Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (391)

Search Parameters:
Keywords = reproductive barriers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 788 KiB  
Article
Gut Microbial Composition on Dienogest Therapy in Patients with Endometriosis
by Veronika Pronina, Pavel Denisov, Vera Muravieva, Alexey Skorobogatiy, Ksenia Zhigalova, Galina Chernukha, Gennady Sukhikh and Tatiana Priputnevich
Microbiol. Res. 2025, 16(8), 169; https://doi.org/10.3390/microbiolres16080169 - 1 Aug 2025
Viewed by 207
Abstract
Endometriosis is a chronic inflammatory condition affecting approximately 10% of women of reproductive age, characterized by pelvic pain, dysmenorrhea, and infertility. Emerging evidence suggests a potential link between gut microbiota dysbiosis and endometriosis pathogenesis, mediated through hormonal regulation, immune modulation, and systemic inflammation. [...] Read more.
Endometriosis is a chronic inflammatory condition affecting approximately 10% of women of reproductive age, characterized by pelvic pain, dysmenorrhea, and infertility. Emerging evidence suggests a potential link between gut microbiota dysbiosis and endometriosis pathogenesis, mediated through hormonal regulation, immune modulation, and systemic inflammation. Dienogest (DNG) is widely used for endometriosis management, but its effects on gut microbiota remain underexplored. This study investigates the impact of DNG on gut microbial composition in endometriosis patients, aiming to elucidate its therapeutic mechanisms beyond hormonal modulation. DNG therapy led to a significant reduction in the Bacillota/Bacteroidota ratio (p = 0.0421), driven by decreased Staphylococcus spp. (p = 0.0244) and increased commensal bacteria such as Lactobacillus spp. and Collinsella aerofaciens (p = 0.049). Species richness and alpha diversity indices showed a non-significant upward trend. Notably, C. aerofaciens, a butyrate producer linked to gut barrier integrity, was detected twice as frequently during therapy. The study also observed reductions in facultative anaerobes like Enterococcus spp. and a trend toward higher titers of beneficial Bacteroidota. This study provides the first evidence that DNG therapy modulates gut microbiota in endometriosis patients, favoring a composition associated with anti-inflammatory and barrier-protective effects. The observed shifts—reduced opportunistic pathogens and increased symbionts—suggest a novel mechanism for DNG’s efficacy, potentially involving the microbial regulation of estrogen metabolism and immune responses. Full article
Show Figures

Figure 1

18 pages, 706 KiB  
Review
Hyaluronic Acid in Female Reproductive Health: Tailoring Molecular Weight to Clinical Needs in Obstetric and Gynecological Fields
by Giuseppina Porcaro, Ilenia Mappa, Francesco Leonforte, Giorgio Maria Baldini, Maria Francesca Guarneri, Marco La Verde, Felice Sorrentino and Antonio Simone Laganà
Pharmaceutics 2025, 17(8), 991; https://doi.org/10.3390/pharmaceutics17080991 (registering DOI) - 30 Jul 2025
Viewed by 269
Abstract
Hyaluronic acid (HA) is a ubiquitous glycosaminoglycan with distinct biological functions, dependent on its molecular weight. High-molecular-weight HA (HMWHA) primarily exhibits structural and anti-inflammatory roles, whereas low-(LMWHA) and very low-molecular-weight HAs (vLMWHA) actively participate in tissue regeneration and angiogenesis. This review highlights the [...] Read more.
Hyaluronic acid (HA) is a ubiquitous glycosaminoglycan with distinct biological functions, dependent on its molecular weight. High-molecular-weight HA (HMWHA) primarily exhibits structural and anti-inflammatory roles, whereas low-(LMWHA) and very low-molecular-weight HAs (vLMWHA) actively participate in tissue regeneration and angiogenesis. This review highlights the pivotal roles of HA across the female reproductive lifespan, emphasizing how molecular weight dictates its therapeutic potential. In gynecology, LMWHA effectively alleviates symptoms of genitourinary syndrome of menopause, restores vaginal architecture, and mitigates complications following pelvic radiotherapy, improving both tissue integrity and patient quality of life. vLMWHA shows promise in enhancing viral clearance and lesion regression in human papillomavirus (HPV) infections. In obstetrics, HMWHA plays crucial roles in implantation, immunotolerance, and embryogenesis and maintains cervical barrier integrity to prevent ascending infections and preterm birth. Moreover, emerging clinical evidence supports oral HMWHA supplementation for reducing pregnancy complications, such as threatened miscarriage, subchorionic hematomas, and preterm delivery. This review underscores the necessity of considering HA’s molecular weight to optimize interventions in gynecological and obstetric care, offering tailored strategies to support women’s health throughout their lives. Full article
(This article belongs to the Special Issue Hyaluronic Acid for Medical Applications)
Show Figures

