Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,982)

Search Parameters:
Keywords = remote sensing, GIS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2379 KiB  
Article
A Semi-Automated, Hybrid GIS-AI Approach to Seabed Boulder Detection Using High Resolution Multibeam Echosounder
by Eoin Downing, Luke O’Reilly, Jan Majcher, Evan O’Mahony and Jared Peters
Remote Sens. 2025, 17(15), 2711; https://doi.org/10.3390/rs17152711 - 5 Aug 2025
Abstract
The detection of seabed boulders is a critical step in mitigating geological hazards during the planning and construction of offshore wind energy infrastructure, as well as in supporting benthic ecological and palaeoglaciological studies. Traditionally, side-scan sonar (SSS) has been favoured for such detection, [...] Read more.
The detection of seabed boulders is a critical step in mitigating geological hazards during the planning and construction of offshore wind energy infrastructure, as well as in supporting benthic ecological and palaeoglaciological studies. Traditionally, side-scan sonar (SSS) has been favoured for such detection, but the growing availability of high-resolution multibeam echosounder (MBES) data offers a cost-effective alternative. This study presents a semi-automated, hybrid GIS-AI approach that combines bathymetric position index filtering and a Random Forest classifier to detect boulders and delineate boulder fields from MBES data. The method was tested on a 0.24 km2 site in Long Island Sound using 0.5 m resolution data, achieving 83% recall, 73% precision, and an F1-score of 77—slightly outperforming the average of expert manual picks while offering a substantial improvement in time-efficiency. The workflow was validated against a consensus-based master dataset and applied across a 79 km2 study area, identifying over 75,000 contacts and delineating 89 contact clusters. The method enables objective, reproducible, and scalable boulder detection using only MBES data. Its ability to reduce reliance on SSS surveys while maintaining high accuracy and offering workflow customization makes it valuable for geohazard assessment, benthic habitat mapping, and offshore infrastructure planning. Full article
(This article belongs to the Section Ocean Remote Sensing)
24 pages, 11081 KiB  
Article
Quantifying Wildfire Dynamics Through Spatio-Temporal Clustering and Remote Sensing Metrics: The 2023 Quebec Case Study
by Tuğrul Urfalı and Abdurrahman Eymen
Fire 2025, 8(8), 308; https://doi.org/10.3390/fire8080308 - 5 Aug 2025
Abstract
Wildfires have become increasingly frequent and destructive environmental hazards, especially in boreal ecosystems facing prolonged droughts and temperature extremes. This study presents an integrated spatio-temporal framework that combines Spatio-Temporal Density-Based Spatial Clustering of Applications with Noise (ST-DBSCAN), Fire Radiative Power (FRP), and the [...] Read more.
Wildfires have become increasingly frequent and destructive environmental hazards, especially in boreal ecosystems facing prolonged droughts and temperature extremes. This study presents an integrated spatio-temporal framework that combines Spatio-Temporal Density-Based Spatial Clustering of Applications with Noise (ST-DBSCAN), Fire Radiative Power (FRP), and the differenced Normalized Burn Ratio (ΔNBR) to characterize the dynamics and ecological impacts of large-scale wildfires, using the extreme 2023 Quebec fire season as a case study. The analysis of 80,228 VIIRS fire detections resulted in 19 distinct clusters across four fire zones. Validation against the National Burned Area Composite (NBAC) showed high spatial agreement in densely burned areas, with Intersection over Union (IoU) scores reaching 62.6%. Gaussian Process Regression (GPR) revealed significant non-linear relationships between FRP and key fire behavior metrics. Higher mean FRP was associated with both longer durations and greater burn severity. While FRP was also linked to faster spread rates, this relationship varied by zone. Notably, Fire Zone 2 exhibited the most severe ecological impact, with 83.8% of the area classified as high-severity burn. These findings demonstrate the value of integrating spatial clustering, radiative intensity, and post-fire vegetation damage into a unified analytical framework. Unlike traditional methods, this approach enables scalable, hypothesis-driven assessment of fire behavior, supporting improved fire management, ecosystem recovery planning, and climate resilience efforts in fire-prone regions. Full article
Show Figures

