities and challenges. Autism Res. 2020, 13, 887–904. [Google Scholar] [CrossRef] [PubMed]
- Kirkovski, M.; Rogasch, N.C.; Saeki, T.; Fitzgibbon, B.M.; Enticott, P.G.; Fitzgerald, P.B. A combined TMS-EEG investigation of autism spectrum disorder. Brain Stimul. 2017, 10, 456–457. [Google Scholar] [CrossRef]
- Lauttia, J.; Helminen, T.M.; Leppänen, J.M.; Yrttiaho, S.; Eriksson, K.; Hietanen, J.K.; Kylliäinen, A. Atypical pattern of frontal EEG asymmetry for direct gaze in young children with autism spectrum disorder. J. Autism Dev. Disord. 2019, 49, 2734–2745. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Kong, X.; Sun, L.; Chen, X.; Ouyang, G.; Li, X.; Chen, S. Identification of autism spectrum disorder based on electroencephalography: A systematic review. Comput. Biol. Med. 2024, 166, 108075. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Weiland, R.F.; Konvalinka, I.; Mansvelder, H.D.; Andersen, T.S.; Smit, D.J.; Begeer, S.; Linkenkaer-Hansen, K. Intellectually able adults with autism spectrum disorder show typical resting-state EEG activity. Sci. Rep. 2022, 12, 19550. [Google Scholar] [CrossRef] [PubMed]
- Maharatna, K.; Billeci, L. Linear and nonlinear analysis of intrinsic mode function after facial stimuli presentation in children with autism spectrum disorder. Comput. Biol. Med. 2021, 132, 104376. [Google Scholar] [CrossRef]
- Maharatna, K.; Das, S. Classification of autism spectrum disorder from EEG-based functional brain connectivity analysis. Neural Comput. 2021, 33, 2156–2177. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, T.; Wang, M. Computational model of functional connectivity distance predicts neural alterations. IEEE Trans. Cogn. Dev. Syst. 2024, 16, 1041–1050. [Google Scholar] [CrossRef]
- Mash, L.E.; Reiter, M.A.; Linke, A.C.; Townsend, J.; Müller, R.A. Multimodal approaches to functional connectivity in autism spectrum disorders: An integrative perspective. Dev. Neurobiol. 2018, 78, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, C.R.; Villalobos, M.E.; Schultz, R.T.; Herpertz-Dahlmann, B.; Konrad, K.; Kohls, G. Atypical laterality of resting gamma oscillations in autism spectrum disorders. J. Autism Dev. Disord. 2015, 45, 292–297. [Google Scholar] [CrossRef] [PubMed]
- McEvoy, K.; Jeste, S. Resting State EEG Serves As A Promising Biomarker of Cognitive and Language Function in Young Children with ASD. (I4-1.005). Neurology 2014, 82 (Suppl. 10), I4-1. [Google Scholar] [CrossRef]
- McPartland, J.; Dawson, G.; Webb, S.J.; Panagiotides, H.; Carver, L.J. Event-related brain potentials reveal anomalies in temporal processing of faces in autism spectrum disorder. J. Child Psychol. Psychiatry 2004, 45, 1235–1245. [Google Scholar] [CrossRef] [PubMed]
- McPartland, J.C.; Bernier, R.; South, M. Realizing the translational promise of psychophysiological research in ASD. J. Autism Dev. Disord. 2014, 44, 3145–3160. [Google Scholar] [CrossRef] [PubMed]
- McPartland, J.C.; Crowley, M.J.; Perszyk, D.R.; Naples, A.J.; Mukerji, C.E.; Wu, J.; Molfese, P.J.; Bolling, D.Z.; Pelphrey, K.A.; Mayes, L.C. Temporal dynamics reveal atypical brain response to social exclusion in autism. Dev. Cogn. Neurosci. 2011, 1, 271–279. [Google Scholar] [CrossRef] [PubMed]
- McVoy, M.; Lytle, S.; Fulchiero, E.; Aebi, M.E.; Adeleye, O.; Sajatovic, M. A systematic review of quantitative EEG as a possible biomarker in child psychiatric disorders. Psychiatry Res. 2019, 279, 331–344. [Google Scholar] [CrossRef] [PubMed]
- Milne, E.; Scope, A.; Pascalis, O.; Buckley, D.; Makeig, S. Independent component analysis reveals atypical electroencephalographic activity during visual perception in individuals with autism. Biol. Psychiatry 2009, 65, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Murias, M.; Major, S.; Compton, S.; Buttinger, J.; Sun, J.M.; Kurtzberg, J.; Dawson, G. Electrophysiological biomarkers predict clinical improvement in an open-label trial assessing efficacy of autologous umbilical cord blood for treatment of autism. Stem Cells Transl. Med. 2018, 7, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Murias, M.; Webb, S.J.; Greenson, J.; Dawson, G. Resting state cortical connectivity reflected in EEG coherence in individuals with autism. Biol. Psychiatry 2007, 62, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Murphy, J.W.; Foxe, J.J.; Peters, J.B.; Molholm, S. Susceptibility to distraction in autism spectrum disorder: Probing the integrity of oscillatory alpha-band suppression mechanisms. Autism Res. 2014, 7, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Naumann, S.; Senftleben, U.; Santhosh, M.; McPartland, J.C.; Webb, S.J. Neurophysiological correlates of holistic face processing in adolescents with and without autism spectrum disorder. J. Neurodev. Disord. 2018, 10, 36. [Google Scholar] [CrossRef] [PubMed]
- Neuhaus, E.; Lowry, S.J.; Santhosh, M.; Kresse, A.; Edwards, L.A.; Keller, J.L.; Libsack, E.J.; Kang, V.Y.; Naples, A.J.; Jack, A.; et al. Resting state EEG in youth with ASD: Age, sex, and relation to phenotype. J. Neurodev. Disord. 2021, 13, 30. [Google Scholar] [CrossRef] [PubMed]
