Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (292)

Search Parameters:
Keywords = renewable energy prosumer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 1858 KiB  
Article
Securing a Renewable Energy Supply for a Single-Family House Using a Photovoltaic Micro-Installation and a Pellet Boiler
by Jakub Stolarski, Ewelina Olba-Zięty, Michał Krzyżaniak and Mariusz Jerzy Stolarski
Energies 2025, 18(15), 4072; https://doi.org/10.3390/en18154072 - 31 Jul 2025
Viewed by 207
Abstract
Photovoltaic (PV) micro-installations producing renewable electricity and automatic pellet boilers producing renewable heat energy are promising solutions for single-family houses. A single-family house equipped with a prosumer 7.56 kWp PV micro-installation and a 26 kW pellet boiler was analyzed. This study aimed to [...] Read more.
Photovoltaic (PV) micro-installations producing renewable electricity and automatic pellet boilers producing renewable heat energy are promising solutions for single-family houses. A single-family house equipped with a prosumer 7.56 kWp PV micro-installation and a 26 kW pellet boiler was analyzed. This study aimed to analyze the production and use of electricity and heat over three successive years (from 1 January 2021 to 31 December 2023) and to identify opportunities for securing renewable energy supply for the house. Electricity production by the PV was, on average, 6481 kWh year−1; the amount of energy fed into the grid was 4907 kWh year−1; and the electricity consumption by the house was 4606 kWh year−1. The electricity supply for the house was secured by drawing an average of 34.2% of energy directly from the PV and 85.2% from the grid. Based on mathematical modeling, it was determined that if the PV installation had been located to the south (azimuth 180°) in the analyzed period, the maximum average production would have been 6897 kWh. Total annual heat and electricity consumption by the house over three years amounted, on average, to 39,059 kWh year−1. Heat energy accounted for a dominant proportion of 88.2%. From a year-round perspective, a properly selected small multi-energy installation can ensure energy self-sufficiency and provide renewable energy to a single-family house. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

36 pages, 5532 KiB  
Article
Supporting Sustainable Development Goals with Second-Life Electric Vehicle Battery: A Case Study
by Muhammad Nadeem Akram and Walid Abdul-Kader
Sustainability 2025, 17(14), 6307; https://doi.org/10.3390/su17146307 - 9 Jul 2025
Viewed by 439
Abstract
To alleviate the impact of economic and environmental detriments caused by the increased demands of electric vehicle battery production and disposal, the use of spent batteries in second-life stationary applications such as energy storage for renewable sources or backup power systems, offers many [...] Read more.
To alleviate the impact of economic and environmental detriments caused by the increased demands of electric vehicle battery production and disposal, the use of spent batteries in second-life stationary applications such as energy storage for renewable sources or backup power systems, offers many benefits. This paper focuses on reducing the energy consumption cost and greenhouse gas emissions of Internet-of-Things-enabled campus microgrids by installing solar photovoltaic panels on rooftops alongside energy storage systems that leverage second-life batteries, a gas-fired campus power plant, and a wind turbine while considering the potential loads of a prosumer microgrid. A linear optimization problem is derived from the system by scheduling energy exchanges with the Ontario grid through net metering and solved by using Python 3.11. The aim of this work is to support Sustainable Development Goals, namely 7 (Affordable and Clean Energy), 11 (Sustainable Cities and Communities), 12 (Responsible Consumption and Production), and 13 (Climate Action). A comparison between a base case scenario and the results achieved with the proposed scenarios shows a significant reduction in electricity cost and greenhouse gas emissions and an increase in self-consumption rate and renewable fraction. This research work provides valuable insights and guidelines to policymakers. Full article
Show Figures

