Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (276)

Search Parameters:
Keywords = repetitive magnetic stimulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 1418 KiB  
Review
Efficacy of Transcranial Magnetic Stimulation and Transcranial Direct-Current Stimulation in Primary Progressive Aphasia Treatment: A Review
by Elena Gobbi, Ilaria Pagnoni, Elena Campana, Rosa Manenti and Maria Cotelli
Brain Sci. 2025, 15(8), 839; https://doi.org/10.3390/brainsci15080839 (registering DOI) - 5 Aug 2025
Abstract
Background: In recent years, there has been increasing interest in the application of repetitive Transcranial Magnetic Stimulation (rTMS) and transcranial Direct-Current Stimulation (tDCS) to enhance and rehabilitate the language abilities in individuals with neurodegenerative diseases. Objective: The aim of this narrative literature review [...] Read more.
Background: In recent years, there has been increasing interest in the application of repetitive Transcranial Magnetic Stimulation (rTMS) and transcranial Direct-Current Stimulation (tDCS) to enhance and rehabilitate the language abilities in individuals with neurodegenerative diseases. Objective: The aim of this narrative literature review is to investigate the usefulness of rTMS and tDCS to improve language abilities in people with Primary Progressive Aphasia (PPA). Methods: This narrative literature review was conducted through a search of the PubMed online database to identify studies investigating the effects of multiple sessions of rTMS or tDCS on language abilities in PPA patients, applied either as stand-alone interventions or in combination with language treatment. Results: Thirty-three studies fulfilled the inclusion criteria; five studies employed rTMS without language treatment; two studies applied tDCS as stand-alone intervention; twenty-two studies combined tDCS with language treatment; and four studies assessed the effects of tDCS during verbal task without language treatment. Conclusions: rTMS and tDCS applied with or without concomitant language treatment appear to be promising interventions for enhancing language abilities in PPA, with sustained effects reported over time. Further research is necessary to optimise stimulation protocols and to improve our understanding of their long-term effects. Moreover, randomised controlled trials (RCTs) with larger sample sizes are critically needed to clarify the true impact of brain stimulation in PPA, with a focus on changes in cognitive and functional performance, neural activity, and potential molecular correlates. Full article
(This article belongs to the Special Issue Latest Research on the Treatments of Speech and Language Disorders)
10 pages, 969 KiB  
Article
Effect of Repetitive Peripheral Magnetic Stimulation in Patients with Neck Myofascial Pain: A Randomized Sham-Controlled Crossover Trial
by Thapanun Mahisanun and Jittima Saengsuwan
J. Clin. Med. 2025, 14(15), 5410; https://doi.org/10.3390/jcm14155410 - 1 Aug 2025
Viewed by 296
Abstract
Background/Objectives: Neck pain caused by myofascial pain syndrome (MPS) is a highly prevalent musculoskeletal condition. Repetitive peripheral magnetic stimulation (rPMS) is a promising treatment option; however, its therapeutic effect and optimal treatment frequency remain unclear. This study aimed to investigate the therapeutic [...] Read more.
Background/Objectives: Neck pain caused by myofascial pain syndrome (MPS) is a highly prevalent musculoskeletal condition. Repetitive peripheral magnetic stimulation (rPMS) is a promising treatment option; however, its therapeutic effect and optimal treatment frequency remain unclear. This study aimed to investigate the therapeutic effect and duration of effect of rPMS in patients with MPS of the neck. Methods: In this randomized, sham-controlled, crossover trial, 27 patients with neck MPS and baseline visual analog scale (VAS) scores ≥ 40 were enrolled. The mean age was 43.8 ± 9.1 years, and 63% were female. Participants were randomly assigned to receive either an initial rPMS treatment (a 10 min session delivering 3900 pulses at 5–10 Hz) or sham stimulation. After 7 days, groups crossed over. Pain intensity (VAS), disability (Neck Disability Index; NDI), and analgesic use were recorded daily for seven consecutive days. A linear mixed-effects model was used for analysis. Results: At baseline, the VAS and NDI scores were 61.8 ± 10.5 and 26.0 ± 6.3, respectively. rPMS produced a significantly greater reduction in both VAS and NDI scores, with the greatest differences observed on Day 4: the differences were −24.1 points in VAS and −8.5 points in NDI compared to the sham group. There was no significant difference in analgesic use between the two groups. Conclusions: A single rPMS session provides short-term improvement in pain and disability in neck MPS. Based on the observed therapeutic window, more frequent sessions (e.g., twice weekly) may provide sustained benefit and should be explored in future studies. Full article
(This article belongs to the Section Clinical Rehabilitation)
Show Figures