Figure 1

31 pages, 3754 KiB  
Review
Artificial Gametogenesis and In Vitro Spermatogenesis: Emerging Strategies for the Treatment of Male Infertility
by Aris Kaltsas, Maria-Anna Kyrgiafini, Eleftheria Markou, Andreas Koumenis, Zissis Mamuris, Fotios Dimitriadis, Athanasios Zachariou, Michael Chrisofos and Nikolaos Sofikitis
Int. J. Mol. Sci. 2025, 26(15), 7383; https://doi.org/10.3390/ijms26157383 - 30 Jul 2025
Viewed by 440
Abstract
Male-factor infertility accounts for approxiamately half of all infertility cases globally, yet therapeutic options remain limited for individuals with no retrievable spermatozoa, such as those with non-obstructive azoospermia (NOA). In recent years, artificial gametogenesis has emerged as a promising avenue for fertility restoration, [...] Read more.
Male-factor infertility accounts for approxiamately half of all infertility cases globally, yet therapeutic options remain limited for individuals with no retrievable spermatozoa, such as those with non-obstructive azoospermia (NOA). In recent years, artificial gametogenesis has emerged as a promising avenue for fertility restoration, driven by advances in two complementary strategies: organotypic in vitro spermatogenesis (IVS), which aims to complete spermatogenesis ex vivo using native testicular tissue, and in vitro gametogenesis (IVG), which seeks to generate male gametes de novo from pluripotent or reprogrammed somatic stem cells. To evaluate the current landscape and future potential of these approaches, a narrative, semi-systematic literature search was conducted in PubMed and Scopus for the period January 2010 to February 2025. Additionally, landmark studies published prior to 2010 that contributed foundational knowledge in spermatogenesis and testicular tissue modeling were reviewed to provide historical context. This narrative review synthesizes multidisciplinary evidence from cell biology, tissue engineering, and translational medicine to benchmark IVS and IVG technologies against species-specific developmental milestones, ranging from rodent models to non-human primates and emerging human systems. Key challenges—such as the reconstitution of the blood–testis barrier, stage-specific endocrine signaling, and epigenetic reprogramming—are discussed alongside critical performance metrics of various platforms, including air–liquid interface slice cultures, three-dimensional organoids, microfluidic “testis-on-chip” devices, and stem cell-derived gametogenic protocols. Particular attention is given to clinical applicability in contexts such as NOA, oncofertility preservation in prepubertal patients, genetic syndromes, and reprocutive scenarios involving same-sex or unpartnered individuals. Safety, regulatory, and ethical considerations are critically appraised, and a translational framework is outlined that emphasizes biomimetic scaffold design, multi-omics-guided media optimization, and rigorous genomic and epigenomic quality control. While the generation of functionally mature sperm in vitro remains unachieved, converging progress in animal models and early human systems suggests that clinically revelant IVS and IVG applications are approaching feasibility, offering a paradigm shift in reproductive medicine. Full article
Show Figures

Figure 1

16 pages, 636 KiB  
Review
The Gut–Endometriosis Axis: Genetic Mechanisms and Public Health Implications
by Efthalia Moustakli, Nektaria Zagorianakou, Stylianos Makrydimas, Emmanouil D. Oikonomou, Andreas Miltiadous and George Makrydimas
Genes 2025, 16(8), 918; https://doi.org/10.3390/genes16080918 - 30 Jul 2025
Viewed by 454
Abstract
Background/Objectives: Endometriosis is a chronic, estrogen-driven gynecological disorder affecting approximately 10% of reproductive-aged women worldwide, with significant physical, psychosocial, and socioeconomic impacts. Recent research suggests a possible involvement of the gut microbiome in endometriosis disease mechanisms through immune manipulation, estrogen metabolism, and [...] Read more.
Background/Objectives: Endometriosis is a chronic, estrogen-driven gynecological disorder affecting approximately 10% of reproductive-aged women worldwide, with significant physical, psychosocial, and socioeconomic impacts. Recent research suggests a possible involvement of the gut microbiome in endometriosis disease mechanisms through immune manipulation, estrogen metabolism, and inflammatory networks. This narrative review aims to summarize current evidence on gut microbiota changes in endometriosis patients, explore the mechanisms by which gut dysbiosis contributes to disease progression, and examine epidemiological links between gastrointestinal health and endometriosis risk. Methods: A narrative review was conducted to synthesize available literature on the compositional changes in gut microbiota associated with endometriosis. The review also evaluated studies investigating potential mechanisms and epidemiological patterns connecting gut health with endometriosis development and severity. Results: Alterations in gut microbiota composition were observed in endometriosis patients, suggesting roles in immune dysregulation, estrogen metabolism, and inflammation. Potential gut-oriented interventions, including dietary changes, probiotics, and lifestyle modifications, emerged as promising management options. However, methodological variability and research gaps remain barriers to clinical translation. Conclusions: Integrating gut microbiome research into endometriosis management holds potential for improving early diagnosis, patient outcomes, and healthcare system sustainability. The study emphasizes the need for further research to address existing challenges and to develop public health strategies that incorporate microbiome-based interventions in population-level endometriosis care. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

