Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (190)

Search Parameters:
Keywords = renal interstitial fibrosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1657 KiB  
Article
The Possibilities of Multiparametric Magnetic Resonance Imaging to Reflect Functional and Structural Graft Changes 1 Year After Kidney Transplantation
by Andrejus Bura, Gintare Stonciute-Balniene, Laura Velickiene, Inga Arune Bumblyte, Ruta Vaiciuniene and Antanas Jankauskas
Medicina 2025, 61(7), 1268; https://doi.org/10.3390/medicina61071268 - 13 Jul 2025
Viewed by 254
Abstract
Background and Objectives: Non-invasive imaging biomarkers for the early detection of chronic kidney allograft injury are needed to improve long-term transplant outcomes. T1 mapping by magnetic resonance imaging (MRI) has emerged as a promising method to assess renal structure and function. This [...] Read more.
Background and Objectives: Non-invasive imaging biomarkers for the early detection of chronic kidney allograft injury are needed to improve long-term transplant outcomes. T1 mapping by magnetic resonance imaging (MRI) has emerged as a promising method to assess renal structure and function. This study aimed to determine the potential of MRI as a diagnostic tool for evaluating graft function and structural changes in kidney grafts 1 year after transplantation. Materials and Methods: Thirty-four kidney transplant recipients were prospectively recruited, with 27 completing the follow-up at one year. Renal MRI at 3T was performed to acquire T1, T2, and apparent diffusion coefficient (ADC) maps. Clinical parameters, including estimated glomerular filtration rate (eGFR), albumin-to-creatinine ratio (ACR), protein-to-creatinine ratio (PCR), and histological IF/TA scores, were collected. MRI parameters were compared across the groups stratified by clinical and histological markers. Diagnostic accuracy was assessed using receiver operating characteristic (ROC) analysis. Results: At 1 year, T1 corticomedullary differentiation (CMD) values were significantly higher in patients with elevated ACR (≥3 mg/mmol), PCR (≥15 mg/mmol), and mild to moderate or severe IF/TA, reflecting a reduction in the corticomedullary gradient. T1 CMD demonstrated moderate-to-good diagnostic performance in detecting ACR (AUC 0.791), PCR (AUC 0.730), and IF/TA (AUC 0.839). No significant differences were observed in T2 or ADC values across these groups. T1 CMD also showed a significant positive correlation with ACR but not with eGFR, suggesting a closer association with structural rather than functional deterioration. Conclusions: T1 mapping, particularly T1 CMD, shows promise as a non-invasive imaging biomarker for detecting chronic allograft injury and monitoring renal function 1 year after kidney transplantation. Full article
(This article belongs to the Special Issue End-Stage Kidney Disease (ESKD))
Show Figures

Figure 1

23 pages, 4049 KiB  
Article
Gut Microbiome Engineering for Diabetic Kidney Disease Prevention: A Lactobacillus rhamnosus GG Intervention Study
by Alaa Talal Qumsani
Biology 2025, 14(6), 723; https://doi.org/10.3390/biology14060723 - 19 Jun 2025
Viewed by 731
Abstract
The gut microbiota has emerged as a critical modulator in metabolic diseases, with substantial evidence supporting its role in attenuating diabetes-related nephropathy. Recent investigations demonstrate that strategic manipulation of intestinal microflora offers novel therapeutic avenues for safeguarding renal function against diabetic complications. This [...] Read more.
The gut microbiota has emerged as a critical modulator in metabolic diseases, with substantial evidence supporting its role in attenuating diabetes-related nephropathy. Recent investigations demonstrate that strategic manipulation of intestinal microflora offers novel therapeutic avenues for safeguarding renal function against diabetic complications. This investigation sought to determine the nephroprotective potential of Lactobacillus rhamnosus GG (LGG) administration in diabetic nephropathy models. Six experimental cohorts were evaluated: control, probiotic-supplemented control, diabetic, diabetic receiving probiotic therapy, diabetic with antibiotics, and diabetic treated with both antibiotics and probiotics. Diabetic conditions were established via intraperitoneal administration of streptozotocin (50 mg/kg) following overnight fasting, according to validated protocols for experimental diabetes induction. Probiotic therapy (3 × 109 CFU/kg, bi-daily) began one month before diabetes induction and continued throughout the study duration. Glycemic indices were monitored at bi-weekly intervals, inflammatory biomarkers, renal function indices, and urinary albumin excretion. The metabolic profile was evaluated through the determination of HOMA-IR and the computation of metabolic syndrome scores. Microbiome characterization employed 16S rRNA gene sequencing alongside metagenomic shotgun sequencing for comprehensive microbial community mapping. L. rhamnosus GG supplementation substantially augmented microbiome richness and evenness metrics. Principal component analysis revealed distinct clustering of microbial populations between treatment groups. The Prevotella/Bacteroides ratio, an emerging marker of metabolic dysfunction, normalized following probiotic intervention in diabetic subjects. Results: L. rhamnosus GG administration markedly attenuated diabetic progression, achieving glycated hemoglobin reduction of 32% compared to untreated controls. Pro-inflammatory cytokine levels (IL-6, TNF-α) decreased significantly, while anti-inflammatory mediators (IL-10, TGF-β) exhibited enhanced expression. The renal morphometric analysis demonstrated preservation of glomerular architecture and reduced interstitial fibrosis. Additionally, transmission electron microscopy confirmed the maintenance of podocyte foot process integrity in probiotic-treated groups. Conclusions: The administration of Lactobacillus rhamnosus GG demonstrated profound renoprotective efficacy through multifaceted mechanisms, including microbiome reconstitution, metabolic amelioration, and inflammation modulation. Therapeutic effects suggest the potential of a combined probiotic and pharmacological approach to attenuate diabetic-induced renal pathology with enhanced efficacy. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