- Neuhaus, E.; Santhosh, M.; Kresse, A.; Aylward, E.H.; Bernier, R.A.; Bookheimer, S.Y.; Jeste, S.S.; Jack, A.; McPartland, J.C.; Naples, A.J.; et al. Frontal EEG alpha asymmetry in youth with autism: Sex differences and social–emotional correlates. Autism Res. 2023, 16, 927–940. [Google Scholar] [CrossRef] [PubMed]
- Nordt, M.; Hoehl, S.; Weigelt, S. The use of repetition suppression paradigms in developmental cognitive neuroscience. Cortex 2016, 80, 61–75. [Google Scholar] [CrossRef] [PubMed]
- Nowicka, A.; Cygan, H.B.; Tacikowski, P.; Ostaszewski, P.; Kuś, R. Name recognition in autism: EEG evidence of altered patterns of brain activity and connectivity. Mol. Autism 2016, 7, 14. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, B.R.; Mitjans, M.; Nitsche, M.A.; Kuo, M.F.; Ehrenreich, H. Excitation-inhibition dysbalance as predictor of autistic phenotypes. J. Psychiatr. Res. 2018, 102, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Orekhova, E.V.; Elsabbagh, M.; Jones, E.J.H.; Dawson, G.; Charman, T.; Johnson, M.H. EEG hyper-connectivity in high-risk infants is associated with later autism. J. Neurodev. Disord. 2014, 6, 40. [Google Scholar] [CrossRef] [PubMed]
- Pandya, S.; Jain, S.; Verma, J.P. A comprehensive analysis towards exploring the promises of AI-related approaches in autism research. Comput. Biol. Med. 2023, 162, 107801. [Google Scholar] [CrossRef] [PubMed]
- Parmar, D.; Enticott, P.G.; Albein-Urios, N. Anodal HD-tDCS for cognitive inflexibility in autism spectrum disorder: A pilot study. Brain Stimul. 2021, 14, 1422–1425. [Google Scholar] [CrossRef] [PubMed]
- Peck, F.C.; Gabard-Durnam, L.; Wilkinson, C.; Bosl, W.; Tager-Flusberg, H.; Nelson, C.A. Prediction of autism spectrum disorder diagnosis using nonlinear measures of language-related EEG at 6 and 12 months. J. Neurodev. Disord. 2021, 13. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.M.; Taquet, M.; Vega, C.; Jeste, S.S.; Fernández, I.S.; Tan, J.; Nelson, C.A.; Sahin, M.; Warfield, S.K. Brain functional networks in syndromic and non-syndromic autism: A graph theoretical study of EEG connectivity. BMC Med. 2013, 11, 54. [Google Scholar] [CrossRef] [PubMed]
- Peterson, B.S.; Liu, J.; Dantec, L.; Newman, C.; Sawardekar, S.; Goh, S.; Bansal, R. Using tissue microstructure and multimodal MRI to parse the phenotypic heterogeneity and cellular basis of autism spectrum disorder. J. Child Psychol. Psychiatry 2021, 63, 855–870. [Google Scholar] [CrossRef]
- Piazza, C.; Dondena, C.; Riboldi, E.M.; Riva, V.; Cantiani, C. Baseline EEG in the first year of life: Preliminary insights into the development of autism spectrum disorder and language impairments. iScience 2023, 26, 106987. [Google Scholar] [CrossRef] [PubMed]
- Piccardi, E.S.; Ali, J.B.; Jones, E.J.H.; Mason, L.; Charman, T.; Johnson, M.H.; Gliga, T. Behavioural and neural markers of tactile sensory processing in infants at elevated likelihood of autism spectrum disorder and/or attention deficit hyperactivity disorder. J. Neurodev. Disord. 2021, 13, 6. [Google Scholar] [CrossRef] [PubMed]
- Pillai, A.S.; McAuliffe, D.; Lakshmanan, B.; Mostofsky, S.H.; Crone, N.E.; Ewen, J.B. Altered task-related modulation of long-range connectivity in children with autism. Autism Res. 2018, 11, 546–556. [Google Scholar] [CrossRef] [PubMed]
- Pineda, J.A.; Carrasco, K.; Datko, M.; Pillen, S.; Schalles, M.D. Neurofeedback training produces normalization in behavioural and electrophysiological measures of high-functioning autism. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130183. [Google Scholar] [CrossRef] [PubMed]
- Ranaut, A.; Khandnor, P.; Chand, T. Identification of autism spectrum disorder using electroencephalography and machine learning: A review. J. Neural Eng. 2024, 21, 021003. [Google Scholar] [CrossRef] [PubMed]
- Righi, G.; Tierney, A.L.; Tager-Flusberg, H.; Nelson, C.A. Functional connectivity in the first year of life in infants at risk for autism spectrum disorder: An EEG study. PLoS ONE 2014, 9, e105176. [Google Scholar] [CrossRef] [PubMed]
- Rogala, J.; Żygierewicz, J.; Malinowska, U.; Cygan, H.; Stawicka, E.; Kobus, A.; Vanrumste, B. Enhancing autism spectrum disorder classification in children through the integration of traditional statistics and classical machine learning techniques in EEG analysis. Sci. Rep. 2023, 13, 16636. [Google Scholar] [CrossRef] [PubMed]
- Sahin, M.; Sahin, M. Translational use of event-related potentials to assess circuit integrity in ASD. Nat. Rev. Neurol. 2017, 13, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Shou, G.; Mosconi, M.W.; Wang, J.; Ethridge, L.E.; Sweeney, J.A.; Ding, L. Electrophysiological signatures of atypical intrinsic brain connectivity networks in autism. J. Neural Eng. 2017, 14, 046019. [Google Scholar] [CrossRef] [PubMed]
- Simon, D.M.; Damiano, C.R.; Woynaroski, T.G.; Ibañez, L.V.; Murias, M.; Stone, W.L.; Wallace, M.T.; Cascio, C.J. Neural correlates of sensory hyporesponsiveness in toddlers at high risk for autism spectrum disorder. J. Autism Dev. Disord. 2017, 47, 731–743. [Google Scholar] [CrossRef] [PubMed]
- Siper, P.M.; George-Jones, J.; Lurie, S.; Rowe, M.A.; Durkin, A.; Weissman, J.; Meyering, K.E.; Rouhandeh, A.A.; Buxbaum, J.D.; Kolevzon, A. Biomarker discovery in ASD: Visual evoked potentials as a biomarker of Phelan-McDermid syndrome. Biol. Psychiatry 2018, 83, S23. [Google Scholar] [CrossRef]
