Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,246)

Search Parameters:
Keywords = regional meteorological model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 1671 KiB  
Article
Modelling the Impact of Climate Change on Runoff in a Sub-Regional Basin
by Ndifon M. Agbiji, Jonah C. Agunwamba and Kenneth Imo-Imo Israel Eshiet
Geosciences 2025, 15(8), 289; https://doi.org/10.3390/geosciences15080289 (registering DOI) - 1 Aug 2025
Abstract
This study focuses on developing a climate-flood model to investigate and interpret the relationship and impact of climate on runoff/flooding at a sub-regional scale using multiple linear regression (MLR) with 30 years of hydro-climatic data for the Cross River Basin, Nigeria. Data were [...] Read more.
This study focuses on developing a climate-flood model to investigate and interpret the relationship and impact of climate on runoff/flooding at a sub-regional scale using multiple linear regression (MLR) with 30 years of hydro-climatic data for the Cross River Basin, Nigeria. Data were obtained from Nigerian Meteorological Agency (NIMET) for the following climatic parameters: annual average rainfall, maximum and minimum temperatures, humidity, duration of sunlight (sunshine hours), evaporation, wind speed, soil temperature, cloud cover, solar radiation, and atmospheric pressure. These hydro-meteorological data were analysed and used as parameters input to the climate-flood model. Results from multiple regression analyses were used to develop climate-flood models for all the gauge stations in the basin. The findings suggest that at 95% confidence, the climate-flood model was effective in forecasting the annual runoff at all the stations. The findings also identified the climatic parameters that were responsible for 100% of the runoff variability in Calabar (R2 = 1.000), 100% the runoff in Uyo (R2 = 1.000), 98.8% of the runoff in Ogoja (R2 = 0.988), and 99.9% of the runoff in Eket (R2 = 0.999). Based on the model, rainfall depth is the only climate parameter that significantly predicts runoff at 95% confidence intervals in Calabar, while in Ogoja, rainfall depth, temperature, and evaporation significantly predict runoff. In Eket, rainfall depth, relative humidity, solar radiation, and soil temperatures are significant predictors of runoff. The model also reveals that rainfall depth and evaporation are significant predictors of runoff in Uyo. The outcome of the study suggests that climate change has impacted runoff and flooding within the Cross River Basin. Full article
Show Figures

Figure 1

33 pages, 2962 KiB  
Review
Evolution of Data-Driven Flood Forecasting: Trends, Technologies, and Gaps—A Systematic Mapping Study
by Banujan Kuhaneswaran, Golam Sorwar, Ali Reza Alaei and Feifei Tong
Water 2025, 17(15), 2281; https://doi.org/10.3390/w17152281 (registering DOI) - 31 Jul 2025
Abstract
This paper presents a Systematic Mapping Study (SMS) on data-driven approaches in flood forecasting from 2019 to 2024, a period marked by transformative developments in Deep Learning (DL) technologies. Analysing 363 selected studies, this paper provides an overview of the technological evolution in [...] Read more.
This paper presents a Systematic Mapping Study (SMS) on data-driven approaches in flood forecasting from 2019 to 2024, a period marked by transformative developments in Deep Learning (DL) technologies. Analysing 363 selected studies, this paper provides an overview of the technological evolution in this field, methodological approaches, evaluation practices and geographical distribution of studies. The study revealed that meteorological and hydrological factors constitute approximately 76% of input variables, with rainfall/precipitation and water level measurements forming the core predictive basis. Long Short-Term Memory (LSTM) networks emerged as the dominant algorithm (21% of implementations), whilst hybrid and ensemble approaches showed the most dramatic growth (from 2% in 2019 to 10% in 2024). The study also revealed a threefold increase in publications during this period, with significant geographical concentration in East and Southeast Asia (56% of studies), particularly China (36%). Several research gaps were identified, including limited exploration of graph-based approaches for modelling spatial relationships, underutilisation of transfer learning for data-scarce regions, and insufficient uncertainty quantification. This SMS provides researchers and practitioners with actionable insights into current trends, methodological practices, and future directions in data-driven flood forecasting, thereby advancing this critical field for disaster management. Full article
Show Figures

Figure 1

21 pages, 3996 KiB  
Technical Note
Design of a Standards-Based Cloud Platform to Enhance the Practicality of Agrometeorological Countermeasures
by Sejin Han, Minju Baek, Jin-Ho Lee, Sang-Hyun Park, Seung-Gil Hong, Yong-Kyu Han and Yong-Soon Shin
Atmosphere 2025, 16(8), 924; https://doi.org/10.3390/atmos16080924 - 30 Jul 2025
Abstract
The need for systems that forecast and respond proactively to meteorological disasters is growing amid climate variability. Although the early warning system in South Korea includes countermeasure information, it remains limited in terms of data recency, granularity, and regional adaptability. Additionally, its closed [...] Read more.
The need for systems that forecast and respond proactively to meteorological disasters is growing amid climate variability. Although the early warning system in South Korea includes countermeasure information, it remains limited in terms of data recency, granularity, and regional adaptability. Additionally, its closed architecture hinders interoperability with external systems. This study aims to redesign the countermeasure function as an independent cloud-based platform grounded in the common standard terminology framework in South Korea. A multi-dimensional data model was developed using attributes such as crop type, cultivation characteristics, growth stage, disaster type, and risk level. The platform incorporates user-specific customization features and history tracking capabilities, and it is structured using a microservices architecture to ensure modularity and scalability. The proposed system enables real-time management and dissemination of localized countermeasure suggestions tailored to various user types, including central and local governments and farmers. This study offers a practical model for enhancing the precision and applicability of agrometeorological response information. It is expected to serve as a scalable reference platform for future integration with external agricultural information systems. Full article
Show Figures