Figure 1

22 pages, 1530 KiB  
Article
Sustainable Power Coordination of Multi-Prosumers: A Bilevel Optimization Approach Based on Shared Energy Storage
by Qingqing Li, Wangwang Jin, Qian Li, Wangjie Pan, Zede Liang and Yuan Li
Sustainability 2025, 17(13), 5890; https://doi.org/10.3390/su17135890 - 26 Jun 2025
Viewed by 218
Abstract
Shared energy storage (SES) represents a transformative approach to advancing sustainable energy systems through improved resource utilization and renewable energy integration. In order to enhance the economic benefits of energy storage and prosumers, as well as to increase the consumption rate of renewable [...] Read more.
Shared energy storage (SES) represents a transformative approach to advancing sustainable energy systems through improved resource utilization and renewable energy integration. In order to enhance the economic benefits of energy storage and prosumers, as well as to increase the consumption rate of renewable energy, this paper proposes a bilevel optimization model for multi-prosumer power complementarity based on SES. The upper level is the long-term energy storage capacity configuration optimization, aiming to minimize the investment and operational costs of energy storage. The lower level is the intra-day operation optimization for prosumers, which reduces electricity costs through peer-to-peer (P2P) transactions among prosumers and the coordinated dispatch of SES. Meanwhile, an improved Nash bargaining method is introduced to reasonably allocate the P2P transaction benefits among prosumers based on their contributions to the transaction process. The case study shows that the proposed model can reduce the SES configuration capacity by 46.3% and decrease the annual electricity costs of prosumers by 0.98% to 27.30% compared with traditional SES, and the renewable energy consumption rate has reached 100%. Through peak–valley electricity price arbitrage, the annual revenue of the SES operator increases by 71.1%, achieving a win–win situation for prosumers and SES. This article, by optimizing the storage configuration and trading mechanism to make energy storage more accessible to users, enhances the local consumption of renewable energy, reduces both users′ energy costs and the investment costs of energy storage, and thereby promotes a more sustainable, resilient, and equitable energy future. Full article
Show Figures

Figure 1

26 pages, 831 KiB  
Article
How (Co-)Ownership in Renewables Improves Heating Usage Behaviour and the Willingness to Adopt Energy-Efficient Technologies—Data from German Households
by Renan Magalhães, Jens Lowitzsch and Federico Narracci
Energies 2025, 18(12), 3114; https://doi.org/10.3390/en18123114 - 13 Jun 2025
Viewed by 642
Abstract
In the housing sector emission reduction builds on a shift from fossil fuels to renewable energy sources and increasing the efficiency of energy usage, with heating playing a dominant role in comparison to that of electricity. For electricity production in the residential sector, [...] Read more.
In the housing sector emission reduction builds on a shift from fossil fuels to renewable energy sources and increasing the efficiency of energy usage, with heating playing a dominant role in comparison to that of electricity. For electricity production in the residential sector, research shows that different settings of (co-)ownership in renewables are linked to a greater tendency to invest in energy-efficient devices or to adopt more energy-conscious behaviours. The empirical analysis demonstrates that fully-fledged prosumers, i.e., consumers who have the option to choose between self-consumption and selling to third parties or the grid, exhibit a higher tendency to invest in energy efficiency and that only this group manifests a greater likelihood of engaging in conscious-energy consumption behaviour. This paper extends the analysis to include heating in the residential sector. The study conducted an ANCOVA based on a sample of 2585 German households. The findings show that, depending on the (co-)ownership setting, the willingness to invest and to adopt energy-efficient practices grows considerably. Consumer-sellers demonstrate the highest willingness to invest and adapt energy conscious behaviour. Furthermore, regarding heating in particular, self-consumers are also inclined to invest and engage in energy-savings behaviour. Full article
Show Figures

