Using MRI Texture Analysis Machine Learning Models to Assess Graft Interstitial Fibrosis and Tubular Atrophy in Patients with Transplanted Kidneys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Ethics, and Population
2.2. Clinical Data
2.3. Kidney Graft Biopsy
2.4. Image Data Acquisition and Analysis
2.5. Statistical Analyses and Model Building
3. Results
3.1. Study Population
3.2. MRI Radiomic Feature Selection and Radiomic Signatures
3.3. Clinical Variables and Signature
3.4. Machine Learning Model Performances
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jha, V.; Garcia-Garcia, G.; Iseki, K.; Li, Z.; Naicker, S.; Plattner, B.; Saran, R.; Wang, A.Y.-M.; Yang, C.-W. Chronic Kidney Disease: Global Dimension and Perspectives. Lancet 2013, 382, 260–272. [Google Scholar] [CrossRef] [PubMed]
- Liyanage, T.; Ninomiya, T.; Jha, V.; Neal, B.; Patrice, H.M.; Okpechi, I.; Zhao, M.; Lv, J.; Garg, A.X.; Knight, J.; et al. Worldwide Access to Treatment for End-Stage Kidney Disease: A Systematic Review. Lancet 2015, 385, 1975–1982. [Google Scholar] [CrossRef]
- Suthanthiran, M.; Strom, T.B. Renal Transplantation. N. Engl. J. Med. 1994, 331, 365–376. [Google Scholar] [CrossRef]
- Schnuelle, P.; Lorenz, D.; Trede, M.; Van Der Woude, F.J. Impact of Renal Cadaveric Transplantation on Survival in End-Stage Renal Failure: Evidence for Reduced Mortality Risk Compared with Hemodialysis during Long-Term Follow-Up. J. Am. Soc. Nephrol. 1998, 9, 2135–2141. [Google Scholar] [CrossRef] [PubMed]
- Port, F.K.; Wolfe, R.A.; Mauger, E.A.; Berling, D.P.; Jiang, K. Comparison of Survival Probabilities for Dialysis Patients vs. Cadaveric Renal Transplant Recipients. JAMA 1993, 270, 1339–1343. [Google Scholar] [CrossRef] [PubMed]
- Ojo, A.O.; Port, F.K.; Wolfe, R.A.; Mauger, E.A.; Williams, L.; Berling, D.P. Comparative Mortality Risks of Chronic Dialysis and Cadaveric Transplantation in Black End-Stage Renal Disease Patients. Am. J. Kidney Dis. 1994, 24, 59–64. [Google Scholar] [CrossRef]
- Wang, W.; Yu, Y.; Wen, J.; Zhang, M.; Chen, J.; Cheng, D.; Zhang, L.; Liu, Z. Combination of Functional Magnetic Resonance Imaging and Histopathologic Analysis to Evaluate Interstitial Fibrosis in Kidney Allografts. Clin. J. Am. Soc. Nephrol. 2019, 14, 1372–1380. [Google Scholar] [CrossRef]
- Poggio, E.D. Imaging as a Noninvasive Tool for Evaluating Interstitial Fibrosis in Kidney Allografts. Clin. J. Am. Soc. Nephrol. 2019, 14, 1286–1287. [Google Scholar] [CrossRef]
- Chand, S.; Atkinson, D.; Collins, C.; Briggs, D.; Ball, S.; Sharif, A.; Skordilis, K.; Vydianath, B.; Neil, D.; Borrows, R. The Spectrum of Renal Allograft Failure. PLoS ONE 2016, 11. [Google Scholar] [CrossRef]
- Roufosse, C.; Simmonds, N.; Clahsen-van Groningen, M.; Haas, M.; Henriksen, K.J.; Horsfield, C.; Loupy, A.; Mengel, M.; Perkowska-Ptasińska, A.; Rabant, M.; et al. Reference Guide to the Banff Classification of Renal Allograft Pathology. Transplantation 2018, 102, e497. [Google Scholar] [CrossRef]
