Mechanism of Ginsenoside Rg1 in Regulating the Metabolic Function of Intestinal Flora for the Treatment of High-Purine Dietary Hyperuricemia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Reagents and Instruments
2.3. Animal Modeling and Drug Administration
2.4. Assessment of Body Weight and Serum Biochemical Parameters in HUA Rats
2.5. Histopathological Examination of Renal and Ileal Tissues
2.6. WB Analysis of Inflammatory Pathway and Intestinal Barrier Proteins
2.7. 16S rRNA Microbial Community Sequencing
2.8. Determination of Short-Chain Fatty Acids (SCFAs)
2.9. Data Processing
3. Results
3.1. Effect of Ginsenoside Rg1 on Body Weight and Organ Indices in HUA Rats
3.2. Effects of Ginsenoside Rg1 on Biochemical Parameters and Renal, Intestinal Histopathology in HUA Rats
3.3. Effects of Ginsenoside Rg1 on IL-17/NF-κB Pathway and Intestinal Barrier Proteins in HUA Rat Intestinal Tissues
3.4. Effects of Ginsenoside Rg1 on Gut Microbiota α-Diversity, β-Diversity, and OTU Profiles in HUA Rats
3.5. Analysis of Gut Microbiota Composition and LEfSe in HUA Rats Treated with Ginsenoside Rg1
3.6. Effects of Ginsenoside Rg1 on SCFA Levels in the Intestine of HUA Rats
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Geng, F.; Ma, M. The trend of rejuvenation of hyperuricemia: A retrospective analysis based on health checkup data from 2014–2023. J. Xi’an Jiaotong Univ. 2025, 46, 472–479. [Google Scholar]
- Prasad Sah, O.S.; Qing, Y.X. Associations between hyperuricemia and chronic kidney disease: A review. Nephro-Urol. Mon. 2015, 7, e27233. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Y.; Cheng, J.; Huangfu, N.; Zhao, R.; Xu, Z.; Zhang, F.; Zheng, W.; Zhang, D. Hyperuricemia and cardiovascular disease. Curr. Pharm. Des. 2019, 25, 700–709. [Google Scholar] [CrossRef] [PubMed]
- Petreski, T.; Ekart, R.; Hojs, R.; Bevc, S. Hyperuricemia, the heart, and the kidneys—To treat or not to treat? Ren. Fail. 2020, 42, 978–986. [Google Scholar] [CrossRef]
- Yu, T.T.; Cheng, Y.; Yu, T. Current status of intestinal metabolism of uric acid. Chin. J. Clin. Pharmacol. 2021, 37, 4. [Google Scholar]
- Yamada, N.; Iwamoto, C.; Kano, H.; Yamaoka, N.; Fukuuchi, T.; Kaneko, K.; Asami, Y. Evaluation of purine utilization by Lactobacillus gasseri strains with potential to decrease the absorption of food-derived purines in the human intestine. Nucleosides Nucleotides Nucleic Acids 2016, 35, 670–676. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, P.; Sun, L.; Zou, Y.; Zhang, L.; Tang, W.; Zhang, T.; Huo, J.; Zhou, J. Effect and mechanism of Yiqing decoction on hyperuricemia rats. Cell. Mol. Biol. 2024, 70, 217–224. [Google Scholar] [CrossRef]
- Dumusc, A.; So, A. Advances in treatment of hyperuricemia and gout. Die Zukunft der Gichttherapie. Ther. Umsch. 2024, 81, 168–171. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.Y.; Yuan, H.X. The application of ginseng in the Divine Husbandman’s Classic of the Materia Medica. J. Shandong Univ. Tradit. Chin. Med. 2023, 47, 12–13. [Google Scholar]