36 pages, 539 KiB  
Review
Genomic Adaptation, Environmental Challenges, and Sustainable Yak Husbandry in High-Altitude Pastoral Systems
by Saima Naz, Ahmad Manan Mustafa Chatha, Qudrat Ullah, Muhammad Farooq, Tariq Jamil, Raja Danish Muner and Azka Kiran
Vet. Sci. 2025, 12(8), 714; https://doi.org/10.3390/vetsci12080714 - 29 Jul 2025
Viewed by 204
Abstract
The yak (Bos grunniens) is a key species in high-altitude rangelands of Asia. Despite their ecological and economic importance, yak production faces persistent challenges, including low milk yields, vulnerability to climate changes, emerging diseases, and a lack of systematic breeding programs. [...] Read more.
The yak (Bos grunniens) is a key species in high-altitude rangelands of Asia. Despite their ecological and economic importance, yak production faces persistent challenges, including low milk yields, vulnerability to climate changes, emerging diseases, and a lack of systematic breeding programs. This review presents the genomic, physiological, and environmental dimensions of yak biology and husbandry. Genes such as EPAS1, which encodes hypoxia-inducible transcription factors, underpin physiological adaptations, including enlarged cardiopulmonary structures, elevated erythrocyte concentrations, and specialized thermoregulatory mechanisms that enable their survival at elevations of 3000 m and above. Copy number variations (CNVs) and single nucleotide polymorphisms (SNPs) present promising markers for improving milk and meat production, disease resistance, and metabolic efficiency. F1 and F2 generations of yak–cattle hybrids show superior growth and milk yields, but reproductive barriers, such as natural mating or artificial insemination, and environmental factors limit the success of these hybrids beyond second generation. Infectious diseases, such as bovine viral diarrhea and antimicrobial-resistant and biofilm-forming Enterococcus and E. coli, pose risks to herd health and food safety. Rising ambient temperatures, declining forage biomass, and increased disease prevalence due to climate changes risk yak economic performance and welfare. Addressing these challenges by nutritional, environmental, and genetic interventions will safeguard yak pastoralism. This review describes the genes associated with different yak traits and provides an overview of the genetic adaptations of yaks (Bos grunniens) to environmental stresses at high altitudes and emphasizes the need for conservation and improvement strategies for sustainable husbandry of these yaks. Full article
Show Figures

Figure 1

27 pages, 2012 KiB  
Article
Dual Effects of Maternal Diet and Perinatal Organophosphate Flame Retardant Treatment on Offspring Development, Behavior and Metabolism
by Ali Yasrebi, Catherine M. Rojas, Shabree Anthony, Samantha Feltri, Jamilah Evelyn, Kimberly Wiersielis, Samantha Adams, Veronia Basaly, Grace L. Guo, Lauren M. Aleksunes and Troy A. Roepke
Toxics 2025, 13(8), 639; https://doi.org/10.3390/toxics13080639 - 29 Jul 2025
Viewed by 270
Abstract
The maternal–fetal environment is influenced by multiple factors, including nutrition and environmental contaminants, which can impact long-term development. Perinatal exposure to organophosphate flame retardants (OPFRs) disrupts energy homeostasis and causes maladaptive behaviors in mice. Maternal obesity affects development by impairing blood–brain barrier (BBB) [...] Read more.
The maternal–fetal environment is influenced by multiple factors, including nutrition and environmental contaminants, which can impact long-term development. Perinatal exposure to organophosphate flame retardants (OPFRs) disrupts energy homeostasis and causes maladaptive behaviors in mice. Maternal obesity affects development by impairing blood–brain barrier (BBB) formation, influencing brain regions involved in energy regulation and behavior. This study examined the combined effects of maternal obesity and perinatal OPFR treatment on offspring development. Female mice were fed either a low-fat (LFD) or a high-fat diet (HFD) for 8 weeks, mated, and treated with either sesame oil or an OPFR mixture (tris(1,3-dichloro-2-propyl)phosphate, tricresyl phosphate, and triphenyl phosphate, 1 mg/kg each) from gestational day 7 to postnatal day 14. Results showed that both maternal diet and OPFR treatment disrupted blood–brain barrier integrity, energy balance, and reproductive gene expression in the hypothalamus of neonates. The expression of hepatic genes related to lipid and xenobiotic metabolism was also altered. In adulthood, LFD OPFR-treated female offspring exhibited increased avoidance behavior, while HFD OPFR-treated females demonstrated memory impairments. Metabolic assessments revealed decreased energy expenditure and nighttime activity in LFD OPFR-treated females. These findings suggest that maternal diet and OPFR treatment alter hypothalamic and liver gene expression in neonates, potentially leading to long-term metabolic and behavioral changes. Full article
Show Figures