Figure A1

19 pages, 2671 KiB  
Article
A Decentralized Hierarchical Multi-Agent Framework for Smart Grid Sustainable Energy Management
by Otilia Elena Dragomir and Florin Dragomir
Sustainability 2025, 17(12), 5423; https://doi.org/10.3390/su17125423 - 12 Jun 2025
Cited by 1 | Viewed by 620
Abstract
This paper aims to design and implement a decentralized multi-agent hierarchical system for energy management that can perform real-time monitoring and management of a real-world power grid with penetration of renewable energy. This approach integrates intelligent solutions based on intelligent agents to provide [...] Read more.
This paper aims to design and implement a decentralized multi-agent hierarchical system for energy management that can perform real-time monitoring and management of a real-world power grid with penetration of renewable energy. This approach integrates intelligent solutions based on intelligent agents to provide scalable and reliable management of smart power grids. The proposed decentralized multi-agent hierarchical system architecture allows for balancing multiple objectives, such as cost and environmental impact, in the design and operation of the energy system. The testing and tuning of this system are based on simulating real-time data flow and feedback between monitoring and control agents within a multi-agent environment modelling a smart grid. The added value of this study lies in its integrated approach to smart grid energy management, which combines real-time monitoring, decentralized control, hierarchical architecture, and consideration of both economic and environmental factors. Moreover, the use of multi-agent systems for simulation further enhances the adaptability and scalability of the system, and the focus on prosumers and the integration of renewable energy sources make it a relevant contribution to the field of sustainable energy management. While the results are promising, the current simulation framework is based on single-run experiments, limiting the statistical strength of outcome interpretations. Future research will address these aspects through expanded statistical validation, the inclusion of performance indicators, and deployment scenarios in more complex, real-world energy systems to enhance the robustness and applicability of the approach. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

23 pages, 4398 KiB  
Article
Modelling of Energy Management Strategies in a PV-Based Renewable Energy Community with Electric Vehicles
by Shoaib Ahmed, Amjad Ali, Sikandar Abdul Qadir, Domenico Ramunno and Antonio D’Angola
World Electr. Veh. J. 2025, 16(6), 302; https://doi.org/10.3390/wevj16060302 - 29 May 2025
Viewed by 545
Abstract
The Renewable Energy Community (REC) has emerged in Europe, encouraging the use of renewable energy sources (RESs) within localities, bringing social, economic, and environmental benefits. RESs are characterized by various loads, including household consumption, storage systems, and the increasing integration of electric vehicles [...] Read more.
The Renewable Energy Community (REC) has emerged in Europe, encouraging the use of renewable energy sources (RESs) within localities, bringing social, economic, and environmental benefits. RESs are characterized by various loads, including household consumption, storage systems, and the increasing integration of electric vehicles (EVs). EVs offer opportunities for distributed RESs, such as photovoltaic (PV) systems, which can be economically advantageous for RECs whose members own EVs and charge them within the community. This article focuses on the integration of PV systems and the management of energy loads for different participants—consumers and prosumers—along with a small EV charging setup in the REC. A REC consisting of a multi-unit building is examined through a mathematical and numerical model. In the model, hourly PV generation data are obtained from the PVGIS tool, while residential load data are modeled by converting monthly electricity bills, including peak and off-peak details, into hourly profiles. Finally, EV hourly load data are obtained after converting the data of voltage and current data from the charging monitoring portal into power profiles. These data are then used in our mathematical model to evaluate energy fluxes and to calculate self-consumed, exported, and shared energy within the REC based on energy balance criteria. In the model, an energy management system (EMS) is included within the REC to analyze EV charging behavior and optimize it in order to increase self-consumption and shared energy. Following the EMS, it is also suggested that the number of EVs to be charged should be evaluated in light of energy-sharing incentives. Numerical results have been reported for different seasons, showing the possibility for the owners of EVs to charge their vehicles within the community to optimize self-consumption and shared energy. Full article
Show Figures