- Siper, P.; Zemon, V.; Gordon, J.; George-Jones, J.; Lurie, S.; Zweifach, J.; Tavassoli, T.; Wang, A.T.; Jamison, J.; Buxbaum, J.D.; et al. Rapid and objective assessment of neural function in autism spectrum disorder using transient visual evoked potentials. PLoS ONE 2016, 11, e0164422. [Google Scholar] [CrossRef] [PubMed]
- Sotoodeh, M.; Taheri-Torbati, H.; Sohrabi, M.; Ghoshuni, M. Perception of biological motions is preserved in people with autism spectrum disorder: Electrophysiological and behavioural evidences. J. Intellect. Disabil. Res. 2018, 62, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, A.; Mentch, J.; Haskins, A.J.; Robertson, C.E. Slower binocular rivalry in the autistic brain. Curr. Biol. 2019, 29, 2948–2953.e3. [Google Scholar] [CrossRef] [PubMed]
- Sprengers, J.J.; Martinez, E.L.J.; Simpraga, S.; Jansen, F.E.; Vlaskamp, C.R.; Oranje, B.; Poil, S.S.; Linkenkaer-Hansen, K.; Bruining, H. An EEG-based decision-support system for diagnosis and prognosis of autism spectrum disorder. Clin. Neurophysiol. 2017, 128, e161–e162. [Google Scholar] [CrossRef]
- Stroganova, T.A.; Orekhova, E.V.; Prokofyev, A.O.; Tsetlin, M.M.; Gratchev, V.V.; Morozov, A.A.; Obukhov, Y.V. High-frequency oscillatory response to illusory contour in typically developing boys and boys with autism spectrum disorders. Cortex 2012, 48, 731–745. [Google Scholar] [CrossRef] [PubMed]
- Sundaresan, A.; Penchina, B.; Cheong, S.; Grace, V.; Valero-Cabré, A.; Martel, A. Evaluating deep learning EEG-based mental stress classification in adolescents with autism for breathing entrainment BCI. Brain Inform. 2021, 8, 2. [Google Scholar] [CrossRef] [PubMed]
- Takarae, Y.; Zanesco, A.P.; Keehn, B.; Chukoskie, L.; Müller, R.A.; Townsend, J. EEG microstates suggest atypical resting-state network activity in high-functioning children and adolescents with Autism Spectrum Disorder. Dev. Sci. 2022, 25, e13231. [Google Scholar] [CrossRef] [PubMed]
- Talebi, N.; Nasrabadi, A.M.; Rezazadeh, I.; Coben, R. nCREANN: Nonlinear causal relationship estimation by artificial neural network; applied for autism connectivity study. IEEE Trans. Med. Imaging 2019, 38, 1777–1787. [Google Scholar] [CrossRef] [PubMed]
- Tan, G.; Xu, K.; Liu, J.; Liu, H. A trend on autism spectrum disorder research: Eye tracking-EEG correlative analytics. IEEE Trans. Cogn. Dev. Syst. 2022, 14, 422–431. [Google Scholar] [CrossRef]
- Tarasi, L.; Martelli, M.E.; Bortoletto, M.; Pellegrino di, G.; Romei, V. Neural signatures of predictive strategies track individuals along the autism-schizophrenia continuum. Schizophr. Bull. 2023, 49, 1331–1341. [Google Scholar] [CrossRef] [PubMed]
- Tawhid, M.N.A.; Siuly, S.; Wang, H.; Whittaker, F.; Wang, K.N.; Zhang, Y. A spectrogram image-based intelligent technique for automatic detection of autism spectrum disorder from EEG. PLoS ONE 2021, 16, e0253094. [Google Scholar] [CrossRef] [PubMed]
- Tessier, S.; Lambert, A.; Scherzer, P.; Jemel, B.; Godbout, R. REM sleep and emotional face memory in typically-developing children and children with autism. Biol. Psychol. 2015, 108, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Tierney, A.L.; Gabard-Durnam, L.; Vogel-Farley, V.; Tager-Flusberg, H.; Nelson, C.A. Developmental trajectories of resting EEG power: An endophenotype of autism spectrum disorder. PLoS ONE 2012, 7, e39127. [Google Scholar] [CrossRef] [PubMed]
- Torres, J.M.M.; Medina-DeVilliers, S.E.; Clarkson, T.; Lerner, M.; Riccardi, G. Evaluation of interpretability for deep learning algorithms in EEG emotion recognition: A case study in autism. Artif. Intell. Med. 2021, 137, 102545. [Google Scholar] [CrossRef]
- Tseng, Y.; Lee, C.; Chiu, Y.; Tsai, W.; Wang, J.; Wu, W.; Chien, Y. Characterizing autism spectrum disorder through fusion of local cortical activation and global functional connectivity using game-based stimuli and a mobile EEG system. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 1228–1239. [Google Scholar] [CrossRef] [PubMed]
- Tseng, Y.; Liu, H.; Chiu, Y.; Lee, C.; Tsai, W.; Lin, Y.; Chien, Y. Electroencephalography connectivity assesses cognitive disorders of autistic children during game-based social interaction. IEEE Trans. Cogn. Dev. Syst. 2024, 16, 433–442. [Google Scholar] [CrossRef]
- Uddin, L.Q. The influence of brain state on functional connectivity in autism. EBioMedicine 2015, 2, 1230–1231. [Google Scholar] [CrossRef] [PubMed]
- Valakh, V. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron 2015, 87, 684–698. [Google Scholar] [CrossRef] [PubMed]
- Van Hecke, A.V.; Stevens, S.; Carson, A.M.; Karst, J.S.; Dolan, B.; Schohl, K.A.; McKindles, R.J.; Remmel, R.P.; Brockman, S. Measuring the plasticity of social approach: A randomized controlled trial of the effects of the PEERS intervention on EEG asymmetry in adolescents with autism spectrum disorders. J. Autism Dev. Disord. 2015, 45, 3161–3174. [Google Scholar] [CrossRef] [PubMed]
- Vettori, S.; Dzhelyova, M.; Van den Donck, S.; Jacques, C.; Steyaert, J.; Rossion, B.; Boets, B. Frequency-tagging electroencephalography of superimposed social and non-social visual stimulation streams reveals reduced saliency of faces in autism spectrum disorder. Front. Psychiatry 2020, 11, 332. [Google Scholar] [CrossRef] [PubMed]