20 pages, 1329 KiB  
Review
Mitochondrial Dysfunction: The Silent Catalyst of Kidney Disease Progression
by Nikola Pavlović, Marinela Križanac, Marko Kumrić, Katarina Vukojević and Joško Božić
Cells 2025, 14(11), 794; https://doi.org/10.3390/cells14110794 - 28 May 2025
Cited by 2 | Viewed by 2516
Abstract
Mitochondrial dysfunction is a pivotal driver in the pathogenesis of acute kidney injury (AKI), chronic kidney disease (CKD), and congenital anomalies of the kidney and urinary tract (CAKUT). The kidneys, second only to the heart in mitochondrial density, rely on oxidative phosphorylation to [...] Read more.
Mitochondrial dysfunction is a pivotal driver in the pathogenesis of acute kidney injury (AKI), chronic kidney disease (CKD), and congenital anomalies of the kidney and urinary tract (CAKUT). The kidneys, second only to the heart in mitochondrial density, rely on oxidative phosphorylation to meet the high ATP demands of solute reabsorption and filtration. Disrupted mitochondrial dynamics, such as excessive fission mediated by Drp1, exacerbate tubular apoptosis and inflammation in AKI models like ischemia–reperfusion injury. In CKD, persistent mitochondrial dysfunction drives oxidative stress, fibrosis, and metabolic reprogramming, with epigenetic mechanisms (DNA methylation, histone modifications, non-coding RNAs) regulating genes critical for mitochondrial homeostasis, such as PMPCB and TFAM. Epigenetic dysregulation also impacts mitochondrial–ER crosstalk, influencing calcium signaling and autophagy in renal pathology. Mitophagy, the selective clearance of damaged mitochondria, plays a dual role in kidney disease. While PINK1/Parkin-mediated mitophagy protects against cisplatin-induced AKI by preventing mitochondrial fragmentation and apoptosis, its dysregulation contributes to fibrosis and CKD progression. For instance, macrophage-specific loss of mitophagy regulators like MFN2 amplifies ROS production and fibrotic responses. Conversely, BNIP3/NIX-dependent mitophagy attenuates contrast-induced AKI by suppressing NLRP3 inflammasome activation. In diabetic nephropathy, impaired mitophagy correlates with declining eGFR and interstitial fibrosis, highlighting its diagnostic and therapeutic potential. Emerging therapeutic strategies target mitochondrial dysfunction through antioxidants (e.g., MitoQ, SS-31), mitophagy inducers (e.g., COPT nanoparticles), and mitochondrial transplantation, which mitigates AKI by restoring bioenergetics and modulating inflammatory pathways. Nanotechnology-enhanced drug delivery systems, such as curcumin-loaded nanoparticles, improve renal targeting and reduce oxidative stress. Epigenetic interventions, including PPAR-α agonists and KLF4 modulators, show promise in reversing metabolic reprogramming and fibrosis. These advances underscore mitochondria as central hubs in renal pathophysiology. Tailored interventions—ranging from Drp1 inhibition to mitochondrial transplantation—hold transformative potential to mitigate kidney injury and improve clinical outcomes. Additionally, dietary interventions and novel regulators such as adenogens are emerging as promising strategies to modulate mitochondrial function and attenuate kidney disease progression. Future research should address the gaps in understanding the role of mitophagy in CAKUT and optimize targeted delivery systems for precision therapies. Full article
Show Figures

