Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,057)

Search Parameters:
Keywords = regional ranking

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2235 KiB  
Article
Ternary Historical Memory-Based Robust Clustered Particle Swarm Optimization for Dynamic Berth Allocation and Crane Assignment Problem
by Ruiqi Wu, Shiming Mao and Yi Sun
Mathematics 2025, 13(15), 2516; https://doi.org/10.3390/math13152516 - 5 Aug 2025
Abstract
The berth allocation and crane assignment problem (BACAP) is a key challenge in port logistics, particularly under dynamic and uncertain vessel arrival conditions. To address the limitations of existing methods in handling large-scale and high-disturbance scenarios, this paper proposes a novel optimization framework: [...] Read more.
The berth allocation and crane assignment problem (BACAP) is a key challenge in port logistics, particularly under dynamic and uncertain vessel arrival conditions. To address the limitations of existing methods in handling large-scale and high-disturbance scenarios, this paper proposes a novel optimization framework: Ternary Historical Memory-based Robust Clustered Particle Swarm Optimization (THM-RCPSO). In this method, the initial particle swarm is divided into multiple clusters, each conducting local searches to identify regional optima. These clusters then exchange information to iteratively refine the global best solution. A ternary historical memory mechanism further enhances the optimization by recording and comparing the best solutions from three different strategies, ensuring guidance from historical performance during exploration. Experimental evaluations on 25 dynamic BACAP benchmark instances show that THM-RCPSO achieves the lowest average vessel dwell time in 22 out of 25 cases, with the lowest overall average rank among five tested algorithms. Specifically, it demonstrates significant advantages on large-scale instances with 150 vessels, where it consistently outperforms competing methods such as HRBA, ACO, and GAMCS in both solution quality and robustness. These results confirm THM-RCPSO’s strong capability in solving dynamic and large-scale DBACAP scenarios with high disturbance levels. Full article
Show Figures

Figure 1

25 pages, 1150 KiB  
Article
Comparative Assessment of Health Systems Resilience: A Cross-Country Analysis Using Key Performance Indicators
by Yu-Hsiu Chuang and Jin-Li Hu
Systems 2025, 13(8), 663; https://doi.org/10.3390/systems13080663 - 5 Aug 2025
Abstract
Although organizational resilience is well established, refining the systematic quantitative evaluation of health systems resilience (HSR) remains an ongoing opportunity for advancement. Research either focuses on individual HSR indicators, such as social welfare policy, public expenditure, health insurance, healthcare quality, and technology, or [...] Read more.
Although organizational resilience is well established, refining the systematic quantitative evaluation of health systems resilience (HSR) remains an ongoing opportunity for advancement. Research either focuses on individual HSR indicators, such as social welfare policy, public expenditure, health insurance, healthcare quality, and technology, or broadly examines socio-economic factors, highlighting the need for a more comprehensive methodological approach. This study employed the Slacks-Based Measure (SBM) within Data Envelopment Analysis (DEA) to analyze efficiency by maximizing outputs. It systematically examined key HSR factors across countries, providing insights for improved policymaking and resource allocation. Taking a five-year (2016–2020) dataset that covered 55 to 56 countries and evaluating 17 indicators across governance, health systems, and economic aspects, the paper presents that all sixteen top-ranked countries with a perfect efficiency score of 1 belonged to the high-income group, with ten in Europe, highlighting regional HSR differences. This paper concludes that adequate economic resources form the foundation of HSR and ensure stability and sustained progress. A properly supported healthcare workforce is essential for significantly enhancing health systems and delivering quality care. Last, effective governance and the equitable allocation of resources are crucial for fostering sustainable development and strengthening HSR. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

