Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,667)

Search Parameters:
Keywords = regional thresholds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1083 KiB  
Article
Assessment of 137Cs and 40K Transfer Factors in Croatian Agricultural Systems and Implications for Food Safety
by Tomislav Bituh, Branko Petrinec, Dragutin Hasenay and Sanja Stipičević
Environments 2025, 12(8), 269; https://doi.org/10.3390/environments12080269 (registering DOI) - 2 Aug 2025
Abstract
Croatian agricultural legislation acknowledges the significance of radionuclides as pollutants in agricultural lands; however, it lacks specific thresholds or reference values for contamination levels, in contrast to other contaminants. This absence highlights the necessity for a comprehensive assessment of radionuclides across various agricultural [...] Read more.
Croatian agricultural legislation acknowledges the significance of radionuclides as pollutants in agricultural lands; however, it lacks specific thresholds or reference values for contamination levels, in contrast to other contaminants. This absence highlights the necessity for a comprehensive assessment of radionuclides across various agricultural systems in Croatia. This study investigates the transfer of radionuclides 137Cs and 40K from soil to agricultural crops throughout Croatia and estimates the consequent annual ingestion dose for the population. The samples collected comprised food crops and animal feed, with corresponding soil samples analyzed to calculate transfer factors. Activity concentrations of 137Cs exhibited regional and crop-type variability, reflecting the uneven distribution of fallout and differing soil properties. Transfer factors were found to range from 0.003 to 0.06 for 137Cs and from 0.15 to 3.1 for 40K, with the highest uptake occurring in kidney beans. The total estimated annual effective ingestion dose was calculated to be a maximum of 0.748 mSv/year for children aged 2–7, predominantly attributable to 40K. Given the homeostatic regulation of potassium in the human body, the dose associated with 137Cs poses a more significant radiological concern. These findings underscore the need for radionuclide-specific agricultural legislation in Croatia and offer a baseline for recommending reference values and informing future regulations regarding agricultural soil contamination. Full article
Show Figures

Figure 1

21 pages, 1646 KiB  
Article
How Does New Quality Productive Forces Affect Green Total Factor Energy Efficiency in China? Consider the Threshold Effect of Artificial Intelligence
by Boyu Yuan, Runde Gu, Peng Wang and Yuwei Hu
Sustainability 2025, 17(15), 7012; https://doi.org/10.3390/su17157012 (registering DOI) - 1 Aug 2025
Abstract
China’s economy is shifting from an era of rapid expansion to one focused on high-quality development, making it imperative to tackle environmental degradation linked to energy use. Understanding how New Quality Productive Forces (NQPF) interact with energy efficiency, along with the mechanisms driving [...] Read more.
China’s economy is shifting from an era of rapid expansion to one focused on high-quality development, making it imperative to tackle environmental degradation linked to energy use. Understanding how New Quality Productive Forces (NQPF) interact with energy efficiency, along with the mechanisms driving this relationship, is essential for economic transformation and long-term sustainability. This study establishes an evaluation framework for NQPF, integrating technological, green, and digital dimensions. We apply fixed-effects models, the spatial Durbin model (SDM), a moderation model, and a threshold model to analyze the influence of NQPF on Green Total Factor Energy Efficiency (GTFEE) and its spatial implications. This underscores the necessity of distinguishing it from traditional productivity frameworks and adopting a new analytical perspective. Furthermore, by considering dimensions such as input, application, innovation capability, and market efficiency, we reveal the moderating role and heterogeneous effects of artificial intelligence (AI). The findings are as follows: The development of NQPF significantly enhances GTFEE, and the conclusion remains robust after tail reduction and endogeneity tests. NQPF has a positive spatial spillover effect on GTFEE; that is, while improving the local GTFEE, it also improves neighboring regions GTFEE. The advancement of AI significantly strengthens the positive impact of NQPF on GTFEE. AI exhibits a significant U-shaped threshold effect: as AI levels increase, its moderating effect transitions from suppression to facilitation, with marginal benefits gradually increasing over time. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