Figure 1

23 pages, 12693 KiB  
Article
Upscaling Soil Salinization in Keriya Oasis Using Bayesian Belief Networks
by Hong Chen, Jumeniyaz Seydehmet and Xiangyu Li
Sustainability 2025, 17(15), 7082; https://doi.org/10.3390/su17157082 (registering DOI) - 5 Aug 2025
Abstract
Soil salinization in oasis areas of arid regions is recognized as a dynamic and multifaceted environmental threat influenced by both natural processes and human activities. In this study, 13 spatiotemporal predictors derived from field surveys and remote sensing are utilized to construct a [...] Read more.
Soil salinization in oasis areas of arid regions is recognized as a dynamic and multifaceted environmental threat influenced by both natural processes and human activities. In this study, 13 spatiotemporal predictors derived from field surveys and remote sensing are utilized to construct a spatial probabilistic model of salinization. A Bayesian Belief Network is integrated with spline interpolation in ArcGIS to map the likelihood of salinization, while Partial Least Squares Structural Equation Modeling (PLS-SEM) is applied to analyze the interactions among multiple drivers. The test results of this model indicate that its average sensitivity exceeds 80%, confirming its robustness. Salinization risk is categorized into degradation (35–79% probability), stability (0–58%), and improvement (0–48%) classes. Notably, 58.27% of the 1836.28 km2 Keriya Oasis is found to have a 50–79% chance of degradation, whereas only 1.41% (25.91 km2) exceeds a 50% probability of remaining stable, and improvement probabilities are never observed to surpass 50%. Slope gradient and soil organic matter are identified by PLS-SEM as the strongest positive drivers of degradation, while higher population density and coarser soil textures are found to counteract this process. Spatially explicit probability maps are generated to provide critical spatiotemporal insights for sustainable oasis management, revealing the complex controls and limited recovery potential of soil salinization. Full article
Show Figures

Figure 1

30 pages, 4529 KiB  
Article
Rainwater Harvesting Site Assessment Using Geospatial Technologies in a Semi-Arid Region: Toward Water Sustainability
by Ban AL- Hasani, Mawada Abdellatif, Iacopo Carnacina, Clare Harris, Bashar F. Maaroof and Salah L. Zubaidi
Water 2025, 17(15), 2317; https://doi.org/10.3390/w17152317 - 4 Aug 2025
Abstract
Rainwater harvesting for sustainable agriculture (RWHSA) offers a viable and eco-friendly strategy to alleviate water scarcity in semi-arid regions, particularly for agricultural use. This study aims to identify optimal sites for implementing RWH systems in northern Iraq to enhance water availability and promote [...] Read more.
Rainwater harvesting for sustainable agriculture (RWHSA) offers a viable and eco-friendly strategy to alleviate water scarcity in semi-arid regions, particularly for agricultural use. This study aims to identify optimal sites for implementing RWH systems in northern Iraq to enhance water availability and promote sustainable farming practices. An integrated geospatial approach was adopted, combining Remote Sensing (RS), Geographic Information Systems (GIS), and Multi-Criteria Decision Analysis (MCDA). Key thematic layers, including soil type, land use/land cover, slope, and drainage density were processed in a GIS environment to model runoff potential. The Soil Conservation Service Curve Number (SCS-CN) method was used to estimate surface runoff. Criteria were weighted using the Analytical Hierarchy Process (AHP), enabling a structured and consistent evaluation of site suitability. The resulting suitability map classifies the region into four categories: very high suitability (10.2%), high (26.6%), moderate (40.4%), and low (22.8%). The integration of RS, GIS, AHP, and MCDA proved effective for strategic RWH site selection, supporting cost-efficient, sustainable, and data-driven agricultural planning in water-stressed environments. Full article
7 pages, 2626 KiB  
Proceeding Paper
SpaFLEX: Field Campaign for Calibration and Validation of FLEX-S3 Mission Products
by Pedro J. Gómez-Giráldez, David Aragonés, Marcos Jiménez, Mª Pilar Cendrero-Mateo, Shari Van Wittenberghe, Juan José Peón, Adrián Moncholí-Estornell and Ricardo Díaz-Delgado
Eng. Proc. 2025, 94(1), 13; https://doi.org/10.3390/engproc2025094013 - 31 Jul 2025
Viewed by 92
Abstract
The FLEX-S3 mission by ESA will deliver key Level 2 products such as sun-induced chlorophyll fluorescence (SIF) and vegetation-reflected radiance. To validate these, the SpaFLEX project, funded by the Spanish Ministry of Science and Innovation, is developing a robust calibration and validation strategy [...] Read more.
The FLEX-S3 mission by ESA will deliver key Level 2 products such as sun-induced chlorophyll fluorescence (SIF) and vegetation-reflected radiance. To validate these, the SpaFLEX project, funded by the Spanish Ministry of Science and Innovation, is developing a robust calibration and validation strategy in Spain. This includes test site setup, instrument characterization, and sampling protocols. A field campaign was conducted in two Holm Oak forests in Teruel, analyzing Sentinel-2 spatial heterogeneity and collecting ground, UAV, and airborne data. The results support scaling procedures to match the 300 m pixel resolution of FLEX-S3, ensuring product accuracy and compliance with ESA standards. Full article
Show Figures