- Morgan, T.A.; Chandran, S.; Burger, I.M.; Zhang, C.A.; Goldstein, R.B. Complications of Ultrasound-Guided Renal Transplant Biopsies. Am. J. Transplant. 2016, 16, 1298–1305. [Google Scholar] [CrossRef] [PubMed]
- Furness, P.N.; Philpott, C.M.; Chorbadjian, M.T.; Nicholson, M.L.; Bosmans, J.L.; Corthouts, B.L.; Bogers, J.J.; Schwarz, A.; Gwinner, W.; Haller, H.; et al. Protocol Biopsy of the Stable Renal Transplant: A Multicenter Study of Methods and Complication Rates. Transplantation 2003, 76, 969–973. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, A.; Gwinner, W.; Hiss, M.; Radermacher, J.; Mengel, M.; Haller, H. Safety and Adequacy of Renal Transplant Protocol Biopsies. Am. J. Transplant. 2005, 5, 1992–1996. [Google Scholar] [CrossRef]
- Reuzé, S. Prediction of Cervical Cancer Recurrence Using Textural Features Extracted from 18F-FDG PET Images Acquired with Different Scanners. Oncotarget 2017, 8, 43169–43179. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, W.; Tang, T.; Zhang, Y.-Y.; Yu, C. Current Progress in Artificial Intelligence-Assisted Medical Image Analysis for Chronic Kidney Disease: A Literature Review. Comput. Struct. Biotechnol. J. 2023, 21, 3315–3326. [Google Scholar] [CrossRef] [PubMed]
- Zwanenburg, A. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef]
- Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillon-Robin, J.C.; Pieper, S.; Aerts, H.J.W.L. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, 104–107. [Google Scholar] [CrossRef]
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.; et al. 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef]
- Chantaduly, C.; Troutt, H.R.; Perez Reyes, K.A.; Zuckerman, J.E.; Chang, P.D.; Lau, W.L. Artificial Intelligence Assessment of Renal Scarring (AIRS Study). Kidney360 2021, 3, 83–90. [Google Scholar] [CrossRef]
- Berchtold, L.; Crowe, L.A.; Friedli, I.; Legouis, D.; Moll, S.; De Perrot, T.; Martin, P.Y.; Vallee, J.P.; De Seigneux, S. Diffusion Magnetic Resonance Imaging Detects an Increase in Interstitial Fibrosis Earlier than the Decline of Renal Function. Nephrol. Dial. Transplant. 2020, 35, 1274–1276. [Google Scholar] [CrossRef]
- Berchtold, L.; Crowe, L.A.; Combescure, C.; Kassaï, M.; Aslam, I.; Legouis, D.; Moll, S.; Martin, P.Y.; de Seigneux, S.; Vallée, J.P. Diffusion-Magnetic Resonance Imaging Predicts Decline of Kidney Function in Chronic Kidney Disease and in Patients with a Kidney Allograft. Kidney Int. 2022, 101, 804–813. [Google Scholar] [CrossRef] [PubMed]
- Bane, O.; Hectors, S.J.; Gordic, S.; Kennedy, P.; Wagner, M.; Weiss, A.; Khaim, R.; Yi, Z.; Zhang, W.; Delaney, V.; et al. Multiparametric Magnetic Resonance Imaging Shows Promising Results to Assess Renal Transplant Dysfunction with Fibrosis. Kidney Int. 2020, 97, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Kirpalani, A.; Hashim, E.; Leung, G.; Kim, J.K.; Krizova, A.; Jothy, S.; Deeb, M.; Jiang, N.N.; Glick, L.; Mnatzakanian, G.; et al. Magnetic Resonance Elastography to Assess Fibrosis in Kidney Allografts. Clin. J. Am. Soc. Nephrol. 2017, 12, 1671–1679. [Google Scholar] [CrossRef] [PubMed]