23 pages, 10868 KiB  
Article
Quantitative Analysis and Nonlinear Response of Vegetation Dynamic to Driving Factors in Arid and Semi-Arid Regions of China
by Shihao Liu, Dazhi Yang, Xuyang Zhang and Fangtian Liu
Land 2025, 14(8), 1575; https://doi.org/10.3390/land14081575 (registering DOI) - 1 Aug 2025
Abstract
Vegetation dynamics are complexly influenced by multiple factors such as climate, human activities, and topography. In recent years, the frequency, intensity, and diversity of human activities have increased, placing substantial pressure on the growth of vegetation. Arid and semi-arid regions are particularly sensitive [...] Read more.
Vegetation dynamics are complexly influenced by multiple factors such as climate, human activities, and topography. In recent years, the frequency, intensity, and diversity of human activities have increased, placing substantial pressure on the growth of vegetation. Arid and semi-arid regions are particularly sensitive to climate change, and climate change and large-scale ecological restoration have led to significant changes in the dynamic of dryland vegetation. However, few studies have explored the nonlinear relationships between these factors and vegetation dynamic. In this study, we integrated trend analysis (using the Mann–Kendall test and Theil–Sen estimation) and machine learning algorithms (XGBoost-SHAP model) based on long time-series remote sensing data from 2001 to 2020 to quantify the nonlinear response patterns and threshold effects of bioclimatic variables, topographic features, soil attributes, and anthropogenic factors on vegetation dynamic. The results revealed the following key findings: (1) The kNDVI in the study area showed an overall significant increasing trend (p < 0.01) during the observation period, of which 26.7% of the area showed a significant increase. (2) The water content index (Bio 23, 19.6%), the change in land use (15.2%), multi-year average precipitation (pre, 15.0%), population density (13.2%), and rainfall seasonality (Bio 15, 10.9%) were the key factors driving the dynamic change of vegetation, with the combined contribution of natural factors amounting to 64.3%. (3) Among the topographic factors, altitude had a more significant effect on vegetation dynamics, with higher altitude regions less likely to experience vegetation greening. Both natural and anthropogenic factors exhibited nonlinear responses and interactive effects, contributing to the observed dynamic trends. This study provides valuable insights into the driving mechanisms behind the condition of vegetation in arid and semi-arid regions of China and, by extension, in other arid regions globally. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