Figure 1

24 pages, 7736 KiB  
Article
Integrating Remote Sensing and Ground Data to Assess the Effects of Subsoiling on Drought Stress in Maize and Sunflower Grown on Haplic Chernozem
by Milena Kercheva, Dessislava Ganeva, Zlatomir Dimitrov, Atanas Z. Atanasov, Gergana Kuncheva, Viktor Kolchakov, Plamena Nikolova, Stelian Dimitrov, Martin Nenov, Lachezar Filchev, Petar Nikolov, Galin Ginchev, Maria Ivanova, Iliana Ivanova, Katerina Doneva, Tsvetina Paparkova, Milena Mitova and Martin Banov
Agriculture 2025, 15(15), 1644; https://doi.org/10.3390/agriculture15151644 - 30 Jul 2025
Viewed by 136
Abstract
In drought-prone regions without irrigation systems, effective agrotechnologies such as subsoiling are crucial for enhancing soil infiltration and water retention. However, the effects of subsoiling can vary depending on crop type and environmental conditions. Despite previous research, there is limited understanding of the [...] Read more.
In drought-prone regions without irrigation systems, effective agrotechnologies such as subsoiling are crucial for enhancing soil infiltration and water retention. However, the effects of subsoiling can vary depending on crop type and environmental conditions. Despite previous research, there is limited understanding of the contrasting responses of C3 (sunflower) and C4 (maize) crops to subsoiling under drought stress. This study addresses this knowledge gap by assessing the effectiveness of subsoiling as a drought mitigation practice on Haplic Chernozem in Northern Bulgaria, integrating ground-based and remote sensing data. Soil physical parameters, leaf area index (LAI), canopy temperature, crop water stress index (CWSI), soil moisture, and yield were evaluated under both conventional tillage and subsoiling for the two crops. A variety of optical and radar descriptive remote sensing products derived from Sentinel-1 and Sentinel-2 satellite data were calculated for different crop types. Consequently, the use of machine learning, utilizing all the processed remote sensing products, enabled the reasonable prediction of LAI, achieving a coefficient of determination (R2) after a cross-validation greater than 0.42 and demonstrating good agreement with in situ observations. Results revealed differing responses: subsoiling had a positive effect on sunflower, improving LAI, water status, and slightly increasing yield, while it had no positive effect on maize. These findings highlight the importance of crop-specific responses in evaluating subsoiling practices and demonstrate the added value of integrating unmanned aerial systems (UAS) and satellite-based remote sensing data into agricultural drought monitoring. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