Figure 1

31 pages, 13783 KiB  
Article
Daily Reference Evapotranspiration Derived from Hourly Timestep Using Different Forms of Penman–Monteith Model in Arid Climates
by A A Alazba, Mohamed A. Mattar, Ahmed El-Shafei, Farid Radwan, Mahmoud Ezzeldin and Nasser Alrdyan
Water 2025, 17(15), 2272; https://doi.org/10.3390/w17152272 - 30 Jul 2025
Abstract
In arid and semi-arid climates, where water scarcity is a persistent challenge, accurately estimating reference evapotranspiration (ET) becomes essential for sustainable water management and agricultural planning. The objectives of this study are to compare hourly ET among P–M ASCE, P–M FAO, and P–M [...] Read more.
In arid and semi-arid climates, where water scarcity is a persistent challenge, accurately estimating reference evapotranspiration (ET) becomes essential for sustainable water management and agricultural planning. The objectives of this study are to compare hourly ET among P–M ASCE, P–M FAO, and P–M KSA mathematical models. In addition to the accuracy assessment of daily ET derived from hourly timestep calculations for the P–M ASCE, P–M FAO, and P–M KSA. To achieve these goals, a total of 525,600-min data points from the Riyadh region, KSA, were used to compute the reference ET at multiple temporal resolutions: hourly, daily, hourly averaged over 24 h, and daily as the sum of 24 h values, across all selected Penman–Monteith (P–M) models. For hourly investigation, the comparison between reference ET computed as average hourly values and as daily/24 h values revealed statistically and practically significant differences. The Wilcoxon test confirmed a statistically significant difference (p < 0.0001) with R2 of 94.75% for ASCE, 94.87% for KSA at hplt = 50 cm, 92.41% for FAO, and 92.44% for KSA at hplt = 12 cm. For daily investigation, comparing the sum of 24 h ET computations to daily ET measurements revealed an underestimation of daily ET values. The Wilcoxon test confirmed a statistically significant difference (p < 0.0001), with R2 exceeding 90% for all studied reference ET models. This comprehensive approach enabled a rigorous evaluation of reference ET dynamics under hyper-arid climatic conditions, which are characteristic of central Saudi Arabia. The findings contribute to the growing body of literature emphasizing the importance of high-frequency meteorological data for improving ET estimation accuracy in arid and semi-arid regions. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

15 pages, 2006 KiB  
Article
Hydrological Responses to Territorial Spatial Change in the Xitiaoxi River Basin: A Simulation Study Using the SWAT Model Driven by China Meteorological Assimilation Driving Datasets
by Dongyan Kong, Huiguang Chen and Kongsen Wu
Water 2025, 17(15), 2267; https://doi.org/10.3390/w17152267 - 30 Jul 2025
Abstract
The use of the Soil and Water Assessment Tool (SWAT) model driven by China Meteorological Assimilation Driving Datasets (CMADS) for runoff simulation research is of great significance for regional flood prevention and control. Therefore, from the perspective of production-living-ecological space, this article combined [...] Read more.
The use of the Soil and Water Assessment Tool (SWAT) model driven by China Meteorological Assimilation Driving Datasets (CMADS) for runoff simulation research is of great significance for regional flood prevention and control. Therefore, from the perspective of production-living-ecological space, this article combined multi-source data such as DEM, soil texture and land use type, in order to construct scenarios of territorial spatial change (TSC) across distinct periods. Based on the CMADS-L40 data and the SWAT model, it simulated the runoff dynamics in the Xitiaoxi River Basin, and analyzed the hydrological response characteristics under different TSCs. The results showed that The SWAT model, driven by CMADS-L40 data, demonstrated robust performance in monthly runoff simulation. The coefficient of determination (R2), Nash–Sutcliffe efficiency coefficient (NSE), and the absolute value of percentage bias (|PBIAS|) during the calibration and validation period all met the accuracy requirements of the model, which validated the applicability of CMADS-L40 data and the SWAT model for runoff simulation at the watershed scale. Changes in territorial spatial patterns are closely correlated with runoff variation. Changes in agricultural production space and forest ecological space show statistically significant negative correlation with runoff change, while industrial production space change exhibits a significant positive correlation with runoff change. The expansion of production space, particularly industrial production space, leads to increased runoff, whereas the enlargement of agricultural production space and forest ecological space can reduce runoff. This article contributes to highlighting the role of land use policy in hydrological regulation, providing a scientific basis for optimizing territorial spatial planning to mitigate flood risks and protect water resources. Full article
(This article belongs to the Topic Natural Hazards and Disaster Risks Reduction, 2nd Edition)
Show Figures