Figure 1

15 pages, 4667 KiB  
Article
Mechanism of Ginsenoside Rg1 in Regulating the Metabolic Function of Intestinal Flora for the Treatment of High-Purine Dietary Hyperuricemia
by Qiang Sun, Zhiman Li, Yang Yu and Yinshi Sun
Nutrients 2025, 17(11), 1844; https://doi.org/10.3390/nu17111844 - 28 May 2025
Viewed by 561
Abstract
Objective: Study the mechanism of ginsenoside Rg1 in ameliorating hyperuricemia (HUA) induced by high-purine diet. Methods: Rats were randomly divided into groups, and the HUA model was established by administering a high-purine diet containing potassium oxonate combined with yeast. After the [...] Read more.
Objective: Study the mechanism of ginsenoside Rg1 in ameliorating hyperuricemia (HUA) induced by high-purine diet. Methods: Rats were randomly divided into groups, and the HUA model was established by administering a high-purine diet containing potassium oxonate combined with yeast. After the experiment, blood was collected via cardiac puncture, and the organ indices of the rats were calculated. Serum biochemical markers including aspartate aminotransferase (AST), alanine aminotransferase (ALT), triglyceride (TG), total cholesterol (TC), xanthine oxidase (XOD), creatinine (CREA), uric acid (UA), and blood urea nitrogen (BUN) were measured. Histopathological sections of the kidney and intestine were prepared. Western blot was used to assess the expression levels of intestinal occludin and zonula occludens-1 barrier proteins and key proteins in IL-17/NF-κB inflammatory pathways. After the experiment, fecal samples were collected from the rats. The gut microbiota of HUA-induced rats was analyzed via 16S rRNA sequencing, and the levels of short-chain fatty acids in the fecal samples were quantified using gas chromatography–mass spectrometry. Results: Ginsenoside Rg1 significantly increased body weight and organ indexes as well as reduced serum levels of BUN, CREA, ALT, AST, XOD, and UA. Pathologic analysis showed that ginsenoside Rg1 improved renal cell injury, glomerulosclerosis, and renal interstitial fibrosis while restoring intestinal barrier function. Ginsenoside Rg1 down-regulated the expression of inflammatory proteins and up-regulated the levels of intestinal barrier proteins. The results of 16S rRNA sequencing showed that ginsenoside Rg1 significantly increased the diversity index of gut microbiota and enhanced the number of beneficial bacteria in HUA rats. Short-chain fatty acids analysis demonstrated that ginsenoside Rg1 markedly elevated the levels of acetate, propionate, butyrate, and valerate in HUA rats. Conclusions: Ginsenoside Rg1 ameliorates and treats HUA by improving the composition of intestinal flora and inhibiting the IL-17/NF-κB signaling pathway to reduce inflammatory factors in the intestinal tract in HUA rats. Full article
(This article belongs to the Special Issue Dietary Patterns and Gut Microbiota)
Show Figures

Figure 1

18 pages, 5677 KiB  
Article
Protective Effects of a Probiotic Lacticaseibacillus paracasei MSMC39-1 on Kidney Damage in Aged Mice: Functional Foods Potential
by Pol Sookpotarom, Jirapat Namkaew, Kaikwa Wuttisa, Chantanapa Chantarangkul, Praewpannarai Jamjuree, Thiranut Jaroonwitchawan and Malai Taweechotipatr
Foods 2025, 14(11), 1874; https://doi.org/10.3390/foods14111874 - 25 May 2025
Viewed by 2696
Abstract
Kidney fibrosis and inflammation are significant contributors to the decline in renal function associated with aging. These processes are characterized by structural changes, such as glomerular sclerosis and interstitial fibrosis, which exacerbate kidney injury and inflammation in aged individuals. Probiotics have gained increasing [...] Read more.
Kidney fibrosis and inflammation are significant contributors to the decline in renal function associated with aging. These processes are characterized by structural changes, such as glomerular sclerosis and interstitial fibrosis, which exacerbate kidney injury and inflammation in aged individuals. Probiotics have gained increasing attention for their potential health-promoting effects. However, further investigation is required to fully understand the mechanisms underlying these benefits. We hypothesize that probiotics could ameliorate fibrosis through the immunomodulatory effects of probiotics and by improving kidney tissue inflammation. Sixteen-month-old aging mice were administered Lacticaseibacillus paracasei MSMC39-1 for four months compared to young mice (six-month-old) and aged mice (twenty-month-old). The research found that following the administration of probiotic MSMC39-1, there were significant improvements in kidney inflammation, as evidenced by reductions in pro-inflammatory cytokines, fibrosis, and inflammatory cells within the tissue. Moreover, the findings demonstrated that probiotic MSMC39-1 significantly normalized levels of malondialdehyde (MDA), and rescued antioxidant superoxide dismutase (SOD) and glutathione peroxidase (Gpx) in kidney tissue which was consistent with a low mitochondria biogenesis. Further investigations revealed that conditioned medium from MSMC39-1 rescued epithelial kidney cells with damage induced by high glucose. This research provides information and insights into the mechanisms underlying the beneficial health effects of probiotics, offering a deeper understanding of how these probiotics contribute to anti-aging processes in the kidney. Full article
(This article belongs to the Special Issue Application of Probiotics in Foods and Human Health)
Show Figures