Figure 1

12 pages, 1773 KiB  
Article
Low-Frequency rTMS and Diazepam Exert Synergistic Effects on the Excitability of an SH-SY5Y Model of Epileptiform Activity
by Ioannis Dardalas, Efstratios K. Kosmidis, Roza Lagoudaki, Vasilios K. Kimiskidis, Theodoros Samaras, Theodoros Moysiadis, Dimitrios Kouvelas and Chryssa Pourzitaki
Biomedicines 2025, 13(8), 1857; https://doi.org/10.3390/biomedicines13081857 - 30 Jul 2025
Viewed by 304
Abstract
Background/Objectives: Epilepsy is a brain condition that affects millions of people worldwide. Although there are many antiepileptic drugs with different mechanisms of action, many patients still fail to control their agonizing symptoms, a situation that highlights the need for more strategies to address [...] Read more.
Background/Objectives: Epilepsy is a brain condition that affects millions of people worldwide. Although there are many antiepileptic drugs with different mechanisms of action, many patients still fail to control their agonizing symptoms, a situation that highlights the need for more strategies to address this issue. In this in vitro study, we elucidated and characterized the alterations in intracellular Ca2+ levels in cell cultures where diazepam and repetitive transcranial magnetic stimulation were implemented, alone or in combination. Methods: Using the differentiated human-derived neuroblastoma cell line SH-SY5Y, we measured the alterations in intracellular Ca2+ levels under the impact of either low-frequency repetitive transcranial magnetic stimulation (1 Hz), diazepam (14 μM), or their combination. We used the Ca2+-sensitive fluorescent indicator Fluo-4 acetoxymethyl ester for calcium imaging, while neuronal excitation was achieved with 50 mM KCl. Results: The highest median fluorescence intensity increase (%ΔF/F = 24.80) was observed in control cell cultures, followed by rTMS cultures (%ΔF/F = 16.96) and diazepam cultures (%ΔF/F = 11.46). The lowest median fluorescence intensity value (%ΔF/F =−0.44) was observed when diazepam was used concomitantly with repetitive transcranial magnetic stimulation. Post hoc analysis assessed pairwise differences, showing statistically significant differentiation between the control group and all other groups. Additionally, statistically significant results were observed between repetitive transcranial magnetic stimulation or diazepam and their combination, but not between them. Conclusions: The combination of diazepam and repetitive transcranial magnetic stimulation resulted in the most significant reduction in intracellular Ca2+ levels, as indicated by the lowest fluorescence values compared with the control group. Individually, each treatment produced a notable but less pronounced effect. We conclude that both diazepam and low-frequency repetitive transcranial magnetic stimulation can control epileptiform activity in vitro, while their combination is the most effective treatment. Full article
(This article belongs to the Special Issue Epilepsy: From Mechanisms to Therapeutic Approaches)
Show Figures

Figure 1

12 pages, 753 KiB  
Article
The Effect of Sensory-Based Priming Using Repetitive Peripheral Magnetic Stimulation on Motor Skill Performance in Individuals with Stroke
by Rehab Aljuhni, Christina Sawa, Srinivas Kumar and Sangeetha Madhavan
Appl. Sci. 2025, 15(15), 8129; https://doi.org/10.3390/app15158129 - 22 Jul 2025
Viewed by 207
Abstract
The objective of this study was to investigate the temporal effectiveness of repetitive peripheral magnetic stimulation (rPMS) on lower-limb motor skill performance in individuals with chronic stroke. In this sham-controlled crossover study, we hypothesized that individuals with stroke who received rPMS would demonstrate [...] Read more.
The objective of this study was to investigate the temporal effectiveness of repetitive peripheral magnetic stimulation (rPMS) on lower-limb motor skill performance in individuals with chronic stroke. In this sham-controlled crossover study, we hypothesized that individuals with stroke who received rPMS would demonstrate improved motor skill performance after the stimulation and maintain this enhanced performance at 30 and 60 min after the stimulation. Sixteen participants performed a visuomotor ankle-tracking task at multiple time points following either rPMS or sham stimulation. rPMS, delivered to the tibialis anterior muscle, did not result in statistically significant changes in spatiotemporal (p = 0.725) or spatial error (p = 0.566) metrics at any post-stimulation time point. These findings suggest that a single session of rPMS does not lead to measurable improvements in lower-limb motor skill performance in individuals with stroke, underscoring the need to refine stimulation parameters and target populations in future protocols. Full article
(This article belongs to the Special Issue Current Advances in Rehabilitation Technology)
Show Figures