26 pages, 9053 KiB  
Article
Numerical Study of the Use of a Flapping Foil in Energy Harvesting with Suction- and Blower-Based Control
by Yalei Bai, Huimin Yao and Min Zheng
Aerospace 2025, 12(8), 698; https://doi.org/10.3390/aerospace12080698 - 5 Aug 2025
Abstract
The method of extracting energy from a fluid environment using flapping foils offers advantages such as structural simplicity and environmental friendliness. However, its low energy harvesting efficiency remains a significant factor limiting its development. This study employs suction and blower-based control (SBC) to [...] Read more.
The method of extracting energy from a fluid environment using flapping foils offers advantages such as structural simplicity and environmental friendliness. However, its low energy harvesting efficiency remains a significant factor limiting its development. This study employs suction and blower-based control (SBC) to enhance the energy harvesting efficiency of flapping foils. Using an orthogonal experimental design and numerical methods, 49 representative combinations of SBC geometries were selected for numerical simulation. The effects and priority rankings of geometric parameters on foil performance were statistically analyzed. It was found that under the optimal geometry (the suction slot position is 0.54c, the injection slot position is 0.79c, the width of the slot is 0.015c, the angle of the suction slot is −3°, and the angle of the injection slot is −9°), the energy harvesting efficiency can reach 40.7%. Furthermore, under laminar flow conditions, the benefit of SBC increases with higher Reynolds numbers (Re). At Re = 2200, SBC maximized the improvement in energy harvesting efficiency by 76%. No significant correlation was observed between the flapping amplitude and the SBC effect. However, the reduced frequency significantly influences the efficiency improvement generated by SBC. The SBC method shifts the foil’s optimal operating region towards lower reduced frequencies, which benefits energy harvesting efficiency. The research presented herein may have potential applications in the development of marine energy systems and bio-inspired propulsion. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

18 pages, 7363 KiB  
Article
Agronomic Evaluation of Compost Formulations Based on Mining Tailings and Microbial Mats from Geothermal Sources
by María Jesús Puy-Alquiza, Miren Yosune Miranda Puy, Raúl Miranda-Avilés, Pooja Vinod Kshirsagar and Cristina Daniela Moncada Sanchez
Recycling 2025, 10(4), 156; https://doi.org/10.3390/recycling10040156 - 5 Aug 2025
Abstract
This study, conducted in Mexico, evaluates the agricultural potential of three compost formulations BFS1, BFS2, and BFS3 produced from mining tailings and thermophilic microbial mats and collected from geothermal environments. The physicochemical characterization included pH, electrical conductivity (EC), macronutrients (N, P, K, Ca, [...] Read more.
This study, conducted in Mexico, evaluates the agricultural potential of three compost formulations BFS1, BFS2, and BFS3 produced from mining tailings and thermophilic microbial mats and collected from geothermal environments. The physicochemical characterization included pH, electrical conductivity (EC), macronutrients (N, P, K, Ca, Mg, and S), micronutrients (Fe, Zn, B, Cu, Mn, Mo, and Ni), organic matter (OM), and the carbon-to-nitrogen (C/N) ratio. All composts exhibited neutral pH values (7.38–7.52), high OM content (38.5–48.4%), and optimal C/N ratios (10.5–13.9), indicating maturity and chemical stability. Nitrogen ranged from 19 to 21 kg·t−1, while potassium and calcium were present in concentrations beneficial for crop development. However, EC values (3.43–3.66 dS/m) and boron levels (>160 ppm) were moderately high, requiring caution in saline soils or with boron-sensitive crops. A semi-quantitative Compost Quality Index (CQI) ranked BFS3 highest due to elevated OM and potassium content, followed by BFS1. BFS2, while rich in nitrogen, scored lower due to excessive boron. One-way ANOVA revealed no significant difference in nitrogen (p > 0.05), but it did reveal significant differences in potassium (p < 0.01) and boron (p < 0.001) among formulations. These results confirm the potential of mining tailings—microbial mat composts are low-cost, nutrient-rich biofertilizers. They are suitable for field crops or as components in nursery substrates, particularly when EC and boron are managed through dilution. This study promotes the circular reuse of geothermal and industrial residues and contributes to sustainable soil restoration practices in mining-affected regions through innovative composting strategies. Full article
Show Figures