Figure 1

14 pages, 1568 KiB  
Article
Markers of Kidney Injury: Proenkephalin A and Uromodulin, but Not Dickkopf-3, Are Elevated in Patients After Hematopoietic Stem Cell Transplantation
by Aleksandra Kaszyńska, Małgorzata Kępska-Dzilińska, Ewa Karakulska-Prystupiuk, Agnieszka Tomaszewska, Grzegorz Władysław Basak, Marcin Żórawski, Zuzanna Jakubowska and Jolanta Małyszko
Int. J. Mol. Sci. 2025, 26(8), 3581; https://doi.org/10.3390/ijms26083581 - 10 Apr 2025
Cited by 3 | Viewed by 679
Abstract
Kidney injury encompasses a broad spectrum of structural and functional abnormalities, directly associated with stem cell transplantation. Acute kidney injury and chronic kidney disease represent perilous complications of hematopoietic stem cell transplantation (HSCT), with an elevated risk of mortality and progression to end-stage [...] Read more.
Kidney injury encompasses a broad spectrum of structural and functional abnormalities, directly associated with stem cell transplantation. Acute kidney injury and chronic kidney disease represent perilous complications of hematopoietic stem cell transplantation (HSCT), with an elevated risk of mortality and progression to end-stage renal disease. The early detection of these complications is, therefore, paramount, and research is increasingly focused on the identification of novel biomarkers of kidney damage. Recently, proenkephalin (PENK), a monomeric peptide that is freely filtered by the glomerulus and thus reflects glomerular filtration very well, has been shown to be an additional useful predictor of the occurrence of acute kidney injury and heart failure. Dickkopf-3 (DKK3) is a glycoprotein secreted by the renal tubular epithelium in response to stress and has been implicated in the development of interstitial fibrosis. It has therefore been evaluated primarily as a marker of fibrosis in chronic kidney disease (CKD), but may also help predict the development of acute kiney injury. Uromodulin is regarded as a renal marker. Previous studies have examined the potential of PENK, DKK-3 and uromodulin as a biomarker in individuals with preserved renal function. However, the urinary levels of PENK, DKK-3 and uromodulin in patients following HSCT have not yet been established. The objective of the present study was to assess urinary PENK, DKK-3, and uromodulin concentrations in patients who had been under ambulatory care of the Hematology, Transplantation and Internal Medicine Department for a minimum of three months following HSCT, and to investigate their correlations with kidney function, as reflected by serum creatinine and eGFR. The study population comprised 80 patients who had undergone allogeneic HSCT for various reasons, primarily hematological malignancies such as acute leukemias and lymphomas. In addition, 32 healthy volunteers were included in order to establish normal ranges for the biomarkers of interest. Urine concentrations of proenkephalin, DKK-3, and uromodulin were evaluated using a commercially available sandwich ELISA immunoassay. Demographic and clinical data were retrieved from the patients’ records. Statistical analyses were conducted using XLSLAT 2022 (Lumivero, Denver, CO, USA) and STATISTICAv13.0 (StatSoft, Tulsa, OH, USA). The results showed that PENK and DKK-3 levels were significantly higher in patients after HSCT compared to healthy volunteers. Furthermore, when patients were divided according to kidney function (below and over 60 mL/min/1.72 m2), it was found that the concentration of PENK and DKK-3 were significantly higher in 23 patients with CKD stage 3 relative to patients with eGFR over 60 mL min 1.72 m2. In univariate correlations, PENK demonstrated an inverse relationship with eGFR (r: −0.21, p < 0.05), while DKK-3 exhibited no significant correlation with creatinine or eGFR.Patients following allogeneic HSCT, despite having normal or near-normal kidney function, exhibited evidence of kidney injury. However, further research is necessary to ascertain the clinical utility of the novel biomarker. Full article
(This article belongs to the Special Issue Molecular Insights into Kidney Injury and Repair)
Show Figures

Figure 1

13 pages, 1027 KiB  
Article
Chronic Kidney Disease After Lung Transplantation in Spain: A Retrospective Single-Center Analysis
by Maria Luisa Serrano Salazar, Carlos Almonacid, Maria Marques Vidas, Paula López-Sánchez, Beatriz Sánchez Sobrino, Myriam Aguilar, Lucia Rubio Arboli, Eduardo Martínez Morales, Ana Huerta, Maria Valdenebro Recio, Piedad Ussetti and Jose Portoles
J. Clin. Med. 2025, 14(7), 2241; https://doi.org/10.3390/jcm14072241 - 25 Mar 2025
Viewed by 449
Abstract
Objectives: Chronic kidney disease (CKD) among lung transplant (LTx) recipients has increased in recent decades. However, there is insufficient evidence regarding clinical outcomes, and current guidelines lack specific recommendations for its management. Methods: This single-center retrospective study included all patients who [...] Read more.
Objectives: Chronic kidney disease (CKD) among lung transplant (LTx) recipients has increased in recent decades. However, there is insufficient evidence regarding clinical outcomes, and current guidelines lack specific recommendations for its management. Methods: This single-center retrospective study included all patients who underwent LTx and were subsequently referred to a dedicated nephrology outpatient clinic. Major adverse renal events were defined as a composite event. Results: Eighty LTx recipients with underlying lung disease etiology such as cystic fibrosis, chronic obstructive pulmonary disease, or interstitial lung disease were included. The mean time from LTx to first nephrologist evaluation was 4.7 years with an eGFR of 31.7 mL/min/1.73 m2. LTx recipients experienced a 48% reduction in eGFR within the first few months after LTx. Rapid progressors require renal replacement therapy earlier than the slow progressors. Patients requiring dialysis had higher all-cause mortality compared to those who did not require dialysis. Conclusions: Early post-LTx functional impairment appears to be the most significant predictor for CKD progression and the eventual need for RRT. Although CNI toxicity is the most common cause of CKD, early nephrology evaluation can uncover other causes and promote early renoprotective measures. For this patient population, specific guidelines addressing CKD after LTx and a multidisciplinary approach are essential. Full article
(This article belongs to the Section Nephrology & Urology)
Show Figures