Figure 1

26 pages, 2058 KiB  
Review
Neuromodulation Interventions for Language Deficits in Alzheimer’s Disease: Update on Current Practice and Future Developments
by Fei Chen, Yuyan Nie and Chen Kuang
Brain Sci. 2025, 15(7), 754; https://doi.org/10.3390/brainsci15070754 - 16 Jul 2025
Viewed by 369
Abstract
Alzheimer’s disease (AD) is a leading cause of dementia, characterized by progressive cognitive and language impairments that significantly impact communication and quality of life. Neuromodulation techniques, including repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS), and deep brain stimulation (DBS), have [...] Read more.
Alzheimer’s disease (AD) is a leading cause of dementia, characterized by progressive cognitive and language impairments that significantly impact communication and quality of life. Neuromodulation techniques, including repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS), and deep brain stimulation (DBS), have emerged as promising interventions. This study employs bibliometric analysis to evaluate global research trends in neuromodulation treatments for AD-related language impairments. A total of 88 publications from the Web of Science Core Collection (2006–2024) were analyzed using bibliometric methods. Key indicators such as publication trends, citation patterns, collaboration networks, and research themes were examined to map the intellectual landscape of this field. The analysis identified 580 authors across 65 journals, with an average of 34.82 citations per article. Nearly half of the publications were produced after 2021, indicating rapid recent growth. The findings highlight a predominant focus on non-invasive neuromodulation methods, particularly rTMS and tDCS, within neurosciences and neurology. While research activity is increasing, significant challenges persist, including ethical concerns, operational constraints, and the translational gap between research and clinical applications. This study provides insights into the current research landscape and future directions for neuromodulation in AD-related language impairments. The results emphasize the need for novel neuromodulation techniques and interdisciplinary collaboration to enhance therapeutic efficacy and clinical integration. Full article
(This article belongs to the Special Issue Noninvasive Neuromodulation Applications in Research and Clinics)
Show Figures

Figure 1

11 pages, 677 KiB  
Communication
Inefficacy of Repetitive Transcranial Magnetic Stimulation in Parkinson’s Disease Patients with Levodopa-Induced Dyskinesias: Results from a Pilot Study
by Alma Medrano-Hernández, Gabriel Neri-Nani, Mayela Rodríguez-Violante, René Drucker-Colín and Anahí Chavarría
Biomedicines 2025, 13(7), 1663; https://doi.org/10.3390/biomedicines13071663 - 8 Jul 2025
Viewed by 374
Abstract
Background: Parkinson’s disease (PD) presents a significant challenge due to its wide range of motor, non-motor, and treatment-related symptoms. Non-invasive interventions like transcranial magnetic stimulation (TMS) are being explored for potential therapeutic benefits. This study aimed to assess if a high-frequency repetitive TMS [...] Read more.
Background: Parkinson’s disease (PD) presents a significant challenge due to its wide range of motor, non-motor, and treatment-related symptoms. Non-invasive interventions like transcranial magnetic stimulation (TMS) are being explored for potential therapeutic benefits. This study aimed to assess if a high-frequency repetitive TMS protocol (HF-rTMS) consisting of 10 trains of 100 pulses of rTMS at 25 Hz over the motor cortex (M1) at 80% of the resting motor threshold could be effective in treating motor or non-motor symptoms in patients with PD with levodopa-induced dyskinesias. Methods: A randomized, single-blinded, placebo-controlled pilot trial was conducted with eleven PD patients. Nine patients received HF-rTMS, while two received sham stimulation. Patients were exhaustively evaluated using validated clinical scales to assess motor and non-motor symptoms. The study followed a rigorous protocol to avoid bias, with assessments conducted by a neurologist specialized in single-blinded movement disorder. Results: The HF-rTMS group experienced a statistically significant slight worsening in both motor and non-motor symptoms, particularly in the mood/cognition and gastrointestinal domains. However, positive effects were observed in some non-motor symptoms, specifically reduced excessive sweating and weight. No adverse effects were reported. Conclusions: Although HF-rTMS did not produce significant motor improvements, its potential benefit on specific non-motor symptoms, such as autonomic regulation, warrants further investigation. Full article
(This article belongs to the Special Issue Recent Therapeutic Advances in Parkinson’s Disease)
Show Figures