9 pages, 4716 KiB  
Commentary
A Lens on Fire Risk Drivers: The Role of Climate and Vegetation Index Anomalies in the May 2025 Manitoba Wildfires
by Afshin Amiri, Silvio Gumiere and Hossein Bonakdari
Earth 2025, 6(3), 88; https://doi.org/10.3390/earth6030088 (registering DOI) - 1 Aug 2025
Abstract
In early May 2025, extreme wildfires swept across Manitoba, Canada, fueled by unseasonably warm temperatures, prolonged drought, and stressed vegetation. We explore how multi-source satellite indicators—such as anomalies in snow cover, precipitation, temperature, vegetation indices, and soil moisture in April–May—jointly signal landscape preconditioning [...] Read more.
In early May 2025, extreme wildfires swept across Manitoba, Canada, fueled by unseasonably warm temperatures, prolonged drought, and stressed vegetation. We explore how multi-source satellite indicators—such as anomalies in snow cover, precipitation, temperature, vegetation indices, and soil moisture in April–May—jointly signal landscape preconditioning for fire, highlighting the potential of these compound anomalies to inform fire risk awareness in boreal regions. Results indicate that rainfall deficits and diminished snowpack significantly reduced soil moisture, which subsequently decreased vegetative greenness and created a flammable environment prior to ignition. This concept captures how multiple moderate anomalies, when occurring simultaneously, can converge to create high-impact fire conditions that would not be flagged by individual thresholds alone. These findings underscore the importance of integrating climate and biosphere anomalies into wildfire risk monitoring to enhance preparedness in boreal regions under accelerating climate change. Full article
20 pages, 1205 KiB  
Review
Patterns in Root Phenology of Woody Plants Across Climate Regions: Drivers, Constraints, and Ecosystem Implications
by Qiwen Guo, Boris Rewald, Hans Sandén and Douglas L. Godbold
Forests 2025, 16(8), 1257; https://doi.org/10.3390/f16081257 (registering DOI) - 1 Aug 2025
Viewed by 29
Abstract
Root phenology significantly influences ecosystem processes yet remains poorly characterized across biomes. This study synthesized data from 59 studies spanning Arctic to tropical ecosystems to identify woody plants root phenological patterns and their environmental drivers. The analysis revealed distinct climate-specific patterns. Arctic regions [...] Read more.
Root phenology significantly influences ecosystem processes yet remains poorly characterized across biomes. This study synthesized data from 59 studies spanning Arctic to tropical ecosystems to identify woody plants root phenological patterns and their environmental drivers. The analysis revealed distinct climate-specific patterns. Arctic regions had a short growing season with remarkably low temperature threshold for initiation of root growth (0.5–1 °C). Temperate forests displayed pronounced spring-summer growth patterns with root growth initiation occurring at 1–9 °C. Mediterranean ecosystems showed bimodal patterns optimized around moisture availability, and tropical regions demonstrate seasonality primarily driven by precipitation. Root-shoot coordination varies predictably across biomes, with humid continental ecosystems showing the highest synchronous above- and belowground activity (57%), temperate regions exhibiting leaf-before-root emergence (55%), and Mediterranean regions consistently showing root-before-leaf patterns (100%). Winter root growth is more widespread than previously recognized (35% of studies), primarily in tropical and Mediterranean regions. Temperature thresholds for phenological transitions vary with climate region, suggesting adaptations to environmental conditions. These findings provide a critical, region-specific framework for improving models of terrestrial ecosystem responses to climate change. While our synthesis clarifies distinct phenological strategies, its conclusions are drawn from data focused primarily on Northern Hemisphere woody plants, highlighting significant geographic gaps in our current understanding. Bridging these knowledge gaps is essential for accurately forecasting how belowground dynamics will influence global carbon sequestration, nutrient cycling, and ecosystem resilience under changing climatic regimes. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

21 pages, 5062 KiB  
Article
Forest Management Effects on Breeding Bird Communities in Apennine Beech Stands
by Guglielmo Londi, Francesco Parisi, Elia Vangi, Giovanni D’Amico and Davide Travaglini
Ecologies 2025, 6(3), 54; https://doi.org/10.3390/ecologies6030054 (registering DOI) - 1 Aug 2025
Viewed by 31
Abstract
Beech forests in the Italian peninsula are actively managed and they also support a high level of biodiversity. Hence, biodiversity conservation can be synergistic with timber production and carbon sequestration, enhancing the overall economic benefits of forest management. This study aimed to evaluate [...] Read more.
Beech forests in the Italian peninsula are actively managed and they also support a high level of biodiversity. Hence, biodiversity conservation can be synergistic with timber production and carbon sequestration, enhancing the overall economic benefits of forest management. This study aimed to evaluate the effect of forest management regimes on bird communities in the Italian Peninsula during 2022 through audio recordings. We studied the structure, composition, and specialization of the breeding bird community in four managed beech stands (three even-aged beech stands aged 20, 60, and 100 years old, managed by a uniform shelterwood system; one uneven-aged stand, managed by a single-tree selection system) and one uneven-aged, unmanaged beech stand in the northern Apennines (Tuscany region, Italy). Between April and June 2022, data were collected through four 1-hour audio recording sessions per site, analyzing 5 min sequences. The unmanaged stand hosted a richer (a higher number of species, p < 0.001) and more specialized (a higher number of cavity-nesting species, p < 0.001; higher Woodland Bird Community Index (WBCI) values, p < 0.001; and eight characteristic species, including at least four highly specialized ones) bird community, compared to all the managed forests; moreover, the latter were homogeneous (similar to each other). Our study suggests that the unmanaged beech forests should be a priority option for conservation, while in terms of the managed beech forests, greater attention should be paid to defining the thresholds for snags, deadwood, and large trees to be retained to enhance their biodiversity value. Studies in additional sites, conducted over more years and including multi-taxon communities, are recommended for a deeper understanding and generalizable results. Full article
Show Figures