Graphical abstract

19 pages, 1022 KiB  
Review
Molecular and Cellular Mediators of Renal Fibrosis in Lupus Nephritis
by Akshara Ramasamy and Chandra Mohan
Int. J. Mol. Sci. 2025, 26(6), 2621; https://doi.org/10.3390/ijms26062621 - 14 Mar 2025
Viewed by 1117
Abstract
Lupus nephritis (LN), a significant complication of systemic lupus erythematosus (SLE), represents a challenging manifestation of the disease. One of the prominent pathophysiologic mechanisms targeting the renal parenchyma is fibrosis, a terminal process resulting in irreversible tissue damage that eventually leads to a [...] Read more.
Lupus nephritis (LN), a significant complication of systemic lupus erythematosus (SLE), represents a challenging manifestation of the disease. One of the prominent pathophysiologic mechanisms targeting the renal parenchyma is fibrosis, a terminal process resulting in irreversible tissue damage that eventually leads to a decline in renal function and/or end-stage kidney disease (ESKD). Both glomerulosclerosis and interstitial fibrosis emerge as reliable prognostic indicators of renal outcomes. This article reviews the hallmarks of renal fibrosis in lupus nephritis, including the known and putative drivers of fibrogenesis. A better understanding of the cellular and molecular processes driving fibrosis in LN may help inform the development of therapeutic strategies for this disease, as well as the identification of individuals at higher risk of developing ESKD. Full article
Show Figures

Figure 1

12 pages, 1145 KiB  
Article
Decreased Expression of Aquaporins as a Feature of Tubular Damage in Lupus Nephritis
by Maxime Melchior, Marie Van Eycken, Charles Nicaise, Thomas Duquesne, Léa Longueville, Amandine Collin, Christine Decaestecker, Isabelle Salmon, Christine Delporte and Muhammad Soyfoo
Cells 2025, 14(5), 380; https://doi.org/10.3390/cells14050380 - 5 Mar 2025
Viewed by 981
Abstract
Background: Tubulointerstitial hypoxia is a key factor for lupus nephritis progression to end-stage renal disease. Numerous aquaporins (AQPs) are expressed by renal tubules and are essential for their proper functioning. The aim of this study is to characterize the tubular expression of AQP1, [...] Read more.
Background: Tubulointerstitial hypoxia is a key factor for lupus nephritis progression to end-stage renal disease. Numerous aquaporins (AQPs) are expressed by renal tubules and are essential for their proper functioning. The aim of this study is to characterize the tubular expression of AQP1, AQP2 and AQP3, which could provide a better understanding of tubulointerstitial stress during lupus nephritis. Methods: This retrospective monocentric study was conducted at Erasme-HUB Hospital. We included 37 lupus nephritis samples and 9 healthy samples collected between 2000 and 2020, obtained from the pathology department. Immunohistochemistry was performed to target AQP1, AQP2 and AQP3 and followed by digital analysis. Results: No difference in AQP1, AQP2 and AQP3 staining location was found between healthy and lupus nephritis samples. However, we observed significant differences between these two groups, with a decrease in AQP1 expression in the renal cortex and in AQP3 expression in the cortex and medulla. In the subgroup of proliferative glomerulonephritis (class III/IV), this decrease in AQPs expression was more pronounced, particularly for AQP3. In addition, within this subgroup, we detected lower AQP2 expression in patients with higher interstitial inflammation score and lower AQP3 expression when higher interstitial fibrosis and tubular atrophy were present. Conclusions: We identified significant differences in the expression of aquaporins 1, 2, and 3 in patients with lupus nephritis. These findings strongly suggest that decreased AQP expression could serve as an indicator of tubular injury. Further research is warranted to evaluate AQP1, AQP2, and AQP3 as prognostic markers in both urinary and histological assessments of lupus nephritis. Full article
Show Figures