- Cong, L.; Hua, Q.Q.; Huang, Z.Q.; Ma, Q.L.; Wang, X.M.; Huang, C.C.; Xu, J.X.; Ma, T. A Radiomics Method Based on MR FS-T2WI Sequence for Diagnosing of Autosomal Dominant Polycystic Kidney Disease Progression. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 5769–5780. [Google Scholar] [CrossRef]
- Kremer, L.E.; Chapman, A.B.; Armato, S.G. Magnetic Resonance Imaging Preprocessing and Radiomic Features for Classification of Autosomal Dominant Polycystic Kidney Disease Genotype. J. Med. Imaging (Bellingham) 2023, 10, 064503. [Google Scholar] [CrossRef]
- Beunon, P.; Barat, M.; Dohan, A.; Cheddani, L.; Males, L.; Fernandez, P.; Etain, B.; Bellivier, F.; Marlinge, E.; Vrtovsnik, F.; et al. MRI-Based Kidney Radiomic Analysis during Chronic Lithium Treatment. Eur. J. Clin. Investig. 2022, 52. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Z.; Feng, L.; Guo, L.; Liu, D.; Hai, J.; Qiao, K.; Chen, J.; Yan, B.; Cheng, G. Preliminary Study on the Application of Renal Ultrasonography Radiomics in the Classification of Glomerulopathy. BMC Med. Imaging 2021, 21, 115. [Google Scholar] [CrossRef]
- Zhu, L.; Huang, R.; Li, M.; Fan, Q.; Zhao, X.; Wu, X.; Dong, F. Machine Learning-Based Ultrasound Radiomics for Evaluating the Function of Transplanted Kidneys. Ultrasound Med. Biol. 2022, 48, 1441–1452. [Google Scholar] [CrossRef]
- Zhu, L.; Huang, R.; Zhou, Z.; Fan, Q.; Yan, J.; Wan, X.; Zhao, X.; He, Y.; Dong, F. Prediction of Renal Function 1 Year After Transplantation Using Machine Learning Methods Based on Ultrasound Radiomics Combined With Clinical and Imaging Features. Ultrason. Imaging 2023, 45, 85–96. [Google Scholar] [CrossRef]
- Abbasian Ardakani, A.; Mohammadi, A.; Khalili Najafabad, B.; Abolghasemi, J. Assessment of Kidney Function After Allograft Transplantation by Texture Analysis. Iran. J. Kidney Dis. 2017, 11, 157–164. [Google Scholar]
- Chen, C.-J.; Pai, T.-W.; Hsu, H.-H.; Lee, C.-H.; Chen, K.-S.; Chen, Y.-C. Prediction of Chronic Kidney Disease Stages by Renal Ultrasound Imaging. Enterp. Inf. Syst. 2020, 14, 178–195. [Google Scholar] [CrossRef]
- Bandara, M.S.; Gurunayaka, B.; Lakraj, G.; Pallewatte, A.; Siribaddana, S.; Wansapura, J. Ultrasound Based Radiomics Features of Chronic Kidney Disease. Acad. Radiol. 2022, 29, 229–235. [Google Scholar] [CrossRef]
- Iqbal, F.; Pallewatte, A.S.; Wansapura, J.P. Texture Analysis of Ultrasound Images of Chronic Kidney Disease. In Proceedings of the 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017—Proceedings, Colombo, Sri Lanka, 6–9 September 2017; pp. 299–303. [Google Scholar] [CrossRef]