Figure 1

13 pages, 784 KiB  
Review
Invasive and Non-Invasive Neuromodulation for the Treatment of Substance Use Disorders: A Review of Reviews
by Tyler S. Oesterle, Nicholas L. Bormann, Majd Al-Soleiti, Simon Kung, Balwinder Singh, Michele T. McGinnis, Sabrina Correa da Costa, Teresa Rummans, Mohit Chauhan, Juan M. Rojas Cabrera, Sara A. Vettleson-Trutza, Kristen M. Scheitler, Hojin Shin, Kendall H. Lee and Mark S. Gold
Brain Sci. 2025, 15(7), 723; https://doi.org/10.3390/brainsci15070723 - 6 Jul 2025
Viewed by 670
Abstract
Background: Invasive and non-invasive neuromodulation in psychiatry represents a burgeoning field that leverages advanced neuromodulation techniques to address substance use disorders (SUDs). Aims: This narrative review synthesizes findings from multiple reviews to evaluate the efficacy of neuromodulation in treating SUDs. Methods: A comprehensive [...] Read more.
Background: Invasive and non-invasive neuromodulation in psychiatry represents a burgeoning field that leverages advanced neuromodulation techniques to address substance use disorders (SUDs). Aims: This narrative review synthesizes findings from multiple reviews to evaluate the efficacy of neuromodulation in treating SUDs. Methods: A comprehensive literature search was conducted between December 2024 and April 2025, focusing on systematic reviews and meta-analyses that examined various neuromodulation modalities, including repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS), and deep brain stimulation (DBS). The selected reviews were analyzed to identify common themes, outcomes, and gaps in the current understanding of these treatments for SUDs. Results: 11 reviews met the final inclusion criteria; 5 focused on non-invasive neuromodulation (rTMS, tDCS) and 6 on invasive neuromodulation (DBS). Non-invasive neurostimulation was associated with modest improvements in craving and cognitive dysfunction in individuals with SUDs. Similarly, invasive neuromodulation (DBS), through high-frequency stimulation of the bilateral nucleus accumbens, appeared to reduce cravings and improve comorbid psychiatric symptoms in both preclinical and human studies. Importantly, small sample sizes, heterogeneity in targets and stimulation protocols, and short follow-up periods significantly limit the generalizability of current findings from both non-invasive and invasive neuromodulation studies. Conclusions: As novel and more effective therapies for the treatment of SUD are desperately needed, procedural interventional psychiatry holds promise. However, despite encouraging results, existing evidence is still preliminary, and larger, rigorously designed studies are warranted to further establish the safety and efficacy of neuromodulatory interventions for SUD treatment. Full article
(This article belongs to the Special Issue Psychedelic and Interventional Psychiatry)
Show Figures

Figure 1

15 pages, 937 KiB  
Article
Insular Cortex Modulation by Repetitive Transcranial Magnetic Stimulation with Concurrent Functional Magnetic Resonance Imaging: Preliminary Findings
by Daphné Citherlet, Olivier Boucher, Manon Robert, Catherine Provost, Arielle Alcindor, Ke Peng, Louis De Beaumont and Dang Khoa Nguyen
Brain Sci. 2025, 15(7), 680; https://doi.org/10.3390/brainsci15070680 - 25 Jun 2025
Viewed by 999
Abstract
Background/Objectives: The insula is a deep, functionally heterogeneous region involved in various pathological conditions. Repetitive transcranial magnetic stimulation (rTMS) has emerged as a promising therapeutic avenue for neuromodulation, yet very few studies have directly investigated its effects on insular activity. Moreover, empirical evidence [...] Read more.
Background/Objectives: The insula is a deep, functionally heterogeneous region involved in various pathological conditions. Repetitive transcranial magnetic stimulation (rTMS) has emerged as a promising therapeutic avenue for neuromodulation, yet very few studies have directly investigated its effects on insular activity. Moreover, empirical evidence of target engagement of this region remains scarce. This study aimed to stimulate the insula with rTMS and assess blood oxygen level-dependent (BOLD) signal modulation using concurrent functional magnetic resonance imaging (fMRI). Methods: Ten participants were recruited, six of whom underwent a single session of 5 Hz high-frequency rTMS over the right insular cortex inside the MRI scanner. Stimulation was delivered using a compatible MRI-B91 TMS coil. Stimulation consisted of 10 trains of 10 s each, with a 50 s interval between trains. Frameless stereotactic neuronavigation ensured precise targeting. Paired t-tests were used to compare the mean BOLD signal obtained between stimulation trains with resting-state fMRI acquired before the rTMS stimulation session. A significant cluster threshold of q < 0.01 (False Discovery Rate; FDR) with a minimum cluster size of 10 voxels was applied. Results: Concurrent rTMS-fMRI revealed the significant modulation of BOLD activity within insular subregions. Increased activity was observed in the anterior, middle, and middle-inferior insula, while decreased activity was identified in the ventral anterior and posterior insula. Additionally, two participants reported transient dysgeusia following stimulation, which provides further evidence of insular modulation. Conclusions: These findings provide preliminary evidence that rTMS can modulate distinct subregions of the insular cortex. The combination of region-specific BOLD responses and stimulation-induced dysgeusia supports the feasibility of using rTMS to modulate insular activity. Full article
(This article belongs to the Section Neurotechnology and Neuroimaging)
Show Figures