17 pages, 11770 KiB  
Article
Landslide Prediction in Mountainous Terrain Using Weighted Overlay Analysis Method: A Case Study of Al Figrah Road, Al-Madinah Al-Munawarah, Western Saudi Arabia
by Talal Alharbi, Abdelbaset S. El-Sorogy and Naji Rikan
Sustainability 2025, 17(15), 6914; https://doi.org/10.3390/su17156914 - 30 Jul 2025
Viewed by 222
Abstract
This study applies the Weighted Overlay Analysis (WOA) method integrated with GIS to assess landslide susceptibility along Al Figrah Road in Al-Madinah Al-Munawarah, western Saudi Arabia. Seven key conditioning factors, elevation, slope, aspect, drainage density, lithology, soil type, and precipitation were integrated using [...] Read more.
This study applies the Weighted Overlay Analysis (WOA) method integrated with GIS to assess landslide susceptibility along Al Figrah Road in Al-Madinah Al-Munawarah, western Saudi Arabia. Seven key conditioning factors, elevation, slope, aspect, drainage density, lithology, soil type, and precipitation were integrated using high-resolution remote sensing data and expert-assigned weights. The output susceptibility map categorized the region into three zones: low (93.5 million m2), moderate (271.2 million m2), and high risk (33.1 million m2). Approximately 29% of the road corridor lies within the low-risk zone, 48% in the moderate zone, and 23% in the high-risk zone. Ten critical sites with potential landslide activity were detected along the road, correlating well with the high-risk zones on the map. Structural weaknesses in the area, such as faults, joints, foliation planes, and shear zones in both igneous and metamorphic rock units, were key contributors to slope instability. The findings offer practical guidance for infrastructure planning and geohazard mitigation in arid, mountainous environments and demonstrate the applicability of WOA in data-scarce regions. Full article
(This article belongs to the Special Issue Sustainable Assessment and Risk Analysis on Landslide Hazards)
Show Figures

Figure 1

16 pages, 7721 KiB  
Article
From Landscape to Legacy: Developing an Integrated Hiking Route with Cultural Heritage and Environmental Appeal Through Spatial Analysis
by İsmet Sarıbal, Mesut Çoşlu and Serdar Selim
Sustainability 2025, 17(15), 6897; https://doi.org/10.3390/su17156897 - 29 Jul 2025
Viewed by 307
Abstract
This study aimed to re-evaluate a historical war supply route within the context of cultural tourism, to revitalize its natural, historical, and cultural values, and to integrate it with existing hiking and trekking routes. Remote sensing (RS) and geographic information system (GIS) technologies [...] Read more.
This study aimed to re-evaluate a historical war supply route within the context of cultural tourism, to revitalize its natural, historical, and cultural values, and to integrate it with existing hiking and trekking routes. Remote sensing (RS) and geographic information system (GIS) technologies were utilized, and land surveys were conducted to support the analysis and validate the existing data. Data for slope, one of the most critical factors for hiking route selection, were generated, and the optimal route between the starting and destination points was identified using least cost path analysis (LCPA). Historical, touristic, and recreational rest stops along the route were mapped with precise coordinates, and both the existing and the newly generated routes were assessed in terms of their accessibility to these points. Field validation was carried out based on the experiences of expert hikers. According to the results, the length of the existing hiking route was determined to be 15.72 km, while the newly developed trekking route measured 17.36 km. These two routes overlap for 7.75 km, with 9.78 km following separate paths in a round-trip scenario. It was concluded that the existing route is more suitable for hiking, whereas the newly developed route is better suited for trekking. Full article
Show Figures