Figure 1

8 pages, 844 KiB  
Opinion
Flawed Metrics, Damaging Outcomes: A Rebuttal to the RI2 Integrity Index Targeting Top Indonesian Universities
by Muhammad Iqhrammullah, Derren D. C. H. Rampengan, Muhammad Fadhlal Maula and Ikhwan Amri
Publications 2025, 13(3), 36; https://doi.org/10.3390/publications13030036 - 4 Aug 2025
Viewed by 122
Abstract
The Research Integrity Risk Index (RI2), introduced as a tool to identify universities at risk of compromised research integrity, adopts an overly reductive methodology by combining retraction rates and delisted journal proportions into a single, equally weighted composite score. While its [...] Read more.
The Research Integrity Risk Index (RI2), introduced as a tool to identify universities at risk of compromised research integrity, adopts an overly reductive methodology by combining retraction rates and delisted journal proportions into a single, equally weighted composite score. While its stated aim is to promote accountability, this commentary critiques the RI2 index for its flawed assumptions, lack of empirical validation, and disproportionate penalization of institutions in low- and middle-income countries. We examine how RI2 misinterprets retractions, misuses delisting data, and fails to account for diverse academic publishing environments, particularly in Indonesia, where many high-performing universities are unfairly categorized as “high risk” or “red flag.” The index’s uncritical reliance on opaque delisting decisions, combined with its fixed equal-weighting formula, produces volatile and context-insensitive scores that do not accurately reflect the presence or severity of research misconduct. Moreover, RI2 has gained significant media attention and policy influence despite being based on an unreviewed preprint, with no transparent mechanism for institutional rebuttal or contextual adjustment. By comparing RI2 classifications with established benchmarks such as the Scimago Institution Rankings and drawing from lessons in global development metrics, we argue that RI2, although conceptually innovative, should remain an exploratory framework. It requires rigorous scientific validation before being adopted as a global standard. We also propose flexible weighting schemes, regional calibration, and transparent engagement processes to improve the fairness and reliability of institutional research integrity assessments. Full article
Show Figures

Figure 1

19 pages, 1637 KiB  
Article
Comparative Analysis of Plastic Waste Management Options Sustainability Profiles
by Madalina-Maria Enache, Daniela Gavrilescu and Carmen Teodosiu
Polymers 2025, 17(15), 2117; https://doi.org/10.3390/polym17152117 - 31 Jul 2025
Viewed by 289
Abstract
Efficient plastic waste end-of-life management is a serious worldwide environmental issue motivated by growing waste production and negative effects of wrongful disposal. This study presents a comparative overview of plastic waste management regimes within the European Union (EU), the United States of America [...] Read more.
Efficient plastic waste end-of-life management is a serious worldwide environmental issue motivated by growing waste production and negative effects of wrongful disposal. This study presents a comparative overview of plastic waste management regimes within the European Union (EU), the United States of America (USA), and Romania, ranked with circular economy goals. By using the United States Environmental Protection Agency (US EPA) Waste Reduction Model (WARM), version 16, the study provides a quantified score to greenhouse gas (GHG) emissions within three large options of management: recycling, energy recovery through combustion, and landfilling. The model setup utilizes region-specific information on legislation, base technology, and recycling efficiency. The outcomes show that recycling always entails net GHG emissions reductions, i.e., −4.49 kg CO2e/capita/year for EU plastic waste and −20 kg CO2e/capita/year for USA plastic waste. Combustion and landfilling have positive net emissions from 1.76 to 14.24 kg CO2e/capita/year. Economic indicators derived from the model also show significant variation: salaries for PET management amounted to USD 2.87 billion in the EU and USD 377 million in the USA, and tax collection was USD 506 million and USD 2.01 billion, respectively. The conclusions highlight the wider environmental and socioeconomic benefits of recycling and reinforce its status as a cornerstone of circular-economy sustainable plastic waste management and a strategic element of national development agendas, with special reference to Romania’s national agenda. Full article
(This article belongs to the Special Issue Polymers for Environmental Applications)
Show Figures