Graphical abstract

13 pages, 216 KiB  
Article
A Pilot Study of Integrated Digital Tools at a School-Based Health Center Using the RE-AIM Framework
by Steven Vu, Alex Zepeda, Tai Metzger and Kathleen P. Tebb
Healthcare 2025, 13(15), 1839; https://doi.org/10.3390/healthcare13151839 - 29 Jul 2025
Viewed by 309
Abstract
Introduction: Adolescents and young adults (AYAs), especially those from underserved communities, often face barriers to sexual and reproductive health (SRH). This pilot study evaluated the implementation of mobile health technologies to promote SRH care, including the integration of the Rapid Adolescent Prevention [...] Read more.
Introduction: Adolescents and young adults (AYAs), especially those from underserved communities, often face barriers to sexual and reproductive health (SRH). This pilot study evaluated the implementation of mobile health technologies to promote SRH care, including the integration of the Rapid Adolescent Prevention ScreeningTM (RAAPS) and the Health-E You/Salud iTuTM (Health-E You) app at a School-Based Health Center (SBHC) in Los Angeles using the RE-AIM (Reach, Effectiveness, Adoption, Implementation, Maintenance) framework. Methods: This multi-method pilot study included the implementation of an integrated tool with two components, the RAAPS electronic health screening tool and the Health-E You app, which delivers tailored SRH education and contraceptive decision support to patients (who were sex-assigned as female at birth) and provides an electronic summary to clinicians to better prepare them for the visit with their patient. Quantitative data on tool usage were collected directly from the back-end data storage for the apps, and qualitative data were obtained through semi-structured interviews and in-clinic observations. Thematic analysis was conducted to identify implementation barriers and facilitators. Results: Between April 2024 and June 2024, 60 unique patients (14–19 years of age) had a healthcare visit. Of these, 35.00% used the integrated RAAPS/Health-E You app, and 88.33% completed the Health-E You app only. All five clinic staff were interviewed and expressed that they valued the tools for their educational impact, noting that they enhanced SRH discussions and helped uncover sensitive information that students might not disclose face-to-face. However, the tools affected clinic workflows and caused rooming delays due to the time-intensive setup process and lack of integration with the clinic’s primary electronic medical record system. In addition, they also reported that the time to complete the screener and app within the context of a 30-min appointment limited the time available for direct patient care. Additionally, staff reported that some students struggled with the two-step process and did not complete all components of the tool. Despite these challenges, clinic staff strongly supported renewing the RAAPS license and continued use of the Health-E You app, emphasizing the platform’s potential for improving SRH care and its educational value. Conclusions: The integrated RAAPS and Health-E You app platform demonstrated educational value and improved SRH care but faced operational and technical barriers in implementing the tool. These findings emphasize the potential of such tools to address SRH disparities among vulnerable AYAs while providing a framework for future implementations in SBHCs. Full article
15 pages, 1837 KiB  
Article
Cost-Effectiveness of Youth-Friendly Health Services in Health Post Settings in Jimma Zone, Ethiopia
by Geteneh Moges Assefa, Muluken Dessalegn Muluneh, Sintayehu Abebe, Genetu Addisu and Wendemagegn Yeshanehe
Int. J. Environ. Res. Public Health 2025, 22(8), 1179; https://doi.org/10.3390/ijerph22081179 - 25 Jul 2025
Viewed by 241
Abstract
Background: Adolescents in Ethiopia, particularly in rural areas, face significant barriers to accessing comprehensive sexual and reproductive health (SRH) services, resulting in poor health outcomes. The youth-friendly health services (YFHS) initiative addresses these challenges by training Health Extension Workers (HEWs) to deliver tailored, [...] Read more.
Background: Adolescents in Ethiopia, particularly in rural areas, face significant barriers to accessing comprehensive sexual and reproductive health (SRH) services, resulting in poor health outcomes. The youth-friendly health services (YFHS) initiative addresses these challenges by training Health Extension Workers (HEWs) to deliver tailored, age-appropriate care at the primary care level. This study evaluates the cost-effectiveness of YFHS implementation in rural health posts in the Jimma Zone, Ethiopia. Methods: Using an ingredient-based costing approach, costs were analyzed across six health posts, three implementing YFHS and three offering routine services. Health outcomes were modeled using disability-adjusted life years (DALYs) averted, and incremental cost-effectiveness ratios (ICERs) were calculated. Results: Results showed that YFHS reached 9854 adolescents annually at a cost of USD 29,680, compared to 2012.5 adolescents and USD 7519 in control sites. The study showed the ICER of USD 25.50 per DALY averted. The intervention improved health outcomes, including a 27% increase in antenatal care uptake, a 34% rise in contraceptive use, and a 0.065% reduction in abortion-related mortality, averting 52.11 DALYs versus 26.42 in controls. Conclusions: The ICER was USD 25.50 per DALY averted, well below Ethiopia’s GDP per capita, making it highly cost-effective by WHO standards. Scaling YFHS through HEWs offers a transformative, cost-effective strategy to advance adolescent SRH equity and achieve universal health coverage in Ethiopia. Full article
Show Figures