Figure 1

19 pages, 1844 KiB  
Article
Urban Expansion and the Loss of Agricultural Lands and Forest Cover in Limbe, Cameroon
by Lucy Deba Enomah, Joni Downs, Michael Acheampong, Qiuyan Yu and Shirley Tanyi
Remote Sens. 2025, 17(15), 2631; https://doi.org/10.3390/rs17152631 - 29 Jul 2025
Viewed by 269
Abstract
Using LULC change detection analysis, it is possible to identify changes due to urbanization, deforestation, or a natural disaster in an area. As population growth and urbanization increase, real-time solutions for the effects of urbanization on land use are required to assess its [...] Read more.
Using LULC change detection analysis, it is possible to identify changes due to urbanization, deforestation, or a natural disaster in an area. As population growth and urbanization increase, real-time solutions for the effects of urbanization on land use are required to assess its implications for food security and livelihood. This study seeks to identify and quantify recent LULC changes in Limbe, Cameroon, and to measure rates of conversion between agricultural, forest, and urban lands between 1986 and 2020 using remote sensing and GIS. Also, there is a deficiency of research employing these data to evaluate the efficiency of LULC satellite data and a lack of awareness by local stakeholders regarding the impact on LULC change. The changes were identified in four classes utilizing maximum supervised classification in ENVI and ArcGIS environments. The classification result reveals that the 2020 image has the highest overall accuracy of 94.6 while the 2002 image has an overall accuracy of 89.2%. The overall gain for agriculture was approximately 4.6 km2, urban had an overall gain of nearly 12.7 km2, while the overall loss for forest was −16.9 km2 during this period. Much of the land area previously occupied by forest is declining as pressures for urban areas and new settlements increase. This study’s findings have significant policy implications for sustainable land use and food security. It also provides a spatial method for monitoring LULC variations that can be used as a framework by stakeholders who are interested in environmentally conscious development and sustainable land use practices. Full article
Show Figures

Figure 1

27 pages, 2978 KiB  
Article
Dynamic Monitoring and Precision Fertilization Decision System for Agricultural Soil Nutrients Using UAV Remote Sensing and GIS
by Xiaolong Chen, Hongfeng Zhang and Cora Un In Wong
Agriculture 2025, 15(15), 1627; https://doi.org/10.3390/agriculture15151627 - 27 Jul 2025
Viewed by 365
Abstract
We propose a dynamic monitoring and precision fertilization decision system for agricultural soil nutrients, integrating UAV remote sensing and GIS technologies to address the limitations of traditional soil nutrient assessment methods. The proposed method combines multi-source data fusion, including hyperspectral and multispectral UAV [...] Read more.
We propose a dynamic monitoring and precision fertilization decision system for agricultural soil nutrients, integrating UAV remote sensing and GIS technologies to address the limitations of traditional soil nutrient assessment methods. The proposed method combines multi-source data fusion, including hyperspectral and multispectral UAV imagery with ground sensor data, to achieve high-resolution spatial and spectral analysis of soil nutrients. Real-time data processing algorithms enable rapid updates of soil nutrient status, while a time-series dynamic model captures seasonal variations and crop growth stage influences, improving prediction accuracy (RMSE reductions of 43–70% for nitrogen, phosphorus, and potassium compared to conventional laboratory-based methods and satellite NDVI approaches). The experimental validation compared the proposed system against two conventional approaches: (1) laboratory soil testing with standardized fertilization recommendations and (2) satellite NDVI-based fertilization. Field trials across three distinct agroecological zones demonstrated that the proposed system reduced fertilizer inputs by 18–27% while increasing crop yields by 4–11%, outperforming both conventional methods. Furthermore, an intelligent fertilization decision model generates tailored fertilization plans by analyzing real-time soil conditions, crop demands, and climate factors, with continuous learning enhancing its precision over time. The system also incorporates GIS-based visualization tools, providing intuitive spatial representations of nutrient distributions and interactive functionalities for detailed insights. Our approach significantly advances precision agriculture by automating the entire workflow from data collection to decision-making, reducing resource waste and optimizing crop yields. The integration of UAV remote sensing, dynamic modeling, and machine learning distinguishes this work from conventional static systems, offering a scalable and adaptive framework for sustainable farming practices. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

31 pages, 3300 KiB  
Article
Economic Growth and Energy Consumption in Thailand: Evidence from the Energy Kuznets Curve Using Provincial-Level Data
by Thanakhom Srisaringkarn and Kentaka Aruga
Energies 2025, 18(15), 3980; https://doi.org/10.3390/en18153980 - 25 Jul 2025
Viewed by 360
Abstract
This study investigates the relationship between economic growth and energy consumption using the Energy Kuznets Curve (EKC) framework. Spatial econometric models, including the Spatial Panel Lag Model and the Spatial Dynamic Panel Lag IV Model, are employed to capture both spatial and dynamic [...] Read more.
This study investigates the relationship between economic growth and energy consumption using the Energy Kuznets Curve (EKC) framework. Spatial econometric models, including the Spatial Panel Lag Model and the Spatial Dynamic Panel Lag IV Model, are employed to capture both spatial and dynamic effects. The results indicate that energy consumption in Thailand is spatially clustered, with energy use tending to spill over into neighboring provinces and concentrating in specific regions. Key factors that positively influence energy consumption include gross provincial product (GPP) per capita, population density, and road density. Regions characterized by favorable climates, sufficient infrastructure, and high levels of economic activity exhibit higher per capita energy consumption. The EKC analysis reveals a U-shape relationship between GPP per capita and energy consumption in the BKK&VIC, CE, EA, WE, and NE regions. As many regions continue to experience rising energy consumption, the findings underscore the importance of Thailand adopting more efficient energy usage strategies in tandem with its economic development. Full article
(This article belongs to the Special Issue Environmental Sustainability and Energy Economy)
Show Figures