- Lee, S.; Kang, M.; Byeon, K.; Lee, S.E.; Lee, I.H.; Kim, Y.A.; Kang, S.-W.; Park, J.T. Machine Learning-Aided Chronic Kidney Disease Diagnosis Based on Ultrasound Imaging Integrated with Computer-Extracted Measurable Features. J. Digit. Imaging 2022, 35, 1091–1100. [Google Scholar] [CrossRef]
- Zhu, M.; Tang, L.; Yang, W.; Xu, Y.; Che, X.; Zhou, Y.; Shao, X.; Zhou, W.; Zhang, M.; Li, G.; et al. Predicting Progression of Kidney Injury Based on Elastography Ultrasound and Radiomics Signatures. Diagnostics 2022, 12, 2678. [Google Scholar] [CrossRef] [PubMed]
- Zhi, R.; Zhang, X.-D.; Hou, Y.; Jiang, K.-W.; Li, Q.; Zhang, J.; Zhang, Y.-D. RtNet: A Deep Hybrid Neural Networks for the Identification of Acute Rejection and Chronic Allograft Nephropathy after Renal Transplantation Using Multiparametric MRI. Nephrol. Dial. Transplant. 2022, 37, 2581–2590. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-S.; Zhang, Q.-J.; Zhu, J.; Zhou, Q.-Q.; Yu, Y.-S.; Hu, Z.-C.; Xia, Z.-Y.; Wei, L.; Yin, X.-D.; Zhang, H. Assessment of Kidney Function in Chronic Kidney Disease by Combining Diffusion Tensor Imaging and Total Kidney Volume. Int. Urol. Nephrol. 2022, 54, 385–393. [Google Scholar] [CrossRef]
- Dillman, J.R.; Benoit, S.W.; Gandhi, D.B.; Trout, A.T.; Tkach, J.A.; VandenHeuvel, K.; Devarajan, P. Multiparametric Quantitative Renal MRI in Children and Young Adults: Comparison between Healthy Individuals and Patients with Chronic Kidney Disease. Abdom. Radiol. 2022, 47, 1840–1852. [Google Scholar] [CrossRef]
Clinical Variables | Total (n = 70) | Training Set (n = 50) | Test Set (n = 20) | |
---|---|---|---|---|
Sex (M:F) | 45:25 | 33:17 | 12:8 | |
Ethnicity (Caucasian/Sub-Saharan) | 62:8 | 45:5 | 17:3 | |
Age (years) (mean ± SD) | 52.19 ± 12.76 | 54.10 ± 12.36 | 47.41 ± 12.78 | |
RM/Biopsy interval (days) (median, IQR) | 16, 4–48.75 | 16, 4–48.75 | 15, 4.75–49 | |
RM/Biopsy interval > 90 days (n, %) | 13 (18.57%) | 10 (20%) | 3 (15%) | |
BMI (median, IQR) | 24.59, 22.47–27.30 | 25.39, 22.68–27.90 | 23.50, 22.46–25.39 | |
eGRF at biopsy (median, IQR) | 25.68, 11.88–35.51 | 26.90, 13.08–34.95 | 20.17, 11.10–38.08 | |
Proteinuria/creatininuria, g/g (median, IQR) | 0.79, 0.30–2.10 | 0.74, 0.21–2.09 | 0.79, 0.35–2.00 | |
Transplant type (n, %) | DBD | 59 (84.29%) | 42 (84.00%) | 17 (85.00%) |
DCD | 2 (2.86%) | 2 (4.00%) | 0 (0.00%) | |
LD | 9 (12.86%) | 6 (12.00%) | 3 (15.00%) | |
Transplant age (years) (median, IQR) | 0.78, 0.31–6.36 | 1.03, 0.36–0.77 | 0.62, 0.24–1.78 | |
IFTA % (median, IQR) | 20, 10–30 | 20, 10–37.5 | 20, 10–30 | |
IFTA ≥ 25% (n, %) | 29 (41.42%) | 21 (42.00%) | 8 (40.00%) | |
IFTA ≥ 50% (n, %) | 14 (19.72%) | 11 (22.00%) | 3 (15.00%) |
IFTA ≥ 25% | LASSO RC | IFTA ≥ 50% | LASSO RC |
---|---|---|---|
T1 Logsigma30mm3D glrlm LongRunLowGrayLevelEmphasis | 1.8 | T1 logsigma30mm3D glcm ClusterShade | −0.071 |
T1 waveletHHL glcm Idmn | −2.6 × 103 | T1 waveletHLH glcm Idmn | 0.0071 |
T1 waveletHHH firstorder Skewness | 2.4 | T1 squareroot firstorder Kurtosis | 1.6 |
T1 logarithm glszm SizeZoneNonUniformity | 1.5 | T1 exponential glcm Imc2 | −8.5 |