Figure 1

15 pages, 1024 KiB  
Review
The Impact of Endocrine Disruptors on the Female Genital Tract Microbiome: A Narrative Review
by Efthalia Moustakli, Themos Grigoriadis, Anastasios Potiris, Eirini Drakaki, Athanasios Zikopoulos, Ismini Anagnostaki, Athanasios Zachariou, Ekaterini Domali, Peter Drakakis and Sofoklis Stavros
Life 2025, 15(8), 1177; https://doi.org/10.3390/life15081177 - 24 Jul 2025
Viewed by 251
Abstract
Background/Objectives: Endocrine disruptors (EDs) are xenobiotic chemicals that disrupt hormone signaling and homeostasis within the human body. Accumulative evidence proposes that EDs could affect systemic hormone balance and local microbial communities, including the female genital tract (FGT) microbiome. The FGT microbiome, and especially [...] Read more.
Background/Objectives: Endocrine disruptors (EDs) are xenobiotic chemicals that disrupt hormone signaling and homeostasis within the human body. Accumulative evidence proposes that EDs could affect systemic hormone balance and local microbial communities, including the female genital tract (FGT) microbiome. The FGT microbiome, and especially the vaginal microbiota, contributes significantly to reproductive health maintenance, defense against infection, and favorable pregnancy outcomes. Disruption of the delicate microbial environment is associated with conditions like bacterial vaginosis, infertility, and preterm birth. Methods: The present narrative review summarizes the existing literature on EDs’ potential for changing the FGT microbiome. We discuss EDs like bisphenol A (BPA), phthalates, and parabens and their potential for disrupting the FGT microbiome through ED-induced hormone perturbations, immune modulation, and epithelial barrier breach, which could lead to microbial dysbiosis. Results: Preliminary evidence suggests that ED exposure–microbial composition changes relationships; however, robust human evidence for EDs’ changes on the FGT microbiome remains scarce. Conclusions: Our review addresses major research gaps and suggests future directions for investigation, such as the necessity for longitudinal and mechanistic studies that combine microbiome, exposome, and endocrine parameters. The relationship between EDs and the FGT microbiome could be critical for enhancing women’s reproductive health and for steering regulatory policies on exposure to environmental chemicals. Full article
Show Figures