Figure 1

12 pages, 3121 KiB  
Article
Hydroxyproline in Urine Microvesicles as a Biomarker of Fibrosis in the Renal Transplant Patient
by María José Torres Sánchez, María Carmen Ruiz Fuentes, Elena Clavero García, Noelia Rísquez Chica, Karla Espinoza Muñoz, María José Espigares Huete, Mercedes Caba Molina, Antonio Osuna and Rosemary Wangensteen
Biomedicines 2024, 12(12), 2836; https://doi.org/10.3390/biomedicines12122836 - 13 Dec 2024
Cited by 1 | Viewed by 1092
Abstract
Background/Objectives: Interstitial fibrosis/tubular atrophy in kidney transplantation is an unspecific lesion induced by immune and non-immune factors, which determines the progression of chronic kidney disease. Hydroxyproline is an imino acid that is part of the molecule of collagen. The aim of this [...] Read more.
Background/Objectives: Interstitial fibrosis/tubular atrophy in kidney transplantation is an unspecific lesion induced by immune and non-immune factors, which determines the progression of chronic kidney disease. Hydroxyproline is an imino acid that is part of the molecule of collagen. The aim of this study was to assess hydroxyproline in urine microvesicles as a marker of fibrosis in the renal transplant patient. Patients and Methods: An observational cross-sectional study was conducted on 46 renal transplant patients who had undergone renal biopsy with diagnostic intention, as well as 19 healthy controls. Clinical, histological, and laboratory variables were collected at the time of marker determination and renal function was analyzed 2 years later. Hydroxyproline was measured in urine microvesicles. Results: Renal transplant patients showed a higher microvesicular concentration of hydroxyproline compared to the control group, with the following medians (interquartile range (IQR)): 28.024 (5.53) ng/mL vs. 2.51 (1.16) ng/mL, p < 0.001. In the transplanted patients, patients in whom biopsy showed some score of total cortical parenchymal inflammation (ti) displayed a significantly higher concentration of hydroxyproline in urine microvesicles than those patients who did not score for cortical parenchymal inflammation (29.91 ± 2.797 ng/mL vs. 22.72 ± 8.697 ng/mL, p = 0.034). No significant correlation was observed between urinary markers and serum creatinine, calcium, and parathyroid hormone (PTH). Conclusions: The concentration of hydroxyproline in urinary microvesicles increased in renal transplant patients relative to healthy controls. Hydroxyproline in urinary microvesicles is a marker of chronic renal inflammation in transplanted patients, and further studies are required to confirm this finding in other pathologies, as well as the association with fibrosis and the evolution of renal function. Full article
(This article belongs to the Special Issue Emerging Trends in Kidney Disease)
Show Figures

Figure 1

20 pages, 4473 KiB  
Article
Hypoxia-Induced Differences in the Expression of Pyruvate Dehydrogenase Kinase 1-Related Factors in the Renal Tissues and Renal Interstitial Fibroblast-like Cells of Yak (Bos Grunniens)
by Manlin Zhou, Jun Wang, Ruirui Cao, Fan Zhang, Xuehui Luo, Yiyuan Liao, Weiji Chen, Haie Ding, Xiao Tan, Zilin Qiao and Kun Yang
Animals 2024, 14(21), 3110; https://doi.org/10.3390/ani14213110 - 29 Oct 2024
Cited by 4 | Viewed by 1464
Abstract
Hypoxia is one of the factors severely affect renal function, and, in severe cases, it can lead to renal fibrosis. Although much progress has been made in identifying the molecular mediators of fibrosis, the mechanisms that govern renal fibrosis remain unclear, and there [...] Read more.
Hypoxia is one of the factors severely affect renal function, and, in severe cases, it can lead to renal fibrosis. Although much progress has been made in identifying the molecular mediators of fibrosis, the mechanisms that govern renal fibrosis remain unclear, and there have been no effective therapeutic anti-fibrotic strategies to date. Mammals exposed to low oxygen in the plateau environment for a long time are prone to high-altitude disease, while yaks have been living in the plateau for generations do not develop kidney fibrosis caused by low oxygen. It has been suggested that metabolic reprogramming occurs in renal fibrosis and that pyruvate dehydrogenase kinase 1 (PDK1) plays a crucial role in metabolic reprogramming as an important node between glycolysis and the tricarboxylic acid cycle. The aim of this study was to investigate the effects of hypoxia on the renal tissues and renal interstitial fibroblasts of yaks. We found that, at the tissue level, HIF-1α, PDK1, TGF-β1, Smad2, Smad3, and α-SMA were mainly distributed and expressed in tubular epithelial cells but were barely present in the renal mesenchymal fibroblasts of healthy cattle and yak kidneys. Anoptical density analysis showed that in healthy cattle kidneys, TGF-β1, Smad2, and Smad3 expression was significantly higher than in yak kidneys (p < 0.05), and HIF-1α and PDK1 expression was significantly lower than in yak kidneys (p < 0.05). The results at the protein and gene levels showed the same trend. At the cellular level, prolonged hypoxia significantly elevated PDK1 expression in the renal mesangial fibroblasts of cattle and yak kidneys compared with normoxia (p < 0.05) and was proportional to the degree of cellular fibrosis. However, PDK1 expression remained stable in yaks compared with renal interstitial fibroblast-like cells in cattle during the same hypoxic time period. At the same time, prolonged hypoxia also promoted changes in cellular phenotype, promoting the proliferation, activation, glucose consumption, lactate production, and anti-apoptosis in the both of cattle and yaks renal interstitial fibroblasts The differences in kidney structure and expression of PDK1 and HIF-1α in kidney tissue and renal interstitial fibroblasts induced by different oxygen concentrations suggest that there may be a regulatory relationship between yak kidney adaptation and hypoxic environment at high altitude. This provides strong support for the elucidation of the regulatory relationship between PDK1 and HIF-1α, as well as a new direction for the treatment or delay of hypoxic renal fibrosis; additionally, these findings provide a basis for further analysis of the molecular mechanism of hypoxia adaptation-related factors and the adaptation of yaks to plateau hypoxia. Full article
(This article belongs to the Special Issue Production, Breeding and Disease Management of Plateau Animals)
Show Figures