Figure 1

25 pages, 6180 KiB  
Article
Study on the Spatial Distribution Characteristics and Influencing Factors of Intangible Cultural Heritage Along the Great Wall of Hebei Province
by Yu Chen, Jingwen Zhao, Xinyi Zhao, Zeyi Wang, Zhe Xu, Shilin Li and Weishang Li
Sustainability 2025, 17(15), 6962; https://doi.org/10.3390/su17156962 - 31 Jul 2025
Viewed by 188
Abstract
The development of the Great Wall National Cultural Park has unleashed the potential for integrating cultural and tourism development along the Great Wall. However, ICH along the Great Wall, a key part of its cultural identity, suffers from low recognition and a mismatch [...] Read more.
The development of the Great Wall National Cultural Park has unleashed the potential for integrating cultural and tourism development along the Great Wall. However, ICH along the Great Wall, a key part of its cultural identity, suffers from low recognition and a mismatch between protection and development efforts. This study analyzes provincial-level and above ICH along Hebei’s Great Wall using geospatial tools and the Geographical Detector model to explore distribution patterns and influencing factors, while Geographically Weighted Regression is utilized to reveal spatial heterogeneity. It tests two hypotheses: (H1) ICH shows a clustered pattern; (H2) economic factors have a greater impact than cultural and natural factors. Key findings show: (1) ICH distribution is numerically balanced north–south but spatially uneven, with dense clusters in the south and scattered patterns in the north. (2) ICH and crafts cluster significantly, while dramatic balladry spreads evenly, and other categories are random. (3) Average annual temperature and precipitation have the greatest impact on ICH distribution, with the factors ranked as: natural > cultural > economic. Multidimensional interactions show significant enhancement effects. (4) Influencing factors vary spatially. Population density, transport, temperature, and traditional villages are positively related to ICH. Elevation, precipitation, tourism, and cultural institutions show mixed effects across regions. These insights support targeted ICH conservation and sustainable development in the Great Wall cultural corridor. Full article
(This article belongs to the Collection Sustainable Conservation of Urban and Cultural Heritage)
Show Figures

Figure 1

21 pages, 12997 KiB  
Article
Aerial-Ground Cross-View Vehicle Re-Identification: A Benchmark Dataset and Baseline
by Linzhi Shang, Chen Min, Juan Wang, Liang Xiao, Dawei Zhao and Yiming Nie
Remote Sens. 2025, 17(15), 2653; https://doi.org/10.3390/rs17152653 - 31 Jul 2025
Viewed by 227
Abstract
Vehicle re-identification (Re-ID) is a critical computer vision task that aims to match the same vehicle across spatially distributed cameras, especially in the context of remote sensing imagery. While prior research has primarily focused on Re-ID using remote sensing images captured from similar, [...] Read more.
Vehicle re-identification (Re-ID) is a critical computer vision task that aims to match the same vehicle across spatially distributed cameras, especially in the context of remote sensing imagery. While prior research has primarily focused on Re-ID using remote sensing images captured from similar, typically elevated viewpoints, these settings do not fully reflect complex aerial-ground collaborative remote sensing scenarios. In this work, we introduce a novel and challenging task: aerial-ground cross-view vehicle Re-ID, which involves retrieving vehicles in ground-view image galleries using query images captured from aerial (top-down) perspectives. This task is increasingly relevant due to the integration of drone-based surveillance and ground-level monitoring in multi-source remote sensing systems, yet it poses substantial challenges due to significant appearance variations between aerial and ground views. To support this task, we present AGID (Aerial-Ground Vehicle Re-Identification), the first benchmark dataset specifically designed for aerial-ground cross-view vehicle Re-ID. AGID comprises 20,785 remote sensing images of 834 vehicle identities, collected using drones and fixed ground cameras. We further propose a novel method, Enhanced Self-Correlation Feature Computation (ESFC), which enhances spatial relationships between semantically similar regions and incorporates shape information to improve feature discrimination. Extensive experiments on the AGID dataset and three widely used vehicle Re-ID benchmarks validate the effectiveness of our method, which achieves a Rank-1 accuracy of 69.0% on AGID, surpassing state-of-the-art approaches by 2.1%. Full article
Show Figures