T1 exponential glcm Imc2 | −84 | T1 exponential gldm SmallDependenceLowGrayLevelEmphasis | 610 |
T1 exponential gldm SmallDependenceLowGrayLevelEmphasis | 2.6 × 103 | T1 gradient glcm Imc2 | 57 |
T2 waveletLH firstorder Mean | 8.4 | T2 logsigma30mm3D firstorder Median | 0.0012 |
T2 waveletLH firstorder Median | 2.5 | T2 waveletLH glszm ZoneEntropy | −1.9 |
T2 waveletLH glszm ZoneEntropy | −88 | T2 waveletHH glcm Idmn | 2.3 |
T2 waveletHH glcm Imc1 | 3.7 | T2 waveletHH glcm Imc1 | −0.67 |
T2 waveletHH ngtdm Busyness | 2.4 | T2 waveletHH ngtdm Busyness | 0.10 |
T2 waveletLL glcm MaximumProbability | −2.9 × 103 | T2 logarithm gldm SmallDependenceLowGrayLevelEmphasis | −0.34 |
T2 exponential glrlm ShortRunLowGrayLevelEmphasis | 8.9 | T2 exponential glrlm LongRunHighGrayLevelEmphasis | 0.56 |
Model Performance | AUC | 95% Confidence Interval | ||
---|---|---|---|---|
IFTA ≥ 25% | Training | Radiomic Model | 0.80 | (0.64/0.90) |
Clinical Model | 0.64 | (0.45/0.79) | ||
Mixed Model | 0.83 | (0.66/0.93) | ||
Test | Radiomic Model | 0.60 | ||
Clinical Model | 0.59 | |||
Mixed Model | 0.54 | |||
IFTA ≥ 50% | Training | Radiomic Model | 0.89 | (0.84/0.94) |
Clinical Model | 0.83 | (0.75/0.91) | ||
Mixed Model | 0.94 | (0.90/0.98) | ||
Test | Radiomic Model | 0.82 | ||
Clinical Model | 0.83 | |||
Mixed Model | 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trojani, V.; Monelli, F.; Besutti, G.; Bertolini, M.; Verzellesi, L.; Sghedoni, R.; Iori, M.; Ligabue, G.; Pattacini, P.; Giorgi Rossi, P.; et al. Using MRI Texture Analysis Machine Learning Models to Assess Graft Interstitial Fibrosis and Tubular Atrophy in Patients with Transplanted Kidneys. Information 2024, 15, 537. https://doi.org/10.3390/info15090537
Trojani V, Monelli F, Besutti G, Bertolini M, Verzellesi L, Sghedoni R, Iori M, Ligabue G, Pattacini P, Giorgi Rossi P, et al. Using MRI Texture Analysis Machine Learning Models to Assess Graft Interstitial Fibrosis and Tubular Atrophy in Patients with Transplanted Kidneys. Information. 2024; 15(9):537. https://doi.org/10.3390/info15090537
Chicago/Turabian StyleTrojani, Valeria, Filippo Monelli, Giulia Besutti, Marco Bertolini, Laura Verzellesi, Roberto Sghedoni, Mauro Iori, Guido Ligabue, Pierpaolo Pattacini, Paolo Giorgi Rossi, and et al. 2024. "Using MRI Texture Analysis Machine Learning Models to Assess Graft Interstitial Fibrosis and Tubular Atrophy in Patients with Transplanted Kidneys" Information 15, no. 9: 537. https://doi.org/10.3390/info15090537
APA StyleTrojani, V., Monelli, F., Besutti, G., Bertolini, M., Verzellesi, L., Sghedoni, R., Iori, M., Ligabue, G., Pattacini, P., Giorgi Rossi, P., Ottone, M., Piccinini, A., Alfano, G., Donati, G., & Fontana, F. (2024). Using MRI Texture Analysis Machine Learning Models to Assess Graft Interstitial Fibrosis and Tubular Atrophy in Patients with Transplanted Kidneys. Information, 15(9), 537. https://doi.org/10.3390/info15090537