Figure 1

21 pages, 23129 KiB  
Article
Validation of Global Moderate-Resolution FAPAR Products over Boreal Forests in North America Using Harmonized Landsat and Sentinel-2 Data
by Yinghui Zhang, Hongliang Fang, Zhongwen Hu, Yao Wang, Sijia Li and Guofeng Wu
Remote Sens. 2025, 17(15), 2658; https://doi.org/10.3390/rs17152658 (registering DOI) - 1 Aug 2025
Viewed by 63
Abstract
The fraction of absorbed photosynthetically active radiation (FAPAR) stands as a pivotal parameter within the Earth system, quantifying the energy exchange between vegetation and solar radiation. Accordingly, there is an urgent need for comprehensive validation studies to accurately quantify uncertainties and improve the [...] Read more.
The fraction of absorbed photosynthetically active radiation (FAPAR) stands as a pivotal parameter within the Earth system, quantifying the energy exchange between vegetation and solar radiation. Accordingly, there is an urgent need for comprehensive validation studies to accurately quantify uncertainties and improve the reliability of FAPAR-based applications. This study validated five global FAPAR products, MOD15A2H, MYD15A2H, VNP15A2H, GEOV2, and GEOV3, over four boreal forest sites in North America. Qualitative quality flags (QQFs) and quantitative quality indicators (QQIs) of each product were analyzed. Time series high-resolution reference FAPAR maps were developed using the Harmonized Landsat and Sentinel-2 dataset. The reference FAPAR maps revealed a strong agreement with the in situ FAPAR from AmeriFlux (correlation coefficient (R) = 0.91; root mean square error (RMSE) = 0.06). The results revealed that global FAPAR products show similar uncertainties (RMSE: 0.16 ± 0.04) and moderate agreement with the reference FAPAR (R = 0.75 ± 0.10). On average, 34.47 ± 6.91% of the FAPAR data met the goal requirements of the Global Climate Observing System (GCOS), while 54.41 ± 6.89% met the threshold requirements of the GCOS. Deciduous forests perform better than evergreen forests, and the products tend to underestimate the reference data, especially for the beginning and end of growing seasons in evergreen forests. There are no obvious quality differences at different QQFs, and the relative QQI can be used to filter high-quality values. To enhance the regional applicability of global FAPAR products, further algorithm improvements and expanded validation efforts are essential. Full article
Show Figures