Figure 1

22 pages, 764 KiB  
Article
An Integrated Entropy–MAIRCA Approach for Multi-Dimensional Strategic Classification of Agricultural Development in East Africa
by Chia-Nan Wang, Duy-Oanh Tran Thi, Nhat-Luong Nhieu and Ming-Hsien Hsueh
Mathematics 2025, 13(15), 2465; https://doi.org/10.3390/math13152465 - 31 Jul 2025
Viewed by 233
Abstract
Agricultural development is vital for East Africa’s economic growth, yet the region faces significant disparities and systemic barriers. A critical problem exists due to the lack of an integrated quantitative framework to systematically comparing agricultural capacities and facilitate optimal resource allocation, as existing [...] Read more.
Agricultural development is vital for East Africa’s economic growth, yet the region faces significant disparities and systemic barriers. A critical problem exists due to the lack of an integrated quantitative framework to systematically comparing agricultural capacities and facilitate optimal resource allocation, as existing studies often overlook combined internal and external factors. This study proposes a comprehensive multi-criteria decision-making (MCDM) model to assess, categorize, and strategically profile the agricultural development capacity of 18 East African countries. The method employed is an integrated Entropy-MAIRCA model, which objectively weighs six criteria (the food production index, arable land, production fluctuation, food export/import ratios, and the political stability index) and ranks countries by their distance from an ideal development state. The experiment applied this framework to 18 East African nations using official data. The results revealed significant differences, forming four distinct strategic groups: frontier, emerging, trade-dependent, and high risk. The food export index (C4) and production volatility (C3) were identified as the most influential criteria. This model’s contribution is providing a science-based, transparent decision support tool for designing sustainable agricultural policies, aiding investment planning, and promoting regional cooperation, while emphasizing the crucial role of institutional factors. Full article
Show Figures

Figure 1

39 pages, 9517 KiB  
Article
Multidimensional Evaluation Framework and Classification Strategy for Low-Carbon Technologies in Office Buildings
by Hongjiang Liu, Yuan Song, Yawei Du, Tao Feng and Zhihou Yang
Buildings 2025, 15(15), 2689; https://doi.org/10.3390/buildings15152689 - 30 Jul 2025
Viewed by 147
Abstract
The global climate crisis has driven unprecedented agreements among nations on carbon mitigation. With China’s commitment to carbon peaking and carbon neutrality targets, the building sector has emerged as a critical focus for emission reduction, particularly because office buildings account for over 30% [...] Read more.
The global climate crisis has driven unprecedented agreements among nations on carbon mitigation. With China’s commitment to carbon peaking and carbon neutrality targets, the building sector has emerged as a critical focus for emission reduction, particularly because office buildings account for over 30% of building energy consumption. However, a systematic and regionally adaptive low-carbon technology evaluation framework is lacking. To address this gap, this study develops a multidimensional decision-making system to quantify and rank low-carbon technologies for office buildings in Beijing. The method includes four core components: (1) establishing three archetypal models—low-rise (H ≤ 24 m), mid-rise (24 m < H ≤ 50 m), and high-rise (50 m < H ≤ 100 m) office buildings—based on 99 office buildings in Beijing; (2) classifying 19 key technologies into three clusters—Envelope Structure Optimization, Equipment Efficiency Enhancement, and Renewable Energy Utilization—using bibliometric analysis and policy norm screening; (3) developing a four-dimensional evaluation framework encompassing Carbon Reduction Degree (CRD), Economic Viability Degree (EVD), Technical Applicability Degree (TAD), and Carbon Intensity Degree (CID); and (4) conducting a comprehensive quantitative evaluation using the AHP-entropy-TOPSIS algorithm. The results indicate distinct priority patterns across the building types: low-rise buildings prioritize roof-mounted photovoltaic (PV) systems, LED lighting, and thermal-break aluminum frames with low-E double-glazed laminated glass. Mid- and high-rise buildings emphasize integrated PV-LED-T8 lighting solutions and optimized building envelope structures. Ranking analysis further highlights LED lighting, T8 high-efficiency fluorescent lamps, and rooftop PV systems as the top-recommended technologies for Beijing. Additionally, four policy recommendations are proposed to facilitate the large-scale implementation of the program. This study presents a holistic technical integration strategy that simultaneously enhances the technological performance, economic viability, and carbon reduction outcomes of architectural design and renovation. It also establishes a replicable decision-support framework for decarbonizing office and public buildings in cities, thereby supporting China’s “dual carbon” goals and contributing to global carbon mitigation efforts in the building sector. Full article
Show Figures