Figure 1

12 pages, 824 KiB  
Article
Evaluating Repetitive Transcranial Magnetic Stimulation for Refractory Chronic Cluster Headache Prevention: Insights from a Randomized Crossover Pilot Trial
by Leonardo Portocarrero-Sánchez, Cristian Rizea, Exuperio Díez-Tejedor, Moisés León-Ruiz and Javier Díaz-de-Terán
Brain Sci. 2025, 15(6), 554; https://doi.org/10.3390/brainsci15060554 - 23 May 2025
Viewed by 711
Abstract
Background/Objectives: Cluster headache (CH) is a debilitating primary headache disorder characterized by severe unilateral pain attacks. Chronic CH (CCH) poses significant treatment challenges, especially in refractory cases. Neuromodulation, including repetitive transcranial magnetic stimulation (rTMS), offers a potential alternative; however, evidence for its [...] Read more.
Background/Objectives: Cluster headache (CH) is a debilitating primary headache disorder characterized by severe unilateral pain attacks. Chronic CH (CCH) poses significant treatment challenges, especially in refractory cases. Neuromodulation, including repetitive transcranial magnetic stimulation (rTMS), offers a potential alternative; however, evidence for its efficacy in CCH is lacking. Methods: A randomized, double-blind, placebo-controlled, crossover pilot study was conducted. Eligibility criteria included patients with refractory CCH (rCCH), who were then randomized to receive two treatment sequences: A, rTMS followed by sham stimulation, or B, sham followed by rTMS, separated by a one-month washout, with a follow-up period of 3 months. The primary endpoint was to analyze efficacy by assessing the change in the number of attacks per week (APW). Secondary endpoints included treatment tolerability and changes in intensity, duration, and use of rescue medication. The trial was registered with ClinicalTrials.gov (NCT06917144). Results: Eight patients were enrolled and randomized with a 50% probability of assignment to either treatment arm. Despite this, five patients were allocated to sequence A and three to sequence B. Three patients completed the entire study; five received treatment with rTMS and six with sham. The APW change during rTMS showed a change of (mean ± SD) +2.2 (10.8) attacks per week (p = 0.672). Two patients achieved complete remission during the rTMS phase, though symptoms returned by the washout period. In comparison with sham, the difference was also not statistically significant. No significant changes were observed in secondary endpoints. Side effects (two cases) were mild and transient. Conclusions: This pilot study suggests that rTMS may provide clinical benefits for rCCH in selected cases, though its effects seem transient. Adherence to treatment remains a critical challenge. Full article
(This article belongs to the Special Issue Neuromodulation for Pain Management: Evidence of Safety and Efficacy)
Show Figures