Figure 1

15 pages, 3267 KiB  
Article
Monitoring and Analyzing Aquatic Vegetation Using Sentinel-2 Imagery Time Series: A Case Study in Chimaditida Shallow Lake in Greece
by Maria Kofidou and Vasilios Ampas
Limnol. Rev. 2025, 25(3), 35; https://doi.org/10.3390/limnolrev25030035 (registering DOI) - 1 Aug 2025
Viewed by 61
Abstract
Aquatic vegetation plays a crucial role in freshwater ecosystems by providing habitats, regulating water quality, and supporting biodiversity. This study aims to monitor and analyze the dynamics of aquatic vegetation in Chimaditida Shallow Lake, Greece, using Sentinel-2 satellite imagery, with validation from field [...] Read more.
Aquatic vegetation plays a crucial role in freshwater ecosystems by providing habitats, regulating water quality, and supporting biodiversity. This study aims to monitor and analyze the dynamics of aquatic vegetation in Chimaditida Shallow Lake, Greece, using Sentinel-2 satellite imagery, with validation from field measurements. Data processing was performed using Google Earth Engine and QGIS. The study focuses on discriminating and mapping two classes of aquatic surface conditions: areas covered with Floating and Emergent Aquatic Vegetation and open water, covering all seasons from 1 March 2024, to 28 February 2025. Spectral bands such as B04 (red), B08 (near infrared), B03 (green), and B11 (shortwave infrared) were used, along with indices like the Modified Normalized Difference Water Index and Normalized Difference Vegetation Index. The classification was enhanced using Otsu’s thresholding technique to distinguish accurately between Floating and Emergent Aquatic Vegetation and open water. Seasonal fluctuations were observed, with significant peaks in vegetation growth during the summer and autumn months, including a peak coverage of 2.08 km2 on 9 September 2024 and a low of 0.00068 km2 on 28 December 2024. These variations correspond to the seasonal growth patterns of Floating and Emergent Aquatic Vegetation, driven by temperature and nutrient availability. The study achieved a high overall classification accuracy of 89.31%, with producer accuracy for Floating and Emergent Aquatic Vegetation at 97.42% and user accuracy at 95.38%. Validation with Unmanned Aerial Vehicle-based aerial surveys showed a strong correlation (R2 = 0.88) between satellite-derived and field data, underscoring the reliability of Sentinel-2 for aquatic vegetation monitoring. Findings highlight the potential of satellite-based remote sensing to monitor vegetation health and dynamics, offering valuable insights for the management and conservation of freshwater ecosystems. The results are particularly useful for governmental authorities and natural park administrations, enabling near-real-time monitoring to mitigate the impacts of overgrowth on water quality, biodiversity, and ecosystem services. This methodology provides a cost-effective alternative for long-term environmental monitoring, especially in regions where traditional methods are impractical or costly. Full article
Show Figures

Figure 1

21 pages, 300 KiB  
Article
Research on the Mechanisms and Pathways of Digital Economy—Driven Agricultural Green Development: Evidence from Sichuan Province, China
by Changhong Chen and Yule Wang
Sustainability 2025, 17(15), 6980; https://doi.org/10.3390/su17156980 (registering DOI) - 31 Jul 2025
Viewed by 112
Abstract
This study endeavors to elucidate the mechanisms and pathways through which the digital economy shapes agricultural green development, providing theoretical underpinnings and practical guidance for the green transformation of regional agriculture. (1) Using panel data from 18 prefecture-level cities in Sichuan Province (2013–2022), [...] Read more.
This study endeavors to elucidate the mechanisms and pathways through which the digital economy shapes agricultural green development, providing theoretical underpinnings and practical guidance for the green transformation of regional agriculture. (1) Using panel data from 18 prefecture-level cities in Sichuan Province (2013–2022), a comprehensive evaluation index system for agricultural green development was formulated. Fixed-effects, mediating-effects, and threshold-effects models were employed to systematically analyze the direct effects, transmission pathways, and nonlinear characteristics of the digital economy on agricultural green development. (2) The fixed-effects model shows that the digital economy markedly propels agricultural green development in Sichuan Province. The mediating-effects model verifies two transmission pathways: “digital economy → technological progression → agricultural green development” and “digital economy → industrial structure upgrading → agricultural green development”. The threshold-effects model suggests that when the digital economy is in the low-threshold interval, it exerts a suppressive impact on agricultural green development; however, once the threshold is surpassed, its promoting effect strengthens significantly. (3) The results demonstrate the following findings: First, the digital economy exerts a significant positive effect on agricultural green development. Second, this promoting effect exhibits significant nonlinear characteristics that vary with the level of digital economy development. Third, the impact manifests remarkable regional heterogeneity, necessitating context-specific development strategies. (4) Five optimization recommendations are proposed: promote the categorized development of agricultural digital technologies and industrial upgrading; advance digital infrastructure and technology adaptation in phases; design differentiated regional policies; establish a hierarchical and classified long-term guarantee mechanism; and strengthen the “industry-university-research-application” collaborative innovation and dynamic monitoring system. Full article
23 pages, 3769 KiB  
Article
Study on the Spatio-Temporal Distribution and Influencing Factors of Soil Erosion Gullies at the County Scale of Northeast China
by Jianhua Ren, Lei Wang, Zimeng Xu, Jinzhong Xu, Xingming Zheng, Qiang Chen and Kai Li
Sustainability 2025, 17(15), 6966; https://doi.org/10.3390/su17156966 (registering DOI) - 31 Jul 2025
Viewed by 174
Abstract
Gully erosion refers to the landform formed by soil and water loss through gully development, which is a critical manifestation of soil degradation. However, research on the spatio-temporal variations in erosion gullies at the county scale remains insufficient, particularly regarding changes in gully [...] Read more.
Gully erosion refers to the landform formed by soil and water loss through gully development, which is a critical manifestation of soil degradation. However, research on the spatio-temporal variations in erosion gullies at the county scale remains insufficient, particularly regarding changes in gully aggregation and their driving factors. This study utilized high-resolution remote sensing imagery, gully interpretation information, topographic data, meteorological records, vegetation coverage, soil texture, and land use datasets to analyze the spatio-temporal patterns and influencing factors of erosion gully evolution in Bin County, Heilongjiang Province of China, from 2012 to 2022. Kernel density evaluation (KDE) analysis was also employed to explore these dynamics. The results indicate that the gully number in Bin County has significantly increased over the past decade. Gully development involves not only headward erosion of gully heads but also lateral expansion of gully channels. Gully evolution is most pronounced in slope intervals. While gentle slopes and slope intervals host the highest density of gullies, the aspect does not significantly influence gully development. Vegetation coverage exhibits a clear threshold effect of 0.6 in inhibiting erosion gully formation. Additionally, cultivated areas contain the largest number of gullies and experience the most intense changes; gully aggregation in forested and grassland regions shows an upward trend; the central part of the black soil region has witnessed a marked decrease in gully aggregation; and meadow soil areas exhibit relatively stable spatio-temporal variations in gully distribution. These findings provide valuable data and decision-making support for soil erosion control and transformation efforts. Full article
(This article belongs to the Special Issue Sustainable Agriculture, Soil Erosion and Soil Conservation)
Show Figures