Figure 1

14 pages, 1487 KiB  
Article
On the Interplay Between Roughness and Elastic Modulus at the Nanoscale: A Methodology Study with Bone as Model Material
by Alessandro Gambardella, Gregorio Marchiori, Melania Maglio, Marco Boi, Matteo Montesissa, Jessika Bertacchini, Stefano Biressi, Nicola Baldini, Gianluca Giavaresi and Marco Bontempi
J. Funct. Biomater. 2025, 16(8), 276; https://doi.org/10.3390/jfb16080276 - 29 Jul 2025
Viewed by 306
Abstract
Atomic force microscopy (AFM)-based nanoindentation enables investigation of the mechanical response of biological materials at a subcellular scale. However, quantitative estimates of mechanical parameters such as the elastic modulus (E) remain unreliable because the influence of sample roughness on E measurements at the [...] Read more.
Atomic force microscopy (AFM)-based nanoindentation enables investigation of the mechanical response of biological materials at a subcellular scale. However, quantitative estimates of mechanical parameters such as the elastic modulus (E) remain unreliable because the influence of sample roughness on E measurements at the nanoscale is still poorly understood. This study re-examines the interpretation of roughness from a more rigorous perspective and validates an experimental methodology to extract roughness at each nanoindentation site—i.e., the local roughness γs—with which the corresponding E value can be accurately correlated. Cortical regions of a murine tibia cross-section, characterized by complex nanoscale morphology, were selected as a testbed. Eighty non-overlapping nanoindentations were performed using two different AFM tips, maintaining a maximum penetration depth of 10 nm for each measurement. Our results show a slight decreasing trend of E versus γs (Spearman’s rank correlation coefficient ρ = −0.27187). A total of 90% of the E values are reliable when γs < 10 nm (coefficient of determination R2 > 0.90), although low γs values are associated with significant dispersion around E (γs = 0) = E0 = 1.18 GPa, with variations exceeding 50%. These findings are consistent with a qualitative tip-to-sample contact model that accounts for the pronounced roughness heterogeneity typical of bone topography at the nanoscale. Full article
(This article belongs to the Section Biomaterials and Devices for Healthcare Applications)
Show Figures

Figure 1

21 pages, 2519 KiB  
Review
Distribution and Ecological Risk Assessment of Perfluoroalkyl and Polyfluoroalkyl Substances in Chinese Soils: A Review
by Junyi Wang, Otgontuya Tsogbadrakh, Jichen Tian, Faisal Hai, Chenpeng Lyu, Guangming Jiang and Guoyu Zhu
Water 2025, 17(15), 2246; https://doi.org/10.3390/w17152246 - 28 Jul 2025
Viewed by 418
Abstract
Per- and polyfluoroalkyl substances (PFASs) are emerging pollutants of global concern due to their high environmental persistence and bioaccumulative characteristics. This study investigates PFAS concentrations in soils from China through an extensive literature review, covering soil samples from seventeen provinces and the years [...] Read more.
Per- and polyfluoroalkyl substances (PFASs) are emerging pollutants of global concern due to their high environmental persistence and bioaccumulative characteristics. This study investigates PFAS concentrations in soils from China through an extensive literature review, covering soil samples from seventeen provinces and the years from 2009 to 2024. It was found that the total concentration of PFAS in soil ranged from 0.25 to 6240 ng/g, with the highest contamination levels observed in coastal provinces, particularly Fujian (620 ng/g) and Guangdong (1090 ng/g). Moreover, Fujian Province ranked the highest among multiple regions with a median PFAS concentration of 15.7 ng/g for individual compounds. Ecological risk assessment, focusing on areas where perfluorooctanoic acid (PFOA) or perfluorooctane sulfonate (PFOS) were identified as the primary soil PFAS compounds, showed moderate ecological risk from PFOA in Shanghai (0.24), while PFOS posed a high ecological risk in Fujian and Guangdong, with risk values of 43.3 and 1.4, respectively. Source analysis revealed that anthropogenic activities, including PFAS production, firefighting foam usage, and landfills, were the primary contributors to soil contamination. Moreover, soil PFASs tend to migrate into groundwater via adsorption and seepage, ultimately entering the human body through bioaccumulation or drinking water, posing health risks. These findings enhance our understanding of PFAS distribution and associated risks in Chinese soils, providing crucial insights for pollution management, source identification, and regulation strategies in diverse areas. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