Figure 1

23 pages, 2173 KiB  
Article
Evaluation of Soil Quality and Balancing of Nitrogen Application Effects in Summer Direct-Seeded Cotton Fields Based on Minimum Dataset
by Yukun Qin, Weina Feng, Cangsong Zheng, Junying Chen, Yuping Wang, Lijuan Zhang and Taili Nie
Agronomy 2025, 15(8), 1763; https://doi.org/10.3390/agronomy15081763 - 23 Jul 2025
Viewed by 229
Abstract
There is a lack of systematic research on the comprehensive regulatory effects of urea and organic fertilizer application on soil quality and cotton yield in summer direct-seeded cotton fields in the Yangtze River Basin. Additionally, there is a redundancy of indicators in the [...] Read more.
There is a lack of systematic research on the comprehensive regulatory effects of urea and organic fertilizer application on soil quality and cotton yield in summer direct-seeded cotton fields in the Yangtze River Basin. Additionally, there is a redundancy of indicators in the cotton field soil quality evaluation system and a lack of reports on constructing a minimum dataset to evaluate the soil quality status of cotton fields. We aim to accurately and efficiently evaluate soil quality in cotton fields and screen nitrogen application measures that synergistically improve soil quality, cotton yield, and nitrogen fertilizer utilization efficiency. Taking the summer live broadcast cotton field in Jiangxi Province as the research object, four treatments, including CK without nitrogen application, CF with conventional nitrogen application, N1 with nitrogen reduction, and N2 with nitrogen reduction and organic fertilizer application, were set up for three consecutive years from 2022 to 2024. A total of 15 physical, chemical, and biological indicators of the 0–20 cm plow layer soil were measured in each treatment. A minimum dataset model was constructed to evaluate and verify the soil quality status of different nitrogen application treatments and to explore the physiological mechanisms of nitrogen application on yield performance and stability from the perspectives of cotton source–sink relationship, nitrogen use efficiency, and soil quality. The minimum dataset for soil quality evaluation in cotton fields consisted of five indicators: soil bulk density, moisture content, total nitrogen, organic carbon, and carbon-to-nitrogen ratio, with a simplification rate of 66.67% for the evaluation indicators. The soil quality index calculated based on the minimum dataset (MDS) was significantly positively correlated with the soil quality index of the total dataset (TDS) (R2 = 0.904, p < 0.05). The model validation parameters RMSE was 0.0733, nRMSE was 13.8561%, and the d value was 0.9529, all indicating that the model simulation effect had reached a good level or above. The order of soil quality index based on MDS and TDS for CK, CF, N1, and N2 treatments was CK < N1 < CF < N2. The soil quality index of N2 treatment under MDS significantly increased by 16.70% and 26.16% compared to CF and N1 treatments, respectively. Compared with CF treatment, N2 treatment significantly increased nitrogen fertilizer partial productivity by 27.97%, 31.06%, and 21.77%, respectively, over a three-year period while maintaining the same biomass, yield level, yield stability, and yield sustainability. Meanwhile, N1 treatment had the risk of significantly reducing both boll density and seed cotton yield. Compared with N1 treatment, N2 treatment could significantly increase the biomass of reproductive organs during the flower and boll stage by 23.62~24.75% and the boll opening stage by 12.39~15.44%, respectively, laying a material foundation for the improvement in yield and yield stability. Under CF treatment, the cotton field soil showed a high degree of soil physical property barriers, while the N2 treatment reduced soil barriers in indicators such as bulk density, soil organic carbon content, and soil carbon-to-nitrogen ratio by 0.04, 0.04, 0.08, and 0.02, respectively, compared to CF treatment. In summary, the minimum dataset (MDS) retained only 33.3% of the original indicators while maintaining high accuracy, demonstrating the model’s efficiency. After reducing nitrogen by 20%, applying 10% total nitrogen organic fertilizer could substantially improve cotton biomass, cotton yield performance, yield stability, and nitrogen partial productivity while maintaining soil quality levels. This study also assessed yield stability and sustainability, not just productivity alone. The comprehensive nitrogen fertilizer management (reducing N + organic fertilizer) under the experimental conditions has high practical applicability in the intensive agricultural system in southern China. Full article
(This article belongs to the Special Issue Innovations in Green and Efficient Cotton Cultivation)
Show Figures