Figure 1

32 pages, 17155 KiB  
Article
Machine Learning Ensemble Methods for Co-Seismic Landslide Susceptibility: Insights from the 2015 Nepal Earthquake
by Tulasi Ram Bhattarai and Netra Prakash Bhandary
Appl. Sci. 2025, 15(15), 8477; https://doi.org/10.3390/app15158477 (registering DOI) - 30 Jul 2025
Viewed by 178
Abstract
The Mw 7.8 Gorkha Earthquake of 25 April 2015 triggered over 25,000 landslides across central Nepal, with 4775 events concentrated in Gorkha District alone. Despite substantial advances in landslide susceptibility mapping, existing studies often overlook the compound role of post-seismic rainfall and lack [...] Read more.
The Mw 7.8 Gorkha Earthquake of 25 April 2015 triggered over 25,000 landslides across central Nepal, with 4775 events concentrated in Gorkha District alone. Despite substantial advances in landslide susceptibility mapping, existing studies often overlook the compound role of post-seismic rainfall and lack robust spatial validation. To address this gap, we validated an ensemble machine learning framework for co-seismic landslide susceptibility modeling by integrating seismic, geomorphological, hydrological, and anthropogenic variables, including cumulative post-seismic rainfall. Using a balanced dataset of 4775 landslide and non-landslide instances, we evaluated the performance of Logistic Regression (LR), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost) models through spatial cross-validation, SHapley Additive exPlanations (SHAP) explainability, and ablation analysis. The RF model outperformed all others, achieving an accuracy of 87.9% and a Receiver Operating Characteristic (ROC) Area Under the Curve (AUC) value of 0.94, while XGBoost closely followed (AUC = 0.93). Ensemble models collectively classified over 95% of observed landslides into High and Very High susceptibility zones, demonstrating strong spatial reliability. SHAP analysis identified elevation, proximity to fault, peak ground acceleration (PGA), slope, and rainfall as dominant predictors. Notably, the inclusion of post-seismic rainfall substantially improved recall and F1 scores in ablation experiments. Spatial cross-validation revealed the superior generalizability of ensemble models under heterogeneous terrain conditions. The findings underscore the value of integrating post-seismic hydrometeorological factors and spatial validation into susceptibility assessments. We recommend adopting ensemble models, particularly RF, for operational hazard mapping in earthquake-prone mountainous regions. Future research should explore the integration of dynamic rainfall thresholds and physics-informed frameworks to enhance early warning systems and climate resilience. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