Figure 1

20 pages, 1178 KiB  
Review
Following the Action of Atypical Antipsychotic Clozapine and Possible Prediction of Treatment Response in Schizophrenia
by Mihai-Gabriel Năstase, Antonia Ioana Vasile, Arina Cipriana Pietreanu and Simona Trifu
Life 2025, 15(6), 830; https://doi.org/10.3390/life15060830 - 22 May 2025
Viewed by 1077
Abstract
We tried to synthesize the possibilities of predicting the response to clozapine treatment, which can significantly improve the efficacy of the active substance and reduce adverse reactions, and how the active substance acts at the D1 dopaminergic receptors D2, D3, D4, and D5, [...] Read more.
We tried to synthesize the possibilities of predicting the response to clozapine treatment, which can significantly improve the efficacy of the active substance and reduce adverse reactions, and how the active substance acts at the D1 dopaminergic receptors D2, D3, D4, and D5, muscarinic M1, M2, M3, and M5, and the histamine and alpha 1 adrenergic receptor, as well as how it contributes to increased cerebral blood flow, the effect on ribosomal protein S6 function, or the effect on kynurenine 3-monooxygenase function. Clozapine is one of the most effective antipsychotics, and there is potential to improve performance by combining it with different compounds to limit adverse effects or by augmenting it with other antipsychotics (amisulpride, paliperidone), other active substances with different properties (minocycline, N-acetylcysteine, memantine), or alternative therapies (electroconvulsive therapy, repetitive transcranial magnetic stimulation). There are also significant steps in optimizing clozapine efficacy by predicting treatment response, which could be determined by testing the following: plasma levels of clozapine N-oxide and N-desmethylclozapine, serum levels of neurotrophins and glutamate, genetic testing, the polygenic risk score, morphometry, or even the identification and accurate determination of persistent negative symptoms. Full article
Show Figures

Figure 1

20 pages, 642 KiB  
Review
Efficacy and Safety of Transcranial Magnetic Stimulation for Treating Late-Life Depression: A Scoping Review
by Ciprian-Ionuț Băcilă, Monica Cornea, Andrei Lomnasan, Claudia Elena Anghel, Andreea Maria Grama, Cristina Elena Dobre, Silvia Rusu and Bogdan Ioan Vintilă
J. Clin. Med. 2025, 14(10), 3609; https://doi.org/10.3390/jcm14103609 - 21 May 2025
Viewed by 1690
Abstract
Background/Objectives: Transcranial magnetic stimulation (TMS) is a non-invasive and well-tolerated treatment, offering an effective alternative for elderly patients with depression, especially when side effects or comorbidities limit medication. Methods: This scoping review analyzes 16 studies published over the past seven years, [...] Read more.
Background/Objectives: Transcranial magnetic stimulation (TMS) is a non-invasive and well-tolerated treatment, offering an effective alternative for elderly patients with depression, especially when side effects or comorbidities limit medication. Methods: This scoping review analyzes 16 studies published over the past seven years, to evaluate the efficacy, safety, and clinical applications of TMS in older adults with depression. Results: The review examines various TMS modalities, including repetitive TMS (rTMS), deep TMS, and theta burst stimulation (TBS), with most protocols targeting the dorsolateral prefrontal cortex (DLPFC). Adverse effects were rare, mild, and transient, supporting the treatment’s safety profile. Pharmacological co-treatment was common but not essential for clinical improvement, highlighting TMS’s potential as a standalone therapy. A subset of studies used neuroplasticity (SICI, ICF, CSP) or neuroimaging measures (MRI and MRI-based neuronavigation), revealing that age-related cortical inhibition may limit plasticity rather than depression itself. Conclusions: Overall, TMS demonstrates promising effectiveness and tolerability in managing late-life depression. Across studies, remission rates varied from 20% to 63%, with higher efficacy generally observed in bilateral stimulation or high-frequency protocols. Standardization of protocols and further research into individualized targeting and long-term outcomes are warranted to support broader clinical adoption. Full article
(This article belongs to the Special Issue Innovations in the Treatment for Depression and Anxiety)
Show Figures

Figure 1

19 pages, 2116 KiB  
Article
Right Parietal rTMS Induces Bidirectional Effects of Selective Attention upon Object Integration
by Markus Conci, Leonie Nowack, Paul C. J. Taylor, Kathrin Finke and Hermann J. Müller
Brain Sci. 2025, 15(5), 483; https://doi.org/10.3390/brainsci15050483 - 3 May 2025
Viewed by 636
Abstract
Background/Objectives: Part-to-whole object completion and search guidance by salient, integrated objects has been proposed to require attentional resources, as shown by studies of neglect patients suffering from right-parietal brain damage. The current study was performed to provide further causal evidence for the link [...] Read more.
Background/Objectives: Part-to-whole object completion and search guidance by salient, integrated objects has been proposed to require attentional resources, as shown by studies of neglect patients suffering from right-parietal brain damage. The current study was performed to provide further causal evidence for the link between attention and object integration. Methods: Healthy observers detected targets in the left and/or right hemifields, and these targets were in turn embedded in various Kanizsa-type configurations that systematically varied in the extent to which individual items could be integrated into a complete, whole object. Moreover, repetitive transcranial magnetic stimulation (rTMS) was applied over the right intraparietal sulcus (IPS) and compared to both active and passive baseline conditions. Results: The results showed that target detection was substantially facilitated when the to-be detected item(s) were fully embedded in a salient, grouped Kanizsa figure, either a unilateral triangle or a bilateral diamond. However, object groupings in one hemifield did not facilitate target detection to the same extent when there were bilateral targets, one inside the (triangle) grouping and the other outside of the grouped object. These results extend previous findings from neglect patients. Moreover, a subgroup of observers was found to be particularly sensitive to IPS stimulation, revealing neglect-like extinction behavior with the single-hemifield triangle groupings and bilateral targets. Conversely, a second subgroup showed the opposite effect, namely an overall, IPS-dependent improvement in performance. Conclusions: These explorative analyses show that the parietal cortex, in particular IPS, seems to modulate the processing of object groupings by up- and downregulating the deployment of attention to spatial regions were to-be-grouped items necessitate attentional resources for object completion. Full article
(This article belongs to the Section Cognitive, Social and Affective Neuroscience)
Show Figures