- Vettori, S.; Dzhelyova, M.; Van den Donck, S.; Jacques, C.; Wesemael, T.V.; Steyaert, J.; Rossion, B.; Boets, B. Combined frequency-tagging EEG and eye tracking reveal reduced social bias in boys with autism spectrum disorder. Cortex 2019, 119, 301–317. [Google Scholar] [CrossRef] [PubMed]
- Vilela, J.; Rasga, C.; Santos, J.X.; Martiniano, H.; Marques, A.R.; Oliveira, G.; Vicente, A.M. Bridging genetic insights with neuroimaging in autism spectrum disorder—A systematic review. Int. J. Mol. Sci. 2024, 25, 4938. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Barstein, J.; Ethridge, L.E.; Mosconi, M.W.; Takarae, Y.; Sweeney, J.A. Resting state EEG abnormalities in autism spectrum disorders. J. Neurodev. Disord. 2013, 5, 24. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, C.; Gabard-Durnam, L.; Kapur, K.; Tager-Flusberg, H.; Levin, A.R.; Nelson, C.A. Use of longitudinal EEG measures in estimating language development in infants with and without familial risk for autism spectrum disorder. Neurobiol. Lang. 2020, 1, 33–48. [Google Scholar] [CrossRef] [PubMed]
- Wright, B.; Alderson-Day, B.; Prendergast, G.; Bennett, S.; Jordan, J.; Whitton, C.; Gouws, A.; Jones, N.; Attur, R.; Tomlinson, H.; et al. Gamma activation in young people with autism spectrum disorders and typically-developing controls when viewing emotions on faces. PLoS ONE 2012, 7, e41326. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Yu, Z.; Li, Y.; Liu, Y.; Li, Y.; Wang, Y. Autism spectrum disorder diagnosis with EEG signals using time series maps of brain functional connectivity and a combined CNN-LSTM model. Comput. Biol. Med. 2024, 167, 108196. [Google Scholar] [CrossRef] [PubMed]
- Yardeni, T.; Cristancho, A.G.; McCoy, A.J.; Schaefer, P.M.; McManus, M.J.; Marsh, E.D.; Wallace, D.C. An mtDNA mutant mouse demonstrates that mitochondrial deficiency can result in autism endophenotypes. Proc. Natl. Acad. Sci. USA 2021, 118, e2021429118. [Google Scholar] [CrossRef] [PubMed]
- Yeung, M.K.; Han, Y.M.Y.; Sze, S.L.; Chan, A.S. Abnormal frontal theta oscillations underlie the cognitive flexibility deficits in children with high-functioning autism spectrum disorders. Neuropsychology 2016, 30, 525–538. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Zhang, U. Attenuated long-range temporal correlations of electrocortical oscillations in patients with autism spectrum disorder. Dev. Cogn. Neurosci. 2019, 36, 100687. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Zhang, U.; Du, D. Grid-tuned ensemble models for 2D spectrogram-based autism classification. Biomed. Signal Process. Control 2024, 88, 106151. [Google Scholar] [CrossRef]
- Zeng, K.; Kang, J.; Ouyang, G.; Li, J.; Han, J.; Wang, Y.; Sokhadze, E.M.; Casanova, M.F.; Li, X. Disrupted brain network in children with autism spectrum disorder. Sci. Rep. 2017, 7, 16253. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Chen, D.; Tang, Y.; Li, X. Learning graph-based relationship of dual-modal features towards subject adaptive ASD assessment. Neurocomputing 2022, 497, 307–317. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S.; Chen, B.; Jiang, L.; Li, Y.; Dong, L.; Feng, R.; Yao, D.; Li, F.; Xu, P. Predicting the symptom severity in autism spectrum disorder based on EEG metrics. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 1227–1237. [Google Scholar] [CrossRef] [PubMed]
Neuroimaging Modality | AI Algorithm | Number of Studies | Age Groups | Primary Task/Application |
---|---|---|---|---|
EEG | SVM | 23 | Infants–Adults | Early detection, social function |
CNN/Deep Learning | 18 | Children–Adults | Classification, biomarker extraction | |
Random Forest | 12 | Toddlers––Children | Developmental prediction | |
Neural Networks | 15 | Infants–Adolescents | Longitudinal tracking | |
fMRI | SVM | 8 | Children–Adults | Social cognition, connectivity |
CNN | 6 | Adolescents–Adults | Network analysis | |
Graph Theory + ML | 10 | Children–Adults | Connectivity patterns | |
DTI | SVM | 5 | Children–Adults | White matter integrity |
Deep Learning | 4 | Children–Adolescents | Structural connectivity | |
Multimodal | Ensemble Methods | 12 | Various | Enhanced classification |
Fusion Algorithms | 8 | Children–Adults | Cross-modal integration |
Research Task | Methodology Category | Number of Studies | Success Rate/Accuracy | Key Findings |
---|---|---|---|---|
Early Detection (0–3 years) | EEG + Nonlinear Analysis | 22 | 85–100% | 9–12-month critical window |
Multimodal Integration | 8 | 90–95% | Enhanced sensitivity | |
Social Function Prediction | EEG Spectral Analysis | 18 | 80–95% | Alpha/beta band biomarkers |
Task-based fMRI | 12 | 75–88% | Network connectivity | |
Intervention Monitoring | Longitudinal EEG | 10 | 70–85% | Treatment response prediction |
Neuromodulation Studies | 6 | 75–90% | Target identification | |
Biomarker Development | Machine Learning Classification | 35 | 85–99% | Feature identification |
Deep Learning Feature Extraction | 15 | 88–95% | Automated pattern recognition |
Author(s) (Year) | Key Findings | Method |
---|---|---|
Abdolzadegan et al. (2020) [294] | DFA, Lyapunov exponent, entropy features most discriminative | SVM with DBSCAN artifact removal, feature selection |