- Yao, M.J.; Lu, J.P.; Zhang, Q. Research on chemical composition and pharmacological effects of ginseng. Jilin J. Tradit. Chin. Med. 2017, 37, 1261–1263. [Google Scholar]
- Li, X.; Zhai, S.F.; Ma, X.Y.; Wang, D.Y.; Chai, J.; Zhou, F.; Zhang, J. Mechanism of action of ginsenoside Rg1 in inhibiting the proliferation and metastasis of tongue squamous cell carcinoma. Chin. J. Clin. Pharmacol. 2024, 40, 1888–1892. [Google Scholar]
- Huang, H.Y. Progress in the pharmacological effects of ginsenoside Rg1. J. Pract. Chin. Med. 2012, 28, 608–609. [Google Scholar]
- Meng, Y.; Wang, H.X.; Yang, Y.H. Mitigating effect of ginsenoside Rg1 on chronic intermittent hypoxia-induced brain injury in mice and its mechanism. J. Jilin Univ. 2024, 50, 1196–1204. [Google Scholar]
- Zhou, Z.; Li, M.; Zhang, Z.; Song, Z.; Xu, J.; Zhang, M.; Gong, M. Overview of Panax ginseng and its active ingredients protective mechanism on cardiovascular diseases. J. Ethnopharmacol. 2024, 334, 118506. [Google Scholar] [CrossRef]
- Wang, K.; Xu, P.P.; Zhou, L.L.; Lu, S. Mechanism of ginsenoside Rg1 regulating Epac1/Rap1 signaling pathway on neuroprotection in ischemic stroke rats. Chin. J. Clin. Pharmacol. Ther. 2023, 28, 721–727. [Google Scholar]
- Yang, S.-J.; Wang, J.-J.; Cheng, P.; Chen, L.-X.; Hu, J.-M.; Zhu, G.-Q. Ginsenoside Rg1 in neurological diseases: From bench to bedside. Acta Pharmacol. Sin. 2023, 44, 913–930. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, Y.; Su, Y.; Ji, P.; Kong, L.; Sun, R.; Zhang, D.; Xu, H.; Li, W.; Li, W. Ginsenoside Rg1 attenuates lipopolysaccharide-induced chronic liver damage by activating Nrf2 signaling and inhibiting inflammasomes in hepatic cells. J. Ethnopharmacol. 2024, 324, 117794. [Google Scholar] [CrossRef]
- Wu, M.; Li, K.; Wu, J.; Ding, X.; Ma, X.; Wang, W.; Xiao, W. Ginsenoside Rg1: A bioactive therapeutic agent for diverse liver diseases. Pharmacol. Res. 2025, 212, 107571. [Google Scholar] [CrossRef]
- Deng, K.H.; Liu, Y.N.; Tan, H.Y.; Yang, G.P. Current status of research on the protective effect and mechanism of ginsenoside Rg1 on renal diseases. Chin. J. Clin. Pharmacol. 2021, 37, 910–913. [Google Scholar]
- Hu, Y.; Xiang, C.; Zhang, D.; Zhou, F.; Zhang, D. Nephroprotective effect of Ginsenoside Rg1 in lipopolysaccharide-induced sepsis in mice through the SIRT1/NF-κB signaling. Folia Histochem. Cytobiol. 2024, 62, 13–24. [Google Scholar] [CrossRef]
- Fan, Y.; Xia, J.; Jia, D.; Zhang, M.; Zhang, Y.; Huang, G.; Wang, Y. Mechanism of ginsenoside Rg1 renal protection in a mouse model ofd-galactose-induced subacute damage. Pharm. Biol. 2016, 54, 1815–1821. [Google Scholar] [CrossRef]
- Tang, D.P.; Zheng, J.; Yang, X.R. The relationship between serum biochemical indicators and hyperuricemia. Pract. Prev. Med. 2025, 32, 382–385. [Google Scholar]
- Ben Salem, C.; Slim, R.; Fathallah, N.; Hmouda, H. Drug-induced hyperuricaemia and gout. Rheumatology 2017, 56, 679–688. [Google Scholar] [CrossRef]