Figure 1

21 pages, 3874 KiB  
Article
Supply of MV Island with High-Penetration of Prosumer Renewable Energy Sources
by Krzysztof Dobrzynski, Zbigniew Lubośny, Jacek Klucznik, Paweł Bućko, Sławomir Noske, Mirosław Matusewicz, Michał Brodzicki, Maciej Klebba and Arkadiusz Frącz
Energies 2025, 18(10), 2625; https://doi.org/10.3390/en18102625 - 19 May 2025
Viewed by 470
Abstract
The rapid development of prosumer renewable energy sources (RESs) observed in Poland in recent years causes problems in distribution networks such as current amplitude and voltage asymmetry increases, power and energy loss increases, and reverse power flows, and related are voltage control problems, [...] Read more.
The rapid development of prosumer renewable energy sources (RESs) observed in Poland in recent years causes problems in distribution networks such as current amplitude and voltage asymmetry increases, power and energy loss increases, and reverse power flows, and related are voltage control problems, deterioration of energy quality, etc. Moreover, in the case of planned repair/maintenance works in the network and the need to supply energy consumers in an islanded MV grid, the problem of the correct operation of such a subsystem appears. This occurs when the power production by the prosumers’ energy sources at a given moment exceed the power consumption. In such a case, reverse power flows occur in MV/LV transformers, i.e., from the LV network to the MV network. This causes reverse power flow to the diesel generator, leading to its shutdown and, in extreme cases, to damage. The solution to this problem is to use a mobile system equipped with energy storage in addition to a diesel generator and an LV/MV transformer. An additional problem in the case of using a mobile system (diesel generator) to power an MV island is the islanded MV network grounding. Grid islanding changes the earth fault current and electric shock voltages. In general, MV networks in Poland operate as compensated, i.e., grounding transformers are used, the star point of which is grounded by a compensation choke. Unfortunately, in the case of powering an MV island from a mobile system, there is no real possibility of grounding the star point of the LV/MV transformer used there. This article proposes an algorithm of a diesel generator with an energy storage selection, including electric shock protection requirements verification, for the use in suppling energy via an islanded MV network. Full article
Show Figures

Figure 1

15 pages, 491 KiB  
Article
Fully Solar Residential Energy Community: A Study on the Feasibility in the Italian Context
by Grazia Barchi, Marco Pierro, Mattia Secchi and David Moser
Energies 2025, 18(8), 1988; https://doi.org/10.3390/en18081988 - 12 Apr 2025
Viewed by 794
Abstract
Expanding the installation and use of renewable energy sources will help Europe reach its energy and climate goals. Additionally, users of small-scale photovoltaic systems will be essential to the energy transition by forming renewable energy communities (RECs). This paper offers a techno-economic analysis [...] Read more.
Expanding the installation and use of renewable energy sources will help Europe reach its energy and climate goals. Additionally, users of small-scale photovoltaic systems will be essential to the energy transition by forming renewable energy communities (RECs). This paper offers a techno-economic analysis of the Italian REC incentive system and a suitable business model to encourage residential photovoltaic and battery installations and lower electricity costs. In this paper, we present a community model that includes a set number of prosumers, a growing number of consumers, and various configurations and management strategies for photovoltaic (PV) and battery systems. Key elements of novelty include (i) the implementation of a fully-solar REC with PV and storage under the Italian incentive scheme, (ii) the introduction a of novel centralized BESS control strategy based on firm generation that maximises energy sharing while minimising its grid impact, (iii) the economic profitability analysis of the PV and storage system for consumers and prosumers when different BESS control strategies are applied. The simulation results show that energy performance increases if a centralized battery management strategy is activated and more consumers join the community. In addition, the proposed business model shows that the best profitability is achieved when there are as many consumers as prosumers. Most importantly, the approach was extended to the extreme case of a “fully solar-powered” community, demonstrating that the REC model is viable even with the current PV and battery costs. Finally, we show that fully solar-powered communities can be easily implemented where homeowners have enough surface for PV installation and purchase a central battery through crowdfunding. Full article
Show Figures

Figure 1

23 pages, 676 KiB  
Review
Game Theory and Robust Predictive Control for Peer-to-Peer Energy Management: A Pathway to a Low-Carbon Economy
by Félix González, Paul Arévalo and Luis Ramirez
Sustainability 2025, 17(5), 1780; https://doi.org/10.3390/su17051780 - 20 Feb 2025
Cited by 2 | Viewed by 1289
Abstract
The shift towards decentralized energy systems demands innovative strategies to manage renewable energy integration, optimize resource allocation, and ensure grid stability. This review investigates the application of game theory and robust predictive control as essential tools for decentralized and peer-to-peer energy management. Game [...] Read more.
The shift towards decentralized energy systems demands innovative strategies to manage renewable energy integration, optimize resource allocation, and ensure grid stability. This review investigates the application of game theory and robust predictive control as essential tools for decentralized and peer-to-peer energy management. Game theory facilitates strategic decision-making and cooperation among prosumers, distributors, and consumers, enabling efficient energy trading and dynamic resource distribution. Robust predictive control complements this by addressing uncertainties in renewable energy generation and demand, ensuring system stability through adaptive and real-time optimization. By examining recent advancements, this study highlights key methodologies, challenges, and emerging technologies such as blockchain, artificial intelligence, and digital twins, which enhance these approaches. The review also explores their alignment with global sustainability objectives, emphasizing their role in promoting affordable clean energy, reducing emissions, and fostering resilient urban energy infrastructures. A systematic review methodology was employed, analyzing 153 selected articles published in the last five years, filtered from an initial dataset of over 200 results retrieved from ScienceDirect and IEEE Xplore. Practical insights and future directions are provided to guide the implementation of these innovative methodologies in decentralized energy networks. Full article
(This article belongs to the Special Issue Sustainable Energy: The Path to a Low-Carbon Economy)
Show Figures