Figure 1

14 pages, 1370 KiB  
Review
Reactive Oxygen Species in Cystic Kidney Disease
by Sanat Subhash, Sonya Vijayvargiya, Aetan Parmar, Jazlyn Sandhu, Jabrina Simmons and Rupesh Raina
Antioxidants 2024, 13(10), 1186; https://doi.org/10.3390/antiox13101186 - 30 Sep 2024
Cited by 2 | Viewed by 2453
Abstract
Polycystic kidney disease (PKD) is a rare but significant renal condition with major implications for global acute and chronic patient care. Oxidative stress and reactive oxygen species (ROS) can significantly alter its pathophysiology, clinical outcomes, and treatment, contributing to negative outcomes, including hypertension, [...] Read more.
Polycystic kidney disease (PKD) is a rare but significant renal condition with major implications for global acute and chronic patient care. Oxidative stress and reactive oxygen species (ROS) can significantly alter its pathophysiology, clinical outcomes, and treatment, contributing to negative outcomes, including hypertension, chronic kidney disease, and kidney failure. Inflammation from ROS and existing cysts propagate the generation and accumulation of ROS, exacerbating kidney injury, pro-fibrotic signaling cascades, and interstitial fibrosis. Early identification and prevention of oxidative stress and ROS can contribute to reduced cystic kidney disease progression and improved longitudinal patient outcomes. Increased research regarding biomarkers, the pathophysiology of oxidative stress, and novel therapeutic interventions alongside the creation of comprehensive guidelines establishing methods of assessment, monitoring, and intervention for oxidative stress in cystic kidney disease patients is imperative to standardize clinical practice and improve patient outcomes. The integration of artificial intelligence (AI), genetic editing, and genome sequencing could further improve the early detection and management of cystic kidney disease and mitigate adverse patient outcomes. In this review, we aim to comprehensively assess the multifactorial role of ROS in cystic kidney disease, analyzing its pathophysiology, clinical outcomes, treatment interventions, clinical trials, animal models, and future directions for patient care. Full article
(This article belongs to the Special Issue Oxidative Stress in Renal Health)
Show Figures

Figure 1

18 pages, 693 KiB  
Review
Comparison of Autologous and Allogeneic Adipose-Derived Stem Cells in Kidney Transplantation: Immunological Considerations and Therapeutic Efficacy
by Ljiljana Fodor Duric, Nikolina Basic Jukic and Bozidar Vujicic
J. Clin. Med. 2024, 13(19), 5763; https://doi.org/10.3390/jcm13195763 - 27 Sep 2024
Cited by 4 | Viewed by 2767
Abstract
Regenerative medicine shows significant potential in treating kidney diseases through the application of various types of stem and progenitor cells, including mesenchymal stem cells (MSCs), renal stem/progenitor cells, embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs). Stem cells possess the unique [...] Read more.
Regenerative medicine shows significant potential in treating kidney diseases through the application of various types of stem and progenitor cells, including mesenchymal stem cells (MSCs), renal stem/progenitor cells, embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs). Stem cells possess the unique ability to repair injured organs and improve impaired functions, making them a key element in the research of therapies for kidney tissue repair and organ regeneration. In kidney transplantation, reperfusion injury can cause tissue destruction, leading to an initially low glomerular filtration rate and long-term impact on function by creating irreversible interstitial fibrosis. MSCs have proven useful in repairing early tissue injury in animal models of kidney, lung, heart, and intestine transplantation. The use of stem cell therapies in solid organ transplantation raises the question of whether autologous or allogeneic cells should be preferred. Adipose-derived stem cells (ASCs), characterized by the lack of HLA Class II molecules and low expression of HLA Class I and co-stimulatory signals, are considered immune-privileged. However, the actual risk of graft rejection associated with allogeneic ASCs remains unclear. It has been demonstrated that donor-derived ASCs can promote the development of Treg cells in vitro, and some degree of tolerance induction has been observed in vivo. Nevertheless, a study comparing the efficacy of autologous and allogeneic ASCs in a rat model with a total MHC mismatch for kidney transplantation showed that donor-derived administration of ASCs did not improve the grafts’ survival and was associated with increased mortality through an immunologically mediated mechanism. Given the lack of data, autologous ASCs appear to be a safer option in this research context. The aim of this review was to examine the differences between autologous and allogeneic ASCs in the context of their application in kidney transplantation therapies, considering potential immune reactions and therapeutic efficacy. Some have argued that ASCs harvested from end-stage renal disease (ESRD) patients may have lower regenerative potential due to the toxic effects of uremia, potentially limiting their use in transplantation settings. However, evidence suggests that the beneficial properties of ASCs are not affected by uremia or dialysis. Indeed, some investigators have demonstrated that ASCs harvested from chronic kidney disease (CKD) patients exhibit normal characteristics and function, maintaining consistent proliferative capacity and genetic stability over time, even after prolonged exposure to uremic serum Furthermore, no differences were observed in the response of ASCs to immune activation or their inhibitory effect on the proliferation of alloantigen-activated peripheral blood mononuclear cells between patients with normal or impaired renal function. This review presents the current achievements in stem cell research aimed at treating kidney diseases, highlighting significant progress and ongoing efforts in the development of stem cell-based therapies. Despite the encouraging results, further research is needed to overcome the current limitations and fully realize the potential of these innovative treatments. Advances in this field are crucial for developing effective therapies that can address the complex challenges associated with kidney damage and failure. Full article
Show Figures