23 pages, 19710 KiB  
Article
Hybrid EEG Feature Learning Method for Cross-Session Human Mental Attention State Classification
by Xu Chen, Xingtong Bao, Kailun Jitian, Ruihan Li, Li Zhu and Wanzeng Kong
Brain Sci. 2025, 15(8), 805; https://doi.org/10.3390/brainsci15080805 - 28 Jul 2025
Viewed by 279
Abstract
Background: Decoding mental attention states from electroencephalogram (EEG) signals is crucial for numerous applications such as cognitive monitoring, adaptive human–computer interaction, and brain–computer interfaces (BCIs). However, conventional EEG-based approaches often focus on channel-wise processing and are limited to intra-session or subject-specific scenarios, lacking [...] Read more.
Background: Decoding mental attention states from electroencephalogram (EEG) signals is crucial for numerous applications such as cognitive monitoring, adaptive human–computer interaction, and brain–computer interfaces (BCIs). However, conventional EEG-based approaches often focus on channel-wise processing and are limited to intra-session or subject-specific scenarios, lacking robustness in cross-session or inter-subject conditions. Methods: In this study, we propose a hybrid feature learning framework for robust classification of mental attention states, including focused, unfocused, and drowsy conditions, across both sessions and individuals. Our method integrates preprocessing, feature extraction, feature selection, and classification in a unified pipeline. We extract channel-wise spectral features using short-time Fourier transform (STFT) and further incorporate both functional and structural connectivity features to capture inter-regional interactions in the brain. A two-stage feature selection strategy, combining correlation-based filtering and random forest ranking, is adopted to enhance feature relevance and reduce dimensionality. Support vector machine (SVM) is employed for final classification due to its efficiency and generalization capability. Results: Experimental results on two cross-session and inter-subject EEG datasets demonstrate that our approach achieves classification accuracy of 86.27% and 94.01%, respectively, significantly outperforming traditional methods. Conclusions: These findings suggest that integrating connectivity-aware features with spectral analysis can enhance the generalizability of attention decoding models. The proposed framework provides a promising foundation for the development of practical EEG-based systems for continuous mental state monitoring and adaptive BCIs in real-world environments. Full article
Show Figures