Figure 1

35 pages, 3909 KiB  
Review
Pollen–Pistil Interaction During Distant Hybridization in Plants
by Ekaterina V. Zakharova, Alexej I. Ulianov, Yaroslav Yu. Golivanov, Tatiana P. Molchanova, Yuliya V. Orlova and Oksana A. Muratova
Agronomy 2025, 15(7), 1732; https://doi.org/10.3390/agronomy15071732 - 18 Jul 2025
Viewed by 666
Abstract
A combination of high potential productivity and ecological stability is essential for current cultivars, which is achievable by breeding. Interspecific/intergeneric hybridization remains a key approach to producing new high-yielding and resistant cultivars. Interspecific reproductive barriers (IRBs) appear in the interaction between the pollen [...] Read more.
A combination of high potential productivity and ecological stability is essential for current cultivars, which is achievable by breeding. Interspecific/intergeneric hybridization remains a key approach to producing new high-yielding and resistant cultivars. Interspecific reproductive barriers (IRBs) appear in the interaction between the pollen and pistil of interspecific/intergeneric hybrids. The mechanisms underlying these hybridization barriers are to a considerable degree unknown. The pollen–pistil interaction is decisive because the pollen of distantly related plant species either is not recognized by stigma cells or is recognized as foreign, preventing pollen tube (PT) germination and/or penetration into the stigma/style/ovary. This review mainly focuses on (1) the pollen–pistil system; (2) IRB classification; (3) similarity and differences in the function of self-incompatibility (SI) barriers and IRBs; and (4) physiological and biochemical control of IRBs and their overcoming. The main goal is to illuminate the physiological, biochemical, and molecular mechanisms underlying the growth arrest of incompatible PTs and their death. In general, this review consolidates the current understanding of the interaction of the male gametophyte with the sporophyte tissues of the pistil and outlines future research directions in the area of plant reproductive biology. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

18 pages, 871 KiB  
Review
Artificial Intelligence-Assisted Selection Strategies in Sheep: Linking Reproductive Traits with Behavioral Indicators
by Ebru Emsen, Muzeyyen Kutluca Korkmaz and Bahadir Baran Odevci
Animals 2025, 15(14), 2110; https://doi.org/10.3390/ani15142110 - 17 Jul 2025
Viewed by 396
Abstract
Reproductive efficiency is a critical determinant of productivity and profitability in sheep farming. Traditional selection methods have largely relied on phenotypic traits and historical reproductive records, which are often limited by subjectivity and delayed feedback. Recent advancements in artificial intelligence (AI), including video [...] Read more.
Reproductive efficiency is a critical determinant of productivity and profitability in sheep farming. Traditional selection methods have largely relied on phenotypic traits and historical reproductive records, which are often limited by subjectivity and delayed feedback. Recent advancements in artificial intelligence (AI), including video tracking, wearable sensors, and machine learning (ML) algorithms, offer new opportunities to identify behavior-based indicators linked to key reproductive traits such as estrus, lambing, and maternal behavior. This review synthesizes the current research on AI-powered behavioral monitoring tools and proposes a conceptual model, ReproBehaviorNet, that maps age- and sex-specific behaviors to biological processes and AI applications, supporting real-time decision-making in both intensive and semi-intensive systems. The integration of accelerometers, GPS systems, and computer vision models enables continuous, non-invasive monitoring, leading to earlier detection of reproductive events and greater breeding precision. However, the implementation of such technologies also presents challenges, including the need for high-quality data, a costly infrastructure, and technical expertise that may limit access for small-scale producers. Despite these barriers, AI-assisted behavioral phenotyping has the potential to improve genetic progress, animal welfare, and sustainability. Interdisciplinary collaboration and responsible innovation are essential to ensure the equitable and effective adoption of these technologies in diverse farming contexts. Full article
Show Figures

Figure 1

16 pages, 554 KiB  
Review
Crossing Borders: SRH Challenges Among Immigrant and Minority Adolescents
by Patience Castleton, Ahmed Shabbir Chaudhry, Negin Damabi, Salima Meherali and Zohra S. Lassi
Int. J. Environ. Res. Public Health 2025, 22(7), 1101; https://doi.org/10.3390/ijerph22071101 - 12 Jul 2025
Viewed by 325
Abstract
The adolescent years are pivotal in reproductive and sexual development and maturation, yet the experience of migration can severely disrupt this period, inhibiting young immigrants’ knowledge, access, and engagement with sexual and reproductive health (SRH) services. Further, young immigrants and minority populations often [...] Read more.
The adolescent years are pivotal in reproductive and sexual development and maturation, yet the experience of migration can severely disrupt this period, inhibiting young immigrants’ knowledge, access, and engagement with sexual and reproductive health (SRH) services. Further, young immigrants and minority populations often face persistent intersectional barriers, including language difficulties, cultural stigma, and systemic exclusion, that result in adverse SRH outcomes. Recent advances in SRH care, particularly in digital health and community-based interventions, show promise in improving access to culturally appropriate SRH services and information. Co-designing SRH programs with families and young immigrants to adequately acknowledge the unique cultural norms and barriers in SRH is essential in ensuring a high outreach of interventions. Shifts in traditional health policies are needed to ensure that immigrant and minority adolescents are not overlooked and that SRH programs incorporate culturally relevant content that is easily and widely accessible. Despite positive shifts, several barriers remain: limited disaggregated data on diverse populations, inadequate policy attention, and the insufficient scalability and funding of promising interventions. Future research and promotional efforts must prioritise the co-creation of SRH interventions with stakeholders and affected communities, ensuring that services are sustainable, culturally appropriate, and accessible to all adolescents. Full article
Show Figures