Al-Qazzaz et al. (2024) [295] | SqueezeNet+SVM hybrid improves ASD severity classification | CNN+SVM hybrid, transfer learning |
Als et al. (2012) [296] | Reduced left temporal–frontal coherence in ASD children | EEG spectral coherence, PCA/DFA |
Alturki et al. (2021) [297] | CSP-LBP-KNN optimal for epilepsy and ASD diagnosis | CSP+LBP+KNN classification |
Ardakani et al. (2022) [298] | Channel combination augmentation achieves 100% accuracy | 2D-DCNN with data augmentation |
Ari et al. (2022) [299] | Douglas–Peucker preprocessing enhances CNN performance | Douglas–Peucker + sparse coding + CNN |
Bajaj et al. (2024) [300] | SPWVD-based TFD superior to STFT and CWT | ASD-Net with SPWVD time-frequency analysis |
Bajestani et al. (2017) [301] | ASD shows mandala-like patterns in Poincaré analysis | Poincaré section analysis |
Baker et al. (2021) [302] | Age and social motivation predict neural reward changes | ERP analysis (SPN, RewP) |
Barttfeld et al. (2013) [303] | Autistic traits correlated with reduced delta/theta connectivity | Functional connectivity + network analysis |
Bitsika et al. (2024) [304] | Theta asymmetry linked to social conversation difficulties | Frontal alpha/theta asymmetry analysis |
Bochet et al. (2020) [305] | Increased microstate B prevalence, altered transitions | EEG microstate analysis |
Bolton & Pacey (2013) [306] | TSC shows global underconnectivity, ASD local overconnectivity | Graph theory connectivity analysis |
Bosl et al. (2018) [307] | Peak MSE differences at 9–12 months in high-risk infants | Multiscale entropy analysis |
Bosl et al. (2011a) [308] | 9-month classification accuracy highest for ASD prediction | Modified multiscale entropy + ML |
Bosl et al. (2011b) [309] | 3-month EEG predicts ASD diagnosis and symptom severity | Nonlinear analysis (RQA, SampE, DFA) |
Bruining et al. (2020) [310] | Non-invasive E/I ratio distinguishes ASD from controls | E/I balance estimation from EEG |
Bruining et al. (2019) [311] | ASD shows increased variability in LRTC and E/I ratio | Functional E/I ratio algorithm |
Burnette et al. (2010) [312] | Left frontal asymmetry associated with milder symptoms | Frontal EEG asymmetry analysis |
Castelhano et al. (2018) [313] | Decreased gamma responses to photographic faces | SVM with gamma oscillation features |
Chan et al. (2023) [314] | Cathodal tDCS reduces theta E/I ratio in ASD | tDCS + EEG E/I balance analysis |
Chen & Zhu (2023) [315] | Sleep spindle density and REM% discriminate ASD | Sleep EEG + ML (LR, SVM, RF) |
Coben et al. (2008) [316] | Neural underconnectivity across multiple frequency bands | EEG power and coherence analysis |
Cociu et al. (2018) [317] | Delta band best correlates functional-structural connectivity | Multimodal EEG+fMRI+DTI analysis |
Cole et al. (2018) [318] | Reduced right-hemisphere mirror system activity | TMS+EEG mirror system analysis |
Cook et al. (2019) [319] | TSC+ASD shows increased alpha power by 24 months | Sleep EEG spectral analysis |
Daoust et al. (2004) [320] | Reduced beta in visual cortex during REM sleep | EEG spectral analysis (REM/wake) |
Das et al. (2022) [321] | SVMs most common, deep learning emerging approach | Systematic review of ML methods |
Dickinson et al. (2021) [322] | Accelerated peak alpha frequency decline in ASD adults | Peak alpha frequency analysis |
Diessen et al. (2015) [323] | Increased resting gamma detectable in routine EEG | Resting-state gamma oscillation analysis |
Donck et al. (2019) [324] | Reduced neural sensitivity to fearful faces | Fast periodic visual stimulation EEG |
Dong et al. (2023) [325] | Multi-task learning improves ASD+ADHD discrimination | Multi-task CNN with reinforcement optimization |
Eldeeb et al. (2021) [326] | Frontal power and P300/FRN distinguish distress states | EEG-based BCI for emotion classification |
Eldridge et al. (2014) [327] | Channel-by-epoch rejection retains more usable data | Robust feature extraction + artifact rejection |
Fan et al. (2018) [328] | Group-level affect recognition feasible in VR driving | EEG-based affect recognition in VR |
Fiebelkorn et al. (2013) [329] | Reduced category-based attention generalization | High-density EEG mapping |
Fogelson et al. (2019) [330] | Attenuated P3b to predicted emotional faces | Predictive contextual processing EEG |
Foss-Feig et al. (2018) [331] | Globally heightened P300 predicts psychosis conversion | P300 ERP analysis for psychosis prediction |
Foss-Feig et al. (2018) [332] | Enhanced vs. attenuated P300 pattern differs by ASD | P300 amplitude analysis |
Foss-Feig et al. (2021) [333] | Gap detection ERP correlated with symptom severity | Auditory gap detection ERP |
Friedrich et al. (2015) [334] | Bidirectional mu training superior to unidirectional | Neurofeedback training effects |
Frohlich et al. (2016) [335] | Higher beta and lower delta power in Dup15q | Beta/delta power biomarkers |
Gabard-Durnam et al. (2013) [336] | Opposite alpha asymmetry trajectories by risk group | Frontal alpha asymmetry development |
Gabard-Durnam et al. (2019) [337] | First-year EEG best discriminates ASD outcomes | Longitudinal EEG power analysis |
Garces et al. (2022) [338] | No significant power/connectivity differences found | Resting state EEG power + connectivity |