Figure 1

1 pages, 120 KiB  
Correction
Correction: Mostafa et al. Groundwater Potential Mapping in Semi-Arid Areas Using Integrated Remote Sensing, GIS, and Geostatistics Techniques. Water 2025, 17, 1909
by Ahmed El-sayed Mostafa, Mahrous A. M. Ali, Faissal A. Ali, Ragab Rabeiy, Hussein A. Saleem, Mosaad Ali Hussein Ali and Ali Shebl
Water 2025, 17(15), 2206; https://doi.org/10.3390/w17152206 - 24 Jul 2025
Viewed by 326
Abstract
In the original publication [...] Full article
26 pages, 11237 KiB  
Article
Reclassification Scheme for Image Analysis in GRASS GIS Using Gradient Boosting Algorithm: A Case of Djibouti, East Africa
by Polina Lemenkova
J. Imaging 2025, 11(8), 249; https://doi.org/10.3390/jimaging11080249 - 23 Jul 2025
Viewed by 464
Abstract
Image analysis is a valuable approach in a wide array of environmental applications. Mapping land cover categories depicted from satellite images enables the monitoring of landscape dynamics. Such a technique plays a key role for land management and predictive ecosystem modelling. Satellite-based mapping [...] Read more.
Image analysis is a valuable approach in a wide array of environmental applications. Mapping land cover categories depicted from satellite images enables the monitoring of landscape dynamics. Such a technique plays a key role for land management and predictive ecosystem modelling. Satellite-based mapping of environmental dynamics enables us to define factors that trigger these processes and are crucial for our understanding of Earth system processes. In this study, a reclassification scheme of image analysis was developed for mapping the adjusted categorisation of land cover types using multispectral remote sensing datasets and Geographic Resources Analysis Support System (GRASS) Geographic Information System (GIS) software. The data included four Landsat 8–9 satellite images on 2015, 2019, 2021 and 2023. The sequence of time series was used to determine land cover dynamics. The classification scheme consisting of 17 initial land cover classes was employed by logical workflow to extract 10 key land cover types of the coastal areas of Bab-el-Mandeb Strait, southern Red Sea. Special attention is placed to identify changes in the land categories regarding the thermal saline lake, Lake Assal, with fluctuating salinity and water levels. The methodology included the use of machine learning (ML) image analysis GRASS GIS modules ‘r.reclass’ for the reclassification of a raster map based on category values. Other modules included ‘r.random’, ‘r.learn.train’ and ‘r.learn.predict’ for gradient boosting ML classifier and ‘i.cluster’ and ‘i.maxlik’ for clustering and maximum-likelihood discriminant analysis. To reveal changes in the land cover categories around the Lake of Assal, this study uses ML and reclassification methods for image analysis. Auxiliary modules included ‘i.group’, ‘r.import’ and other GRASS GIS scripting techniques applied to Landsat image processing and for the identification of land cover variables. The results of image processing demonstrated annual fluctuations in the landscapes around the saline lake and changes in semi-arid and desert land cover types over Djibouti. The increase in the extent of semi-desert areas and the decrease in natural vegetation proved the processes of desertification of the arid environment in Djibouti caused by climate effects. The developed land cover maps provided information for assessing spatial–temporal changes in Djibouti. The proposed ML-based methodology using GRASS GIS can be employed for integrating techniques of image analysis for land management in other arid regions of Africa. Full article
(This article belongs to the Special Issue Self-Supervised Learning for Image Processing and Analysis)
Show Figures