- Yip, K.; Cohen, R.E.; Pillinger, M.H. Asymptomatic hyperuricemia: Is it really asymptomatic? Curr. Opin. Rheumatol. 2020, 32, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Doghramji, P.P.; Wortmann, R.L. Hyperuricemia and gout: New concepts in diagnosis and management. Postgrad. Med. 2012, 124, 98–109. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, L.Y.; Dai, J.F.; Qin, X.Y. Progress of pharmacological activity of ginsenoside Rg1. Lishizhen Med. Mater. Med. Res. 2012, 23, 3121–3123. [Google Scholar]
- Sun, Y.; Yang, Y.; Liu, S.; Yang, S.; Chen, C.; Lin, M.; Zeng, Q.; Long, J.; Yao, J.; Yi, F. New Therapeutic Approaches to and Mechanisms of Ginsenoside Rg1 against Neurological Diseases. Cells 2022, 11, 2529. [Google Scholar] [CrossRef]
- Chen, Z.; Lin, Y.; Zhou, Q.; Xiao, S.; Li, C.; Lin, R.; Li, J.; Chen, Y.; Luo, C.; Mo, Z. Ginsenoside Rg1 mitigates morphine dependence via regulation of gut microbiota, tryptophan metabolism, and serotonergic system function. Biomed. Pharmacother. 2022, 150, 112935. [Google Scholar] [CrossRef]
- Zhai, K.; Duan, H.; Wang, W.; Zhao, S.; Khan, G.J.; Wang, M.; Zhang, Y.; Thakur, K.; Fang, X.; Wu, C. Ginsenoside Rg1 ameliorates blood–brain barrier disruption and traumatic brain injury via attenuating macrophages derived exosomes miR-21 release. Acta Pharm. Sin. B 2021, 11, 3493–3507. [Google Scholar] [CrossRef]
- Lin, J.; Qing, Z.; Huang, H.; Yang, S.; Zeng, Z. Ginsenoside Rg1 alleviates rat liver ischemia-reperfusion ischemia through mitochondrial autophagy pathway. Altern. Ther. Health Med. 2023, 29, 16–25. [Google Scholar]
- Yang, Y.; Han, Y.; Huang, J.J.; Wang, Y.; Lin, Z.J.; Zhang, B. Metabolites of intestinal flora involved in the pathogenesis of hyperuricemia. J. Clin. Pathol. Sci. 2023, 43, 1631–1641. [Google Scholar]
- Dang, A.T.; Marsland, B.J. Microbes, metabolites, and the gut–lung axis. Mucosal Immunol. 2019, 12, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Fusco, W.; Lorenzo, M.B.; Cintoni, M.; Porcari, S.; Rinninella, E.; Kaitsas, F.; Lener, E.; Mele, M.C.; Gasbarrini, A.; Collado, M.C.; et al. Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients 2023, 15, 2211. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Q.; Li, Z.; Yu, Y.; Sun, Y. Mechanism of Ginsenoside Rg1 in Regulating the Metabolic Function of Intestinal Flora for the Treatment of High-Purine Dietary Hyperuricemia. Nutrients 2025, 17, 1844. https://doi.org/10.3390/nu17111844
Sun Q, Li Z, Yu Y, Sun Y. Mechanism of Ginsenoside Rg1 in Regulating the Metabolic Function of Intestinal Flora for the Treatment of High-Purine Dietary Hyperuricemia. Nutrients. 2025; 17(11):1844. https://doi.org/10.3390/nu17111844
Chicago/Turabian StyleSun, Qiang, Zhiman Li, Yang Yu, and Yinshi Sun. 2025. "Mechanism of Ginsenoside Rg1 in Regulating the Metabolic Function of Intestinal Flora for the Treatment of High-Purine Dietary Hyperuricemia" Nutrients 17, no. 11: 1844. https://doi.org/10.3390/nu17111844
APA StyleSun, Q., Li, Z., Yu, Y., & Sun, Y. (2025). Mechanism of Ginsenoside Rg1 in Regulating the Metabolic Function of Intestinal Flora for the Treatment of High-Purine Dietary Hyperuricemia. Nutrients, 17(11), 1844. https://doi.org/10.3390/nu17111844