Figure 1

32 pages, 806 KiB  
Systematic Review
Safety and Efficacy of Different Therapeutic Interventions for Primary Progressive Aphasia: A Systematic Review
by Abdulrahim Saleh Alrasheed, Reem Ali Alshamrani, Abdullah Ali Al Ameer, Reham Mohammed Alkahtani, Noor Mohammad AlMohish, Mustafa Ahmed AlQarni and Majed Mohammad Alabdali
J. Clin. Med. 2025, 14(9), 3063; https://doi.org/10.3390/jcm14093063 - 29 Apr 2025
Viewed by 1340
Abstract
Background: Primary progressive aphasia (PPA) is a neurodegenerative disorder that worsens over time without appropriate treatment. Although referral to a speech and language pathologist is essential for diagnosing language deficits and developing effective treatment plans, there is no scientific consensus regarding the [...] Read more.
Background: Primary progressive aphasia (PPA) is a neurodegenerative disorder that worsens over time without appropriate treatment. Although referral to a speech and language pathologist is essential for diagnosing language deficits and developing effective treatment plans, there is no scientific consensus regarding the most effective treatment. Thus, our study aims to assess the efficacy and safety of various therapeutic interventions for PPA. Methods: Google Scholar, PubMed, Web of Science, and the Cochrane Library databases were systematically searched to identify articles assessing different therapeutic interventions for PPA. To ensure comprehensive coverage, the search strategy employed specific medical subject headings. The primary outcome measure was language gain; the secondary outcome assessed overall therapeutic effects. Data on study characteristics, patient demographics, PPA subtypes, therapeutic modalities, and treatment patterns were collected. Results: Fifty-seven studies with 655 patients were included. For naming and word finding, errorless learning therapy, lexical retrieval cascade (LRC), semantic feature training, smartphone-based cognitive therapy, picture-naming therapy, and repetitive transcranial magnetic stimulation (rTMS) maintained effects for up to six months. Repetitive rTMS, video-implemented script training for aphasia (VISTA), and structured oral reading therapy improved speech fluency. Sole transcranial treatments enhanced auditory verbal comprehension, whereas transcranial direct current stimulation (tDCS) combined with language or cognitive therapy improved repetition abilities. Phonological and orthographic treatments improved reading accuracy across PPA subtypes. tDCS combined with speech therapy enhanced mini-mental state examination (MMSE) scores and cognitive function. Several therapies, including smartphone-based cognitive therapy and VISTA therapy, demonstrated sustained language improvements over six months. Conclusions: Various therapeutic interventions offer potential benefits for individuals with PPA. However, due to the heterogeneity in study designs, administration methods, small sample sizes, and lack of standardized measurement methods, drawing a firm conclusion is difficult. Further studies are warranted to establish evidence-based treatment protocols. Full article
Show Figures