Figure 1

14 pages, 4169 KiB  
Article
The Effects of Natural and Social Factors on Surface Temperature in a Typical Cold-Region City of the Northern Temperate Zone: A Case Study of Changchun, China
by Maosen Lin, Yifeng Liu, Wei Xu, Bihao Gao, Xiaoyi Wang, Cuirong Wang and Dali Guo
Sustainability 2025, 17(15), 6840; https://doi.org/10.3390/su17156840 - 28 Jul 2025
Viewed by 234
Abstract
Land cover, topography, precipitation, and socio-economic factors exert both direct and indirect influences on urban land surface temperatures. Within the broader context of global climate change, these influences are magnified by the escalating intensity of the urban heat island effect. However, the interplay [...] Read more.
Land cover, topography, precipitation, and socio-economic factors exert both direct and indirect influences on urban land surface temperatures. Within the broader context of global climate change, these influences are magnified by the escalating intensity of the urban heat island effect. However, the interplay and underlying mechanisms of natural and socio-economic determinants of land surface temperatures remain inadequately explored, particularly in the context of cold-region cities located in the northern temperate zone of China. This study focuses on Changchun City, employing multispectral remote sensing imagery to derive and spatially map the distribution of land surface temperatures and topographic attributes. Through comprehensive analysis, the research identifies the principal drivers of temperature variations and delineates their seasonal dynamics. The findings indicate that population density, night-time light intensity, land use, GDP (Gross Domestic Product), relief, and elevation exhibit positive correlations with land surface temperature, whereas slope demonstrates a negative correlation. Among natural factors, the correlations of slope, relief, and elevation with land surface temperature are comparatively weak, with determination coefficients (R2) consistently below 0.15. In contrast, socio-economic factors exert a more pronounced influence, ranked as follows: population density (R2 = 0.4316) > GDP (R2 = 0.2493) > night-time light intensity (R2 = 0.1626). The overall hierarchy of the impact of individual factors on the temperature model, from strongest to weakest, is as follows: population, night-time light intensity, land use, GDP, slope, relief, and elevation. In examining Changchun and analogous cold-region cities within the northern temperate zone, the research underscores that socio-economic factors substantially outweigh natural determinants in shaping urban land surface temperatures. Notably, human activities catalyzed by population growth emerge as the most influential factor, profoundly reshaping the urban thermal landscape. These activities not only directly escalate anthropogenic heat emissions, but also alter land cover compositions, thereby undermining natural cooling mechanisms and exacerbating the urban heat island phenomenon. Full article
Show Figures

Figure 1

28 pages, 14358 KiB  
Article
Three-Dimensional Mesoscopic DEM Modeling and Compressive Behavior of Macroporous Recycled Concrete
by Yupeng Xu, Fei Geng, Haoxiang Luan, Jun Chen, Hangli Yang and Peiwei Gao
Buildings 2025, 15(15), 2655; https://doi.org/10.3390/buildings15152655 - 27 Jul 2025
Viewed by 348
Abstract
The mesoscopic-scale discrete element method (DEM) modeling approach demonstrated high compatibility with macroporous recycled concrete (MRC). However, existing DEM models failed to adequately balance modeling accuracy and computational efficiency for recycled aggregate (RA), replicate the three distinct interfacial transition zone (ITZ) types and [...] Read more.
The mesoscopic-scale discrete element method (DEM) modeling approach demonstrated high compatibility with macroporous recycled concrete (MRC). However, existing DEM models failed to adequately balance modeling accuracy and computational efficiency for recycled aggregate (RA), replicate the three distinct interfacial transition zone (ITZ) types and pore structure of MRC, or establish a systematic calibration methodology. In this study, PFC 3D was employed to establish a randomly polyhedral RA composite model and an MRC model. A systematic methodology for parameter testing and calibration was proposed, and compressive test simulations were conducted on the MRC model. The model incorporated all components of MRC, including three types of ITZs, achieving an aggregate volume fraction of 57.7%. Errors in simulating compressive strength and elastic modulus were 3.8% and 18.2%, respectively. Compared to conventional concrete, MRC exhibits larger strain and a steeper post-peak descending portion in stress–strain curves. At peak stress, stress is concentrated in the central region and the surrounding arc-shaped zones. After peak stress, significant localized residual stress persists within specimens; both toughness and toughness retention capacity increase with rising porosity and declining compressive strength. Failure of MRC is dominated by tension rather than shear, with critical bonds determining strength accounting for only 1.4% of the total. The influence ranking of components on compressive strength is as follows: ITZ (new paste–old paste) > ITZ (new paste–natural aggregates) > new paste > old paste > ITZ (old paste–natural aggregates). The Poisson’s ratio of MRC (0.12–0.17) demonstrates a negative correlation with porosity. Predictive formulas for peak strain and elastic modulus of MRC were established, with errors of 2.6% and 3.9%, respectively. Full article
(This article belongs to the Special Issue Advances in Modeling and Characterization of Cementitious Composites)
Show Figures

Figure 1

Back to TopTop