Figure 1

29 pages, 3362 KiB  
Article
Interconnected Operation and Economic Feasibility-Based Sustainable Planning of Virtual Power Plant in Multi-Area Context
by Anubhav Kumar Pandey, Vinay Kumar Jadoun, Jayalakshmi N. Sabhahit and Sachin Sharma
Smart Cities 2025, 8(1), 37; https://doi.org/10.3390/smartcities8010037 - 18 Feb 2025
Cited by 3 | Viewed by 901
Abstract
A virtual power plant (VPP) is a potential alternative that aggregates the distributed energy resources (DERs) and addresses the prosumer’s power availability, quality, and reliability requirements. This paper reports the optimized scheduling of an interconnected VPP in a multi-area framework established through a [...] Read more.
A virtual power plant (VPP) is a potential alternative that aggregates the distributed energy resources (DERs) and addresses the prosumer’s power availability, quality, and reliability requirements. This paper reports the optimized scheduling of an interconnected VPP in a multi-area framework established through a tie-line connection comprising multiple renewable resources. The scheduling was initially performed on a day ahead (hourly basis) interval, followed by an hour ahead interval (intra-hour and real time), i.e., a 15 min and 5 min time interval for the developed VPP in a multi-area context. The target objective functions for the selected problem were two-fold, i.e., net profit and emission, for which maximization was performed for the former and reduction for the later, respectively. Since renewables are involved in the energy mix and the developed problem was complex in nature, the proposed multi-area-based VPP was tested with an advanced nature-inspired metaheuristic technique. Moreover, the proposed formulation was extended to a multi-objective context, and multiple scheduling strategies were performed to reduce the generated emissions and capitalize on the cumulative profit associated with the system by improving the profit margin simultaneously. Furthermore, a comprehensive numeric evaluation was performed with different optimization intervals, which revealed the rapid convergence in minimal computational time to reach the desired solution. Full article
(This article belongs to the Special Issue Next Generation of Smart Grid Technologies)
Show Figures

Figure 1

32 pages, 9871 KiB  
Article
Energy Trading Strategy for Virtual Power Plants with Incomplete Resource Aggregation Based on Hybrid Game Theory
by Jing Wan, Jinrui Tang, Rui Chen, Leiming Suo, Honghui Yang, Yubo Song and Haibo Zhang
Appl. Sci. 2025, 15(4), 2100; https://doi.org/10.3390/app15042100 - 17 Feb 2025
Cited by 1 | Viewed by 781
Abstract
Shared energy storage (SES) and some photovoltaic prosumers (PVPs) are difficult to aggregate by the virtual power plant (VPP) in the short term. In order to realize the optimal operation of the VPP in the incomplete resource aggregation environment and to promote the [...] Read more.
Shared energy storage (SES) and some photovoltaic prosumers (PVPs) are difficult to aggregate by the virtual power plant (VPP) in the short term. In order to realize the optimal operation of the VPP in the incomplete resource aggregation environment and to promote the mutual benefit of multiple market entities, the energy trading strategy based on the hybrid game of SES–VPP–PVP is proposed. Firstly, the whole system configuration with incomplete resource aggregation is proposed, as well as the preconfigured market rules and the general problem for the optimal energy trading strategy of VPP. Secondly, the novel hybrid game theory-based optimization for the energy trading strategy of VPP is proposed based on the multi-level game theory model. And, the corresponding solving process using Karush–Kuhn–Tucker (KKT), dichotomy, and alternating direction method of multipliers (ADMM) algorithms are also constructed to solve nonconvex nonlinear models. The effectiveness of the proposed strategy is verified through the comparison of a large number of simulation results. The results show that our proposed energy trading strategy can be used for optimal low-carbon operation of VPPs with large-scale renewable energy and some unaggregated electricity consumers and distributed photovoltaic stations, while SES participates as an independent market entity. Full article
(This article belongs to the Special Issue Design, Optimization and Control Strategy of Smart Grids)
Show Figures