Figure 1

16 pages, 3287 KiB  
Article
Evaluating Magnetic Stimulation as an Innovative Approach for Treating Dry Eye Disease: An Initial Safety and Efficacy Study
by Hadas Ben-Eli, Shimon Perelman, Denise Wajnsztajn and Abraham Solomon
Biomedicines 2025, 13(5), 1064; https://doi.org/10.3390/biomedicines13051064 - 28 Apr 2025
Viewed by 620
Abstract
Objective: The aim of this study was to assess the safety and preliminary efficacy of repetitive magnetic stimulation (RMS) as a treatment intervention for dry eye disease (DED), focusing on symptom reduction. Methodology: This investigation involved 22 adult participants (85% females, aged between [...] Read more.
Objective: The aim of this study was to assess the safety and preliminary efficacy of repetitive magnetic stimulation (RMS) as a treatment intervention for dry eye disease (DED), focusing on symptom reduction. Methodology: This investigation involved 22 adult participants (85% females, aged between 22 and 79 years) diagnosed with moderate-to-severe DED. These individuals were subjected to RMS treatment targeting one or both eyes using the VIVEYE-Ocular Magnetic Neurostimulation System version 1.0 (Epitech-Mag LTD; National Institute of Health (NIH) clinical trials registry #NCT03012698). A placebo-controlled group was also included for comparative analysis, with all subjects being monitored over a three-month period. The evaluation of safety encompassed monitoring changes in best corrected visual acuity, ocular pathology, and the reporting of adverse events. Participant tolerance was gauged through questionnaires, measurements of intraocular pressure (IOP), Schirmer’s test, and vital signs. The efficacy of the treatment was assessed by comparing pre- and post-treatment scores for fluorescein staining (according to National Eye Institute (NEI) grading) and patient-reported outcomes. Results: No statistically significant changes were found in visual acuity, IOP, or Schirmer’s test results between the RMS-treated and control groups (p < 0.05), indicating that RMS does not negatively impact these ocular functions. However, RMS treatment was associated with improved tear film stability (p = 0.19 vs. p = 0.04) and corneal health (p = 0.52 vs. p = 0.004), with no improvements in the control group. Initial symptom improvement was observed in both RMS-treated and placebo groups (p = 0.007 vs. p = 0.008), suggesting a potential therapeutic benefit of RMS for ocular surface conditions beyond a placebo effect. Conclusions: This study presents RMS as a promising therapeutic approach for DED, highlighting its potential to promote corneal epithelial repair, enhance tear film stability, and improve patient-reported symptoms without negatively impacting IOP, visual acuity, or tear production. This confirms the safety and suggests the efficacy of RMS therapy for dry eye conditions. Full article
(This article belongs to the Special Issue Recent Research on Dry Eye)
Show Figures

Figure 1

15 pages, 3344 KiB  
Perspective
Integrating Ultrasound-Guided Injections and Peripheral Magnetic Stimulation in Chronic Myofascial/Lumbar Pain
by Wei-Ting Wu, Ke-Vin Chang, Kamal Mezian, Vincenzo Ricci and Levent Özçakar
Life 2025, 15(4), 563; https://doi.org/10.3390/life15040563 - 31 Mar 2025
Viewed by 972
Abstract
Myofascial pain syndrome (MPS) is a common musculoskeletal disorder that significantly affects quality of life. Conventional treatment approaches include pharmacological interventions, physical therapy, and procedures such as dry needling. Among these, ultrasound-guided injections (USGIs) have gained recognition for their precision and therapeutic benefits. [...] Read more.
Myofascial pain syndrome (MPS) is a common musculoskeletal disorder that significantly affects quality of life. Conventional treatment approaches include pharmacological interventions, physical therapy, and procedures such as dry needling. Among these, ultrasound-guided injections (USGIs) have gained recognition for their precision and therapeutic benefits. Additionally, repetitive peripheral magnetic stimulation (rPMS) has emerged as a non-invasive neuromodulatory technique for pain management. This perspective article examines the physiological mechanisms and clinical applications of USGIs and rPMS, particularly in the lumbar multifidus muscle, and explores their potential synergistic effects. MPS is often associated with chronic muscle dysfunction due to energy depletion, leading to persistent pain and motor impairment. USGIs play a crucial role in restoring muscle perfusion, disrupting pain cycles, and providing diagnostic insights in real time. In parallel, rPMS modulates neuromuscular activation, enhances endogenous pain control, and promotes functional recovery. Ultrasound guidance enhances the precision and effectiveness of interventions, such as dry needling, interfascial plane blocks, and fascial hydrodissection, while rPMS complements these strategies by facilitating neuromuscular reconditioning and reducing pain via central and peripheral mechanisms. The preliminary findings suggest that combining multifidus USGIs with rPMS results in significant pain relief and functional improvements in patients with chronic low back pain. Integrating USGIs with rPMS represents a promising multimodal strategy for managing MPS. By combining targeted injections with non-invasive neuromodulation, clinicians may optimize therapeutic outcomes and provide sustained relief for patients with chronic musculoskeletal pain. Further research is needed to refine treatment protocols and assess the long-term efficacy. Full article
Show Figures

Figure 1

Back to TopTop