Ghanbari et al. (2015) [339] | Spatially complementary complexity–connectivity patterns | Joint complexity + connectivity analysis |
Gialloreti et al. (2016) [340] | 15% show improvements in both symptoms and skills | Longitudinal clinical evolution study |
Glauser et al. (2022) [341] | P400 response correlated with future social skills | Face processing ERP analysis |
Golob & Edgington (2016) [342] | Increased bottom-up attention correlated with sensitivity | Auditory ERP + sensory reactivity |
Grossi et al. (2017) [343] | MS-ROM/I-FAST identifies brain disconnection patterns | MS-ROM/I-FAST + ML classification |
Grujičić & Milovanovic (2021) [75] | U-shaped power pattern and E/I imbalance in ASD | EEG review paper |
Gurau et al. (2017) [344] | Inconsistent results prevent diagnostic application | Systematic review of EEG utility |
Haartsen et al. (2019) [345] | Fronto-central connectivity predicts restricted behaviors | EEG connectivity + behavioral correlation |
Hadoush et al. (2019) [346] | Bilateral tDCS modulates resting EEG in ASD children | tDCS effects on resting EEG |
Halliday et al. (2024) [347] | Substantial heterogeneity across all imaging modalities | Multi-modal neuroimaging review |
Han et al. (2022) [348] | Multimodal fusion outperforms unimodal approaches | Multimodal EEG+eye-tracking + SDAE |
Hasenstab et al. (2017) [349] | ASD shows different learning speed patterns | Multi-dimensional FPCA of ERP |
Hasenstab et al. (2016) [350] | RFC algorithm accounts for ASD covariance heterogeneity | Robust functional clustering |
Heunis et al. (2018) [351] | RQA promising but requires demographic control | Recurrence quantification analysis |
Hu et al. (2023) [352] | Hierarchical regional-asymmetric features improve classification | Regional-asymmetric adaptive GCN |
Huberty et al. (2021) [353] | High-risk infants show steeper power increase | Spectral power development analysis |
Hudac et al. (2015) [354] | 16p11.2 CNVs show opposite mu attenuation pattern | Mu attenuation to social stimuli |
Isaev et al. (2020) [355] | RALD distinguishes ASD despite similar brain activity | Relative average look duration + EEG |
Ja et al. (2008) [356] | All ASD children show perisylvian MEG abnormalities | MEG epileptiform activity analysis |
Jaime et al. (2016) [357] | Reduced right temporal–central alpha coherence | Temporal–central alpha coherence |
Jamal et al. (2014) [358] | Synchrostate network measures achieve high accuracy | Complex network measures + SVM |
Jeste et al. (2015) [359] | Higher frontal theta correlated with poorer function | Resting EEG cognitive/language biomarkers |
Jiang et al. (2022) [360] | EEG ideal for diagnosis, risk prediction, monitoring | EEG biomarkers review |
Jones et al. (2017) [361] | Temporal variability changes predict rTMS efficacy | rTMS effects + temporal variability |
Kala et al. (2021) [362] | Early intervention improves social attention measures | Parent-delivered intervention + EEG |
Kang et al. (2020) [363] | N170 latency reduces after PRT intervention | N170 as treatment response biomarker |
Kayarian et al. (2020) [364] | Combined EEG+eye-tracking achieves 85% accuracy | EEG+eye-tracking + SVM |
Kirkovski et al. (2017) [365] | tES shows promise for enhancing gamma oscillations | Gamma pathophysiology review |
Lauttia et al. (2019) [366] | Combined TMS-EEG reveals ASD neuropathophysiology | Combined TMS-EEG investigation |
Li et al. (2024) [367] | ASD shows reversed pattern for direct vs. downcast gaze | Frontal EEG asymmetry to gaze |
Li et al. (2022) [368] | Resting EEG shows minimal discrimination in adults | Resting EEG features + ML |
Maharatna & Billeci (2021) [369] | Deep learning promising but challenges remain | EEG-based ASD identification review |
Maharatna & Das (2021) [370] | Alpha/theta complexity, delta linearity as biomarkers | Linear+nonlinear IMF analysis |
Mahmud & Wang (2024) [371] | Theta/alpha bands most discriminative for connectivity | PLV connectivity + graph theory + ML |
Mash et al. (2018) [372] | ASD shows higher delay, more short-distance connections | Multivariate visibility graph model |
Maxwell et al. (2015) [373] | Multimodal integration critical for resolving discrepancies | Multimodal connectivity review |
McEvoy & Jeste (2014a) [374] | Reduced right lateral gamma correlated with severity | Resting gamma laterality analysis |
McPartland et al. (2004) [375] | Frontal theta power associated with cognitive deficits | Resting EEG cognitive biomarkers |
McPartland et al. (2014) [376] | Reduced P2 attention to social exclusion | Social exclusion ERP dynamics |
McPartland et al. (2011) [377] | Psychophysiology has broad translational potential | Psychophysiological research review |
McVoy et al. (2019) [378] | Decreased coherence consistent finding in ASD | qEEG biomarkers systematic review |
Milne et al. (2009) [379] | Reduced alpha/gamma modulation in visual cortex | ICA visual perception analysis |
Murias et al. (2018) [380] | Increased theta, decreased alpha coherence patterns | Resting EEG coherence analysis |
Murias et al. (2007) [381] | Baseline beta power predicts treatment response | EEG biomarkers predict treatment response |
Murphy et al. (2014) [382] | No task-dependent alpha modulation in ASD | Alpha-band suppression mechanisms |