Figure 1

26 pages, 1310 KiB  
Article
Energy Cooperatives as an Instrument for Stimulating Distributed Renewable Energy in Poland
by Katarzyna Brodzińska, Małgorzata Błażejowska, Zbigniew Brodziński, Irena Łącka and Alicja Stolarska
Energies 2025, 18(4), 838; https://doi.org/10.3390/en18040838 - 11 Feb 2025
Cited by 1 | Viewed by 932
Abstract
In Poland, the development of renewable energy primarily focuses on solar energy, especially through household prosumer installations. One emerging solution for promoting distributed renewable energy is energy cooperatives. The main aim of the research was to identify the legal and socioeconomic factors influencing [...] Read more.
In Poland, the development of renewable energy primarily focuses on solar energy, especially through household prosumer installations. One emerging solution for promoting distributed renewable energy is energy cooperatives. The main aim of the research was to identify the legal and socioeconomic factors influencing the formation and growth of energy cooperatives in Poland and to provide recommendations for their development. The research, conducted in 2024, covered 47 energy cooperatives. The data gathered included information from the National Court Register (KRS), the National Support Centre for Agriculture (KOWR), and qualitative research through in-depth individual interviews using the CATI technique (computer-assisted telephone interview). The findings highlight the need to streamline legal regulations concerning energy cooperatives, particularly the dual registration system (KRS and KOWR), which delays operational start-up. They also suggest reviewing restrictions on the area and power capacity for renewable energy distribution. Proper training for cooperative managers and network operator staff is essential. Given the early stage of Poland’s energy cooperative development, ongoing monitoring is necessary. Further research will aid in creating effective tools to foster the growth of distributed renewable energy, especially through energy cooperatives. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

63 pages, 14494 KiB  
Article
Real-Time Power Management of Plug-In Electric Vehicles and Renewable Energy Sources in Virtual Prosumer Networks with Integrated Physical and Network Security Using Blockchain
by Nikolaos Sifakis, Konstantinos Armyras and Fotis Kanellos
Energies 2025, 18(3), 613; https://doi.org/10.3390/en18030613 - 28 Jan 2025
Cited by 1 | Viewed by 1021
Abstract
This paper presents a blockchain-enabled Multi-Agent System (MAS) for real-time power management in Virtual Prosumer (VP) Networks, integrating Plug-in Electric Vehicles (PEVs) and Renewable Energy Sources (RESs). The proposed framework addresses critical challenges related to scalability, security, and operational efficiency by developing a [...] Read more.
This paper presents a blockchain-enabled Multi-Agent System (MAS) for real-time power management in Virtual Prosumer (VP) Networks, integrating Plug-in Electric Vehicles (PEVs) and Renewable Energy Sources (RESs). The proposed framework addresses critical challenges related to scalability, security, and operational efficiency by developing a hierarchical MAS architecture that optimizes the scheduling and coordination of geographically distributed PEVs and RESs. Unlike conventional business management systems, this study integrates a blockchain-based security mechanism within the MAS framework, leveraging Proof of Authority (PoA) consensus to enhance transaction security while addressing scalability and energy consumption concerns. The system further employs advanced Particle Swarm Optimization (PSO) to dynamically compute optimal power set-points, enabling adaptive and efficient energy distribution. Additionally, hierarchical aggregation of transactions at lower MAS layers enhances computational efficiency and system resilience under high-traffic and partial network failure conditions. The proposed framework is validated through large-scale simulations spanning four major cities in Greece, demonstrating its scalability, reliability, and efficiency under diverse operational scenarios. Results confirm that the system effectively balances energy supply and demand while maintaining secure and transparent transactions. Despite these advancements, practical deployment challenges remain, including synchronization delays in geographically distributed agents, legacy system integration, and blockchain energy consumption. Future research directions include investigating more advanced consensus mechanisms (e.g., Proof of Task), machine learning-driven predictive optimization, real-world large-scale testing, and federated learning models for decentralized decision-making. The proposed framework offers a scalable, secure, and efficient solution for decentralized real-time energy management in Virtual Prosumer Networks. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