22 pages, 22134 KiB  
Article
Adaptive Pluvial Flood Disaster Management in Taiwan: Infrastructure and IoT Technologies
by Sheng-Hsueh Yang, Sheau-Ling Hsieh, Xi-Jun Wang, Deng-Lin Chang, Shao-Tang Wei, Der-Ren Song, Jyh-Hour Pan and Keh-Chia Yeh
Water 2025, 17(15), 2269; https://doi.org/10.3390/w17152269 - 30 Jul 2025
Viewed by 295
Abstract
In Taiwan, hydro-meteorological data are fragmented across multiple agencies, limiting the effectiveness of coordinated flood response. To address this challenge and the increasing uncertainty associated with extreme rainfall, a real-time disaster prevention platform has been developed. This system integrates multi-source data and geospatial [...] Read more.
In Taiwan, hydro-meteorological data are fragmented across multiple agencies, limiting the effectiveness of coordinated flood response. To address this challenge and the increasing uncertainty associated with extreme rainfall, a real-time disaster prevention platform has been developed. This system integrates multi-source data and geospatial information through a cluster-based architecture to enhance pluvial flood management. Built on a Service-Oriented Architecture (SOA) and incorporating Internet of Things (IoT) technologies, AI-based convolutional neural networks (CNNs), and 3D drone mapping, the platform enables automated alerts by linking sensor thresholds with real-time environmental data, facilitating synchronized operational responses. Deployed in New Taipei City over the past three years, the system has demonstrably reduced flood risk during severe rainfall events. Region-specific action thresholds and adaptive strategies are continually refined through feedback mechanisms, while integrated spatial and hydrological trend analyses extend the lead time available for emergency response. Full article
Show Figures

Figure 1

27 pages, 2187 KiB  
Article
The Impact of the Digital Economy on Energy Rebound: A Booster or Inhibitor?
by Maliyamu Abudureheman
Economies 2025, 13(8), 223; https://doi.org/10.3390/economies13080223 - 30 Jul 2025
Viewed by 241
Abstract
Given the compromising effect of energy rebound on energy conservation efforts and environmental sustainability, plentiful research has focused on evaluating its size and scope in the past; however, there is a scarcity in the exploration of its potential drivers, especially the impacts of [...] Read more.
Given the compromising effect of energy rebound on energy conservation efforts and environmental sustainability, plentiful research has focused on evaluating its size and scope in the past; however, there is a scarcity in the exploration of its potential drivers, especially the impacts of the digital economy. With the accelerating pace of worldwide digitalization, how the digital economy affects the energy rebound effect deserves special attention. We explored the underlying impacts of the digital economy on energy rebound and its influencing mechanisms for the first time in this study based on a panel dataset from China. Results show that most of the regions in China exhibited a partial rebound effect over the period 2007–2022, with an average value of 77.14%. Digital economy development exhibits a threshold effect on energy rebound with regard to energy efficiency improvement. That is, when the energy efficiency is low, digital economy development positively impacts the energy rebound, however, as the energy efficiency increases and surpasses a certain critical threshold, the digital economy can help mitigate the energy rebound effect. Energy prices and environmental regulation present a significant negative impact on energy rebound. Finally, several policy implications are highlighted based on the main findings of this study. Full article
Show Figures