Figure 1

8 pages, 565 KiB  
Article
Diagnostic Tools for Endometriosis in Poland: A Comparative Assessment of Reliability and Out-of-Pocket Costs
by Anna Rogalska and Katarzyna Brukało
J. Clin. Med. 2025, 14(14), 4935; https://doi.org/10.3390/jcm14144935 - 11 Jul 2025
Viewed by 333
Abstract
Objectives: This study aimed to assess the availability, diagnostic reliability, and out-of-pocket costs of endometriosis diagnostic tools available on the private healthcare market in Poland. Methods: A desk-based analysis was conducted from a patient perspective to identify commercially available diagnostic tests for endometriosis [...] Read more.
Objectives: This study aimed to assess the availability, diagnostic reliability, and out-of-pocket costs of endometriosis diagnostic tools available on the private healthcare market in Poland. Methods: A desk-based analysis was conducted from a patient perspective to identify commercially available diagnostic tests for endometriosis in Poland. Data were collected in September 2024 using relevant keywords to simulate a patient search process. Identified tests were evaluated for their compliance with the 2022 European Society of Human Reproduction and Embryology (ESHRE) guidelines. Key parameters, including sensitivity, specificity, and associated costs, were assessed based on the available literature. Out-of-pocket costs were compared between the private and public healthcare sectors. Results: Five diagnostic methods were identified in the private healthcare market: two imaging techniques (transvaginal ultrasound, magnetic resonance imaging) and three blood-based tests. None of the blood-based tests demonstrated sensitivity or specificity above 90%. Imaging techniques met this criterion. The cost of blood tests ranged from EUR 21.1 to EUR 467.77. The average private-sector cost for transvaginal ultrasound was EUR 111.64, representing a 482.6% increase compared to the public sector. Magnetic resonance imaging cost EUR 122.89 in the private sector, a 148.64% increase. Conclusions: The private Polish healthcare market lacks non-invasive diagnostic tests for endometriosis that achieve high reliability based on large study samples. Imaging tests, while reliable, pose significant financial barriers when accessed privately. Enhanced public access and clearer patient guidance are required to ensure timely and effective diagnosis. Full article
(This article belongs to the Special Issue Endometriosis: Diagnosis and Treatment)
Show Figures

Figure 1

15 pages, 1423 KiB  
Review
Sperm Membrane Stability: In-Depth Analysis from Structural Basis to Functional Regulation
by Shan-Hui Xue, Bing-Bing Xu, Xiao-Chun Yan, Jia-Xin Zhang and Rui Su
Vet. Sci. 2025, 12(7), 658; https://doi.org/10.3390/vetsci12070658 - 11 Jul 2025
Viewed by 339
Abstract
Sperm membrane stability is a key factor in determining sperm viability and fertilization capability, with broad implications ranging from basic reproductive biology to livestock breeding practices. This comprehensive review examines the structural and functional mechanisms underlying sperm membrane integrity, including defensive barrier functions, [...] Read more.
Sperm membrane stability is a key factor in determining sperm viability and fertilization capability, with broad implications ranging from basic reproductive biology to livestock breeding practices. This comprehensive review examines the structural and functional mechanisms underlying sperm membrane integrity, including defensive barrier functions, potentiometric ion channel regulation, and motility modulation that collectively optimize sperm survival, motility, and fertilization potential. Environmental factors such as temperature fluctuations, abnormal pH levels (outside the optimal 7.2–8.2 range), pathological conditions, and hormonal imbalances can compromise membrane stability by inducing oxidative stress and protein denaturation. Key regulatory proteins, notably NPC2 for cholesterol homeostasis, Flotillin proteins for lipid raft organization, and Annexin V for membrane repair mechanisms, demonstrate essential roles in maintaining structural integrity. In livestock reproduction, membrane stability research facilitates the optimization of cryoprotectant formulations and freezing protocols, resulting in 15–25% improvements in post-thaw sperm survival rates and enhanced artificial insemination success. These findings provide valuable insights for advancing assisted reproductive technologies and improving reproductive efficiency in animal husbandry. Full article
Show Figures

Figure 1

Back to TopTop