Naumann et al. (2018) [383] | Prolonged gamma elevation during holistic processing | Holistic face processing EEG |
Neuhaus et al. (2021) [384] | Sex differences in frontal alpha correlations | Frontal alpha asymmetry by sex |
Neuhaus et al. (2023) [385] | Decreased alpha power, sex-specific associations | Resting EEG by age/sex/phenotype |
Nordt et al. (2016) [386] | Repetition suppression ideal for developmental studies | Repetition suppression paradigms |
Nowicka et al. (2016) [387] | Absent self-preference effect, disrupted connectivity | Name recognition EEG + connectivity |
Oliveira et al. (2018) [388] | E/I disbalance correlated with autistic trait severity | E/I disbalance as ASD predictor |
Orekhova et al. (2014) [389] | Alpha hyper-connectivity predicts later ASD diagnosis | EEG hyper-connectivity in high-risk infants |
Pandya et al. (2023) [390] | AI shows promise across multiple modalities | AI approaches in autism review |
Parmar et al. (2021) [391] | HD-tDCS safe but no cognitive flexibility improvement | HD-tDCS cognitive flexibility study |
Peck et al. (2021) [392] | Predictive features shift from 6 to 12 months | Language EEG prediction (6/12 months) |
Peters et al. (2013) [393] | ASD shows decreased long/short-range connectivity ratio | Graph theory EEG connectivity |
Petersons et al. (2021) [394] | Reduced NAA, increased rCBF, altered DTI metrics and metabolic dysfunction as converging biomarkers of ASD’s underlying neurophysiology | Multimodal MRI integration approach (combining DTI, ASL, and MR spectroscopy) |
Piazza et al. (2023) [395] | ASD risk shows reduced low-frequency power | Baseline EEG spectral power analysis |
Piccardi et al. (2021) [396] | Reduced neural repetition suppression predicts ASD traits | Tactile repetition suppression EEG |
Pillai et al. (2018) [397] | ASD shows increased rather than decreased connectivity | Task-related connectivity modulation |
Pineda et al. (2014) [398] | Neurofeedback normalizes behavior and electrophysiology | Neurofeedback training effects |
Ranaut et al. (2024) [399] | EEG+ML integration enhances ASD identification precision | EEG+ML for ASD identification review |
Righi et al. (2014) [400] | Reduced connectivity emerges by 12 months | First-year functional connectivity |
Rogala et al. (2023) [401] | Combined statistical and ML approaches enhance reliability | Traditional stats + ML EEG analysis |
Sahin & Sahin (2017) [402] | ERPs show translational potential as biomarkers | ERP circuit integrity assessment |
Shou et al. (2017) [403] | Hyper-connectivity within, hypo-connectivity between ICNs | Intrinsic connectivity networks |
Simon et al. (2017) [404] | Sensory hyporesponsiveness linked to increased connectivity | Sensory hyporesponsiveness EEG |
Siper et al. (2018) [405] | VEPs examine E/I imbalance in Phelan–McDermid syndrome | VEP biomarker discovery |
Siper et al. (2016) [406] | Reduced VEP amplitudes suggest altered E/I activity | Transient VEP assessment |
Sotoodeh et al. (2018) [407] | Biological motion perception preserved in ASD | Biological motion perception EEG |
Spiegel et al. (2019) [408] | Slower binocular rivalry predicts symptom severity | Binocular rivalry EEG dynamics |
Sprengers et al. (2017) [409] | E/I ratio successfully classifies ASD subtypes | EEG-based decision support system |
Stroganova et al. (2012) [410] | Different timing/topography of contour responses | High-frequency oscillatory response |
Sundaresan et al. (2021) [411] | Two-layer LSTM optimal for anxiety classification | Two-layer LSTM RNN stress classification |
Takarae et al. (2022) [412] | Microstate C frequency/duration atypical in ASD | EEG microstates analysis |
Talebi et al. (2019) [413] | Higher linear connectivity in TD, nonlinear in ASD | nCREANN nonlinear connectivity |
Tan et al. (2022) [414] | ET-EEG correlative analytics reveal developmental insights | Eye-tracking EEG correlative analytics |
Tarasi et al. (2023) [415] | Predictive strategies track autism–schizophrenia continuum | Predictive strategies neural signatures |
Tawhid et al. (2021) [416] | Deep learning outperforms traditional ML approaches | Spectrogram image + CNN classification |
Tessier et al. (2015) [417] | Different sleep-dependent face processing networks | REM sleep + emotional face memory |
Tierney et al. (2012) [418] | Dynamic developmental trajectories differ by risk group | Developmental EEG power trajectories |
Torres et al. (2021) [419] | ROAR algorithm enables interpretable feature relevance | Interpretable deep learning evaluation |
Tseng et al. (2024a) [420] | Lower LPP, larger P200, reduced theta synchronization | Game-based stimuli + mobile EEG |
Tseng et al. (2024b) [421] | Reduced neural responses and functional connectivity | Game-based social interaction EEG |
Uddin (2015) [422] | Brain state crucial for observing connectivity differences | Brain state functional connectivity |
Valakh (2015) [423] | Homeostatic framework integrates contradictory E/I findings | E/I balance + circuit homeostasis |
Van Hecke et al. (2015) [424] | PEERS intervention shifts to left-hemisphere dominance | PEERS intervention EEG asymmetry |