Figure 1

24 pages, 8636 KiB  
Article
Oil Film Segmentation Method Using Marine Radar Based on Feature Fusion and Artificial Bee Colony Algorithm
by Jin Xu, Bo Xu, Xiaoguang Mou, Boxi Yao, Zekun Guo, Xiang Wang, Yuanyuan Huang, Sihan Qian, Min Cheng, Peng Liu and Jianning Wu
J. Mar. Sci. Eng. 2025, 13(8), 1453; https://doi.org/10.3390/jmse13081453 - 29 Jul 2025
Viewed by 134
Abstract
In the wake of the continuous development of the international strategic petroleum reserve system, the tonnage and quantity of oil tankers have been increasing. This trend has driven the expansion of offshore oil exploration and transportation, resulting in frequent incidents of ship oil [...] Read more.
In the wake of the continuous development of the international strategic petroleum reserve system, the tonnage and quantity of oil tankers have been increasing. This trend has driven the expansion of offshore oil exploration and transportation, resulting in frequent incidents of ship oil spills. Catastrophic impacts have been exerted on the marine environment by these accidents, posing a serious threat to economic development and ecological security. Therefore, there is an urgent need for efficient and reliable methods to detect oil spills in a timely manner and minimize potential losses as much as possible. In response to this challenge, a marine radar oil film segmentation method based on feature fusion and the artificial bee colony (ABC) algorithm is proposed in this study. Initially, the raw experimental data are preprocessed to obtain denoised radar images. Subsequently, grayscale adjustment and local contrast enhancement operations are carried out on the denoised images. Next, the gray level co-occurrence matrix (GLCM) features and Tamura features are extracted from the locally contrast-enhanced images. Then, the generalized least squares (GLS) method is employed to fuse the extracted texture features, yielding a new feature fusion map. Afterwards, the optimal processing threshold is determined to obtain effective wave regions by using the bimodal graph direct method. Finally, the ABC algorithm is utilized to segment the oil films. This method can provide data support for oil spill detection in marine radar images. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 536 KiB  
Article
Optimal Vegetable Intake for Metabolic-Dysfunction-Associated Steatotic Liver Disease (MASLD) Prevention: Insights from a South Italian Cohort
by Maria Noemy Pastore, Caterina Bonfiglio, Rossella Tatoli, Rossella Donghia, Pasqua Letizia Pesole and Gianluigi Giannelli
Nutrients 2025, 17(15), 2477; https://doi.org/10.3390/nu17152477 - 29 Jul 2025
Viewed by 273
Abstract
(1) Background: Metabolic-dysfunction-associated steatotic liver disease (MASLD) is now the most prevalent chronic liver disease worldwide, posing a growing public health concern. While dietary improvements are key to prevention, the impact of different vegetable types remains unclear. This study focuses on the association [...] Read more.
(1) Background: Metabolic-dysfunction-associated steatotic liver disease (MASLD) is now the most prevalent chronic liver disease worldwide, posing a growing public health concern. While dietary improvements are key to prevention, the impact of different vegetable types remains unclear. This study focuses on the association between vegetable consumption and the risk of MASLD in a cohort of Southern Italy. (2) Methods: This research involved 1297 participants from the NUTRIHEP study, examining overall vegetable intake and classifying them into color subgroups to determine optimal quantity and variety for risk reduction. (3) Results: Daily consumption of approximately 325 g (two servings) of total vegetables significantly reduces the risk of MASLD (OR: 0.521; 95% CI: 0.317; 0.858). Among the subgroups, green vegetables were most protective at 35 g/day, while red and orange vegetables offered protection at 130 g/day. A higher intake of the other vegetable category, specifically onions, was associated with a reduced probability of MASLD (OR = 0.995; 95%CI: 0.989; 0.999). (4) Conclusions: These findings suggest a threshold effect, where moderate but regular consumption of specific vegetables offers maximal protection. Consuming excessive amounts may not enhance this benefit within this cohort. Cultural and regional dietary patterns should be considered when designing targeted nutritional interventions. Full article
(This article belongs to the Special Issue Mediterranean Diet and Nutrition Literacy)
Show Figures

Figure 1

Back to TopTop