Figure 1

11 pages, 21181 KiB  
Article
Parallel Ghost Imaging with Extra Large Field of View and High Pixel Resolution
by Nixi Zhao, Changzhe Zhao, Jie Tang, Jianwen Wu, Danyang Liu, Han Guo, Haipeng Zhang and Tiqiao Xiao
Appl. Sci. 2025, 15(15), 8137; https://doi.org/10.3390/app15158137 - 22 Jul 2025
Viewed by 199
Abstract
Ghost imaging (GI) facilitates image acquisition under low-light conditions through single pixel measurements, thus holding tremendous potential across various fields such as biomedical imaging, remote sensing, defense and military applications, and 3D imaging. However, in order to reconstruct high-resolution images, GI typically requires [...] Read more.
Ghost imaging (GI) facilitates image acquisition under low-light conditions through single pixel measurements, thus holding tremendous potential across various fields such as biomedical imaging, remote sensing, defense and military applications, and 3D imaging. However, in order to reconstruct high-resolution images, GI typically requires a large number of single-pixel measurements, which imposes practical limitations on its application. Parallel ghost imaging addresses this issue by utilizing each pixel of a position-sensitive detector as a bucket detector to simultaneously perform tens of thousands of ghost imaging measurements in parallel. In this work, we explore the non-local characteristics of ghost imaging in depth, and by constructing a large speckle space, we achieve a reconstruction result in parallel ghost imaging where the field of view surpasses the limitations of the reference arm detector. Using a computational ghost imaging framework, after pre-recording the speckle patterns, we are able to complete X-ray ghost imaging at a speed of 6 min per sample, with image dimensions of 14,000 × 10,000 pixels (4.55 mm × 3.25 mm, millimeter-scale field of view) and a pixel resolution of 0.325 µm (sub-micron pixel resolution). We present this framework to enhance efficiency, extend resolution, and dramatically expand the field of view, with the aim of providing a solution for the practical implementation of ghost imaging. Full article
(This article belongs to the Special Issue Single-Pixel Intelligent Imaging and Recognition)
Show Figures

Figure 1

24 pages, 3066 KiB  
Article
Urban Flood Susceptibility Mapping Using GIS and Analytical Hierarchy Process: Case of City of Uvira, Democratic Republic of Congo
by Isaac Bishikwabo, Hwaba Mambo, John Kowa Kamanda, Chérifa Abdelbaki, Modester Alfred Nanyunga and Navneet Kumar
GeoHazards 2025, 6(3), 38; https://doi.org/10.3390/geohazards6030038 - 21 Jul 2025
Viewed by 364
Abstract
The city of Uvira, located in the eastern Democratic Republic of Congo (DRC), is increasingly experiencing flood events with devastating impacts on human life, infrastructure, and livelihoods. This study evaluates flood susceptibility in Uvira using Geographic Information Systems (GISs), and an Analytical Hierarchy [...] Read more.
The city of Uvira, located in the eastern Democratic Republic of Congo (DRC), is increasingly experiencing flood events with devastating impacts on human life, infrastructure, and livelihoods. This study evaluates flood susceptibility in Uvira using Geographic Information Systems (GISs), and an Analytical Hierarchy Process (AHP)-based Multi-Criteria Decision Making approach. It integrates eight factors contributing to flood occurrence: distance from water bodies, elevation, slope, rainfall intensity, drainage density, soil type, topographic wetness index, and land use/land cover. The results indicate that proximity to water bodies, drainage density and slope are the most influential factors driving flood susceptibility in Uvira. Approximately 87.3% of the city’s land area is classified as having high to very high flood susceptibility, with the most affected zones concentrated along major rivers and the shoreline of Lake Tanganyika. The reliability of the AHP-derived weights is validated by a consistency ratio of 0.008, which falls below the acceptable threshold of 0.1. This research provides valuable insights to support urban planning and inform flood management strategies. Full article
Show Figures

Figure 1

Back to TopTop