22 pages, 4283 KiB  
Article
GIS-Driven Methods for Scouting Sources of Waste Heat for Fifth-Generation District Heating and Cooling (5GDHC) Systems: Railway/Highway Tunnels
by Stanislav Chicherin
Processes 2025, 13(1), 165; https://doi.org/10.3390/pr13010165 - 9 Jan 2025
Viewed by 993
Abstract
This paper explores the innovative application of Geographic Information Systems (GISs) to identify and utilize waste heat sources from railway and highway tunnels for fifth-generation district heating and cooling (5GDHC) systems. Increasing the number of prosumers—entities that produce and consume energy—within 5GDHC networks [...] Read more.
This paper explores the innovative application of Geographic Information Systems (GISs) to identify and utilize waste heat sources from railway and highway tunnels for fifth-generation district heating and cooling (5GDHC) systems. Increasing the number of prosumers—entities that produce and consume energy—within 5GDHC networks enhances their efficiency and sustainability. While potential sources of waste heat vary widely, this study focuses on underground car/railway tunnels, which typically have a temperature range of 20 °C to 40 °C. Using GIS software, we comprehensively analyzed tunnel locations and their potential as heat sources in Belgium. This study incorporates data from various sources, including OpenStreetMap and the European Waste Heat Map, and applies a two-dimensional heat transfer model to estimate the heat recovery potential. The results indicate that railway tunnels, especially in the southern regions of Belgium, show significant promise for waste heat recovery, potentially contributing between 0.8 and 2.9 GWh annually. The integration of blockchain technology for peer-to-peer energy exchange within 5GDHC systems is also discussed, highlighting its potential to enhance energy management and billing. This research contributes to the growing body of knowledge on sustainable energy systems and presents a novel approach to leveraging existing district heating and cooling infrastructure. Full article
(This article belongs to the Special Issue Novel Recovery Technologies from Wastewater and Waste)
Show Figures

Figure 1

35 pages, 5401 KiB  
Review
Agriculture as Energy Prosumer: Review of Problems, Challenges, and Opportunities
by Piotr Sulewski and Adam Wąs
Energies 2024, 17(24), 6447; https://doi.org/10.3390/en17246447 - 21 Dec 2024
Cited by 1 | Viewed by 2486
Abstract
The issue of energy in agriculture is complex and multifaceted. Historically, agriculture was the first producer of energy through the conversion of solar energy into biomass. However, industrial development has made agriculture an important consumer of fossil energy. Although the share of agriculture [...] Read more.
The issue of energy in agriculture is complex and multifaceted. Historically, agriculture was the first producer of energy through the conversion of solar energy into biomass. However, industrial development has made agriculture an important consumer of fossil energy. Although the share of agriculture in the consumption of direct energy carriers is relatively small, today’s agricultural producers use many inputs, the production of which also consumes much energy, mainly from fossil fuels (e.g., synthetic fertilizers).The food security of the world’s growing population does not allow for a radical reduction in direct and indirect energy inputs in agriculturer. Undoubtedly, some opportunities lie in improving energy efficiency in agricultural production, as any waste of inputs is also a waste of energy. In addition to improving efficiency, the agricultural sector has significant opportunities to consume energy for its own use and for other sectors of the economy. Biomass has a wide range of applications and plays a special role here. Other forms of renewable energy, such as increasingly popular agrovoltaics, are also important options. When analyzing the place of agriculture in the energy system, it is therefore worth seeing this sector as a specific energy prosumer, which is essential in the energy transition process. Such a point of view is adopted in this study, which attempts to identify the determinants of agriculture as a consumer and producer of renewable energy. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

Back to TopTop