Vettori et al. (2020) [425] | Reduced face saliency in superimposed stimulus streams | Frequency-tagging social stimuli |
Vettori et al. (2019) [426] | Reduced social bias in both overt and covert measures | Combined frequency-tagging + eye tracking |
Vilela et al. (2024) [427] | Genetic variants affect social cognition brain circuits | Genetic insights + neuroimaging review |
Wang et al. (2013) [428] | U-shaped power profile, reduced long-range coherence | Resting state EEG abnormalities |
Wilkinson et al. (2020) [429] | Early EEG highly predictive of 24-month language | Longitudinal EEG language development |
Wright et al. (2012) [430] | Abnormal induced gamma to emotional faces | Gamma activation face emotion processing |
Xu et al. (2024) [431] | Short-distance parietal/occipital differences predominant | Combined CNN-LSTM time series maps |
Yardeni et al. (2021) [432] | Mitochondrial defects sufficient for ASD endophenotypes | Mitochondrial deficiency mouse model |
Yeung et al. (2016) [433] | Reduced late-stage frontal theta in cognitive flexibility | Frontal theta oscillations analysis |
Yu & Zhang (2019) [434] | Attenuated LRTC in social function brain regions | Long-range temporal correlations |
Yu et al. (2024) [435] | Grid-tuned ensemble enhances classification stability | Grid-tuned ensemble 2D spectrogram |
Zeng et al. (2017) [436] | Reduced whole-brain connectivity, disrupted organization | Disrupted brain network analysis |
Zhang et al. (2022a) [437] | Graph-based dual-modal outperforms single-modal | Graph-based dual-modal features |
Zhang et al. (2022b) [438] | EEG metrics effectively predict ADOS symptom severity | EEG metrics predict symptom severity |
Algorithm Category | Specific Method | Studies (n) | Best Performance | Advantages | Limitations | Optimal Applications |
---|---|---|---|---|---|---|
Support Vector Machines | RBF Kernel | 31 | 99.91% accuracy | High accuracy, interpretable | Limited to moderate datasets | Early detection, classification |
Linear SVM | 12 | 87–92% | Fast training, simple | Limited nonlinear relationships | Feature selection | |
Deep Learning | 3D-CNN | 18 | 90–95% | Spatial relationships preserved | High computational cost | Volumetric data analysis |
CNN+SVM Hybrid | 8 | 87.8% | Combined strengths | Complex architecture | EEG classification | |
LSTM/RNN | 10 | 83–89% | Temporal dynamics | Sequential data dependency | Longitudinal analysis | |
Ensemble Methods | Random Forest | 24 | 85–92% | Robust, feature importance | Black box nature | Multi-feature datasets |
Gradient Boosting | 8 | 88–93% | High accuracy | Overfitting risk | Complex feature spaces | |
Stacking | 6 | 90–95% | Leverages multiple models | High complexity | Multimodal integration | |
Traditional ML | Logistic Regression | 15 | 75–85% | Interpretable, fast | Limited complexity handling | Baseline comparisons |
k-NN | 8 | 70–82% | Simple, no training | Sensitive to noise | Small datasets | |
Specialized Methods | Graph Neural Networks | 12 | 85–95% | Network topology | Complex implementation | Connectivity analysis |
Autoencoders | 6 | 80–88% | Unsupervised learning | Requires large datasets | Feature learning |
Data Type | Preprocessing Method | Optimal Algorithm | Feature Extraction | Accuracy Range |
---|---|---|---|---|
Raw EEG Signals | DBSCAN Artifact Removal | SVM (RBF) | DFA, Entropy, Synchronization | 90.57–99.91% |
ICA-AROMA | CNN | Wavelet Transform | 85–92% | |
EEG Spectral Features | Bandpass Filtering | Random Forest | Power Spectrum, Coherence | 80–95% |
CSP | k-NN + LBP | Spatial Patterns | 85–90% | |
fMRI Time Series | Motion Correction + CompCor | Graph Theory + ML | Connectivity Matrices | 75–88% |
ICA Denoising | CNN | Spatial-Temporal Features | 82–90% | |
DTI Tractography | TBSS Preprocessing | SVM | FA, MD, Network Metrics | 70–85% |
Multimodal Data | Cross-Modal Registration | Fusion Algorithms | Combined Features | 85–95% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gkintoni, E.; Panagioti, M.; Vassilopoulos, S.P.; Nikolaou, G.; Boutsinas, B.; Vantarakis, A. Leveraging AI-Driven Neuroimaging Biomarkers for Early Detection and Social Function Prediction in Autism Spectrum Disorders: A Systematic Review. Healthcare 2025, 13, 1776. https://doi.org/10.3390/healthcare13151776
Gkintoni E, Panagioti M, Vassilopoulos SP, Nikolaou G, Boutsinas B, Vantarakis A. Leveraging AI-Driven Neuroimaging Biomarkers for Early Detection and Social Function Prediction in Autism Spectrum Disorders: A Systematic Review. Healthcare. 2025; 13(15):1776. https://doi.org/10.3390/healthcare13151776
Chicago/Turabian StyleGkintoni, Evgenia, Maria Panagioti, Stephanos P. Vassilopoulos, Georgios Nikolaou, Basilis Boutsinas, and Apostolos Vantarakis. 2025. "Leveraging AI-Driven Neuroimaging Biomarkers for Early Detection and Social Function Prediction in Autism Spectrum Disorders: A Systematic Review" Healthcare 13, no. 15: 1776. https://doi.org/10.3390/healthcare13151776
APA StyleGkintoni, E., Panagioti, M., Vassilopoulos, S. P., Nikolaou, G., Boutsinas, B., & Vantarakis, A. (2025). Leveraging AI-Driven Neuroimaging Biomarkers for Early Detection and Social Function Prediction in Autism Spectrum Disorders: A Systematic Review. Healthcare, 13(15), 1776. https://doi.org/10.3390/healthcare13151776