Figure 1

21 pages, 6221 KiB  
Article
STING Promotes the Progression of ADPKD by Regulating Mitochondrial Function, Inflammation, Fibrosis, and Apoptosis
by Jiao Wu, Shasha Cheng, Geoffray Lee, Ewud Agborbesong, Xiaoyan Li, Xia Zhou and Xiaogang Li
Biomolecules 2024, 14(10), 1215; https://doi.org/10.3390/biom14101215 - 26 Sep 2024
Cited by 3 | Viewed by 2436
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a predominant genetic disease, which is caused by mutations in PKD genes and is associated with DNA damage in cystic cells. The intrinsic stimulator of interferon genes (STING) pathway is crucial for recognizing damaged DNA in [...] Read more.
Autosomal dominant polycystic kidney disease (ADPKD) is a predominant genetic disease, which is caused by mutations in PKD genes and is associated with DNA damage in cystic cells. The intrinsic stimulator of interferon genes (STING) pathway is crucial for recognizing damaged DNA in the cytosol, triggering the expression of inflammatory cytokines to activate defense mechanisms. However, the precise roles and mechanisms of STING in ADPKD remain elusive. In this study, we show that Pkd1 mutant mouse kidneys show upregulation of STING, which is stimulated by the DNAs of nuclear and mitochondrial origin. The activation of STING promotes cyst growth through increasing (1) the activation of NF-κB in Pkd1 mutant cells and (2) the recruitment of macrophages in the interstitial and peri-cystic regions in Pkd1 mutant mouse kidneys via NF-κB mediating the upregulation of TNF-α and MCP-1. Targeting STING with its specific inhibitor C-176 delays cyst growth in an early-stage aggressive Pkd1 conditional knockout mouse model and a milder long-lasting Pkd1 mutant mouse model. Targeting STING normalizes mitochondrial structure and function, decreases the formation of micronuclei, induces Pkd1 mutant renal epithelial cell death via p53 signaling, and decreases renal fibrosis in Pkd1 mutant mouse kidneys. These results support that STING is a novel therapeutic target for ADPKD treatment. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

13 pages, 1347 KiB  
Article
Using MRI Texture Analysis Machine Learning Models to Assess Graft Interstitial Fibrosis and Tubular Atrophy in Patients with Transplanted Kidneys
by Valeria Trojani, Filippo Monelli, Giulia Besutti, Marco Bertolini, Laura Verzellesi, Roberto Sghedoni, Mauro Iori, Guido Ligabue, Pierpaolo Pattacini, Paolo Giorgi Rossi, Marta Ottone, Alessia Piccinini, Gaetano Alfano, Gabriele Donati and Francesco Fontana
Information 2024, 15(9), 537; https://doi.org/10.3390/info15090537 - 3 Sep 2024
Viewed by 1168
Abstract
Objective: Interstitial fibrosis/tubular atrophy (IFTA) is a common, irreversible, and progressive form of chronic kidney allograft injury, and it is considered a critical predictor of kidney allograft outcomes. The extent of IFTA is estimated through a graft biopsy, while a non-invasive test is [...] Read more.
Objective: Interstitial fibrosis/tubular atrophy (IFTA) is a common, irreversible, and progressive form of chronic kidney allograft injury, and it is considered a critical predictor of kidney allograft outcomes. The extent of IFTA is estimated through a graft biopsy, while a non-invasive test is lacking. The aim of this study was to evaluate the feasibility and accuracy of an MRI radiomic-based machine learning (ML) algorithm to estimate the degree of IFTA in a cohort of transplanted patients. Approach: Patients who underwent MRI and renal biopsy within a 6-month interval from 1 January 2012 to 1 March 2021 were included. Stable MRI sequences were selected, and renal parenchyma, renal cortex and medulla were segmented. After image filtering and pre-processing, we computed radiomic features that were subsequently selected through a LASSO algorithm for their highest correlation with the outcome and lowest intercorrelation. Selected features and relevant patients’ clinical data were used to produce ML algorithms using 70% of the study cases for feature selection, model training and validation with a 10-fold cross-validation, and 30% for model testing. Performances were evaluated using AUC with 95% confidence interval. Main results: A total of 70 coupled tests (63 patients, 35.4% females, mean age 52.2 years) were included and subdivided into a wider cohort of 50 for training and a smaller cohort of 20 for testing. For IFTA ≥ 25%, the AUCs in test cohort were 0.60, 0.59, and 0.54 for radiomic features only, clinical variables only, and a combined radiomic–clinical model, respectively. For IFTA ≥ 50%, the AUCs in training cohort were 0.89, 0.84, and 0.96, and in the test cohort, they were 0.82, 0.83, and 0.86, for radiomic features only, clinical variables only, and the combined radiomic–clinical model, respectively. Significance: An ML-based MRI radiomic algorithm showed promising discrimination capacity for IFTA > 50%, especially when combined with clinical variables. These results need to be confirmed in larger cohorts. Full article
(This article belongs to the Special Issue Advances in Machine Learning and Intelligent Information Systems)
Show Figures

Figure 1

Back to TopTop