Figure 1

19 pages, 5284 KiB  
Article
Integrating Dark Sky Conservation into Sustainable Regional Planning: A Site Suitability Evaluation for Dark Sky Parks in the Guangdong–Hong Kong–Macao Greater Bay Area
by Deliang Fan, Zidian Chen, Yang Liu, Ziwen Huo, Huiwen He and Shijie Li
Land 2025, 14(8), 1561; https://doi.org/10.3390/land14081561 - 29 Jul 2025
Abstract
Dark skies, a vital natural and cultural resource, have been increasingly threatened by light pollution due to rapid urbanization, leading to ecological degradation and biodiversity loss. As a key strategy for sustainable regional development, dark sky parks (DSPs) not only preserve nocturnal environments [...] Read more.
Dark skies, a vital natural and cultural resource, have been increasingly threatened by light pollution due to rapid urbanization, leading to ecological degradation and biodiversity loss. As a key strategy for sustainable regional development, dark sky parks (DSPs) not only preserve nocturnal environments but also enhance livability by balancing urban expansion and ecological conservation. This study develops a novel framework for evaluating DSP suitability, integrating ecological and socio-economic dimensions, including the resource base (e.g., nighttime light levels, meteorological conditions, and air quality) and development conditions (e.g., population density, transportation accessibility, and tourism infrastructure). Using the Guangdong–Hong Kong–Macao Greater Bay Area (GBA) as a case study, we employ Delphi expert consultation, GIS spatial analysis, and multi-criteria decision-making to identify optimal DSP locations and prioritize conservation zones. Our key findings reveal the following: (1) spatial heterogeneity in suitability, with high-potential zones being concentrated in the GBA’s northeastern, central–western, and southern regions; (2) ecosystem advantages of forests, wetlands, and high-elevation areas for minimizing light pollution; (3) coastal and island regions as ideal DSP sites due to the low light interference and high ecotourism potential. By bridging environmental assessments and spatial planning, this study provides a replicable model for DSP site selection, offering policymakers actionable insights to integrate dark sky preservation into sustainable urban–regional development strategies. Our results underscore the importance of DSPs in fostering ecological resilience, nighttime tourism, and regional livability, contributing to the broader discourse on sustainable landscape planning in high-urbanization contexts. Full article
Show Figures

Figure 1

27 pages, 4973 KiB  
Article
LSTM-Based River Discharge Forecasting Using Spatially Gridded Input Data
by Kamilla Rakhymbek, Balgaisha Mukanova, Andrey Bondarovich, Dmitry Chernykh, Almas Alzhanov, Dauren Nurekenov, Anatoliy Pavlenko and Aliya Nugumanova
Data 2025, 10(8), 122; https://doi.org/10.3390/data10080122 - 27 Jul 2025
Viewed by 359
Abstract
Accurate river discharge forecasting remains a critical challenge in hydrology, particularly in data-scarce mountainous regions where in situ observations are limited. This study investigated the potential of long short-term memory (LSTM) networks to improve discharge prediction by leveraging spatially distributed reanalysis data. Using [...] Read more.
Accurate river discharge forecasting remains a critical challenge in hydrology, particularly in data-scarce mountainous regions where in situ observations are limited. This study investigated the potential of long short-term memory (LSTM) networks to improve discharge prediction by leveraging spatially distributed reanalysis data. Using the ERA5-Land dataset, we developed an LSTM model that integrates grid-based meteorological inputs and assesses their relative importance. We conducted experiments on two snow-dominated basins with contrasting physiographic characteristics, the Uba River basin in Kazakhstan and the Flathead River basin in the USA, to answer three research questions: (1) whether full-grid input outperforms reduced configurations and models trained on Caravan, (2) the impact of spatial resolution on accuracy and efficiency, and (3) the effect of partial spatial coverage on prediction reliability. Specifically, we compared the full-grid LSTM with a single-cell LSTM, a basin-average LSTM, a Caravan-trained LSTM, and coarser cell aggregations. The results demonstrate that the full-grid LSTM consistently yields the highest forecasting performance, achieving a median Nash–Sutcliffe efficiency of 0.905 for Uba and 0.93 for Middle Fork Flathead, while using coarser grids and random subsets reduces performance. Our findings highlight the critical importance of spatial input richness and provide a reproducible framework for grid selection in flood-prone basins lacking dense observation networks. Full article
(This article belongs to the Special Issue New Progress in Big Earth Data)
Show Figures

Figure 1

17 pages, 14890 KiB  
Article
Spatiotemporal Dynamics of Heat-Related Health Risks of Elderly Citizens in Nanchang, China, Under Rapid Urbanization
by Jinijn Xuan, Shun Li, Chao Huang, Xueling Zhang and Rong Mao
Land 2025, 14(8), 1541; https://doi.org/10.3390/land14081541 - 27 Jul 2025
Viewed by 153
Abstract
Heatwaves intensified by climate change increasingly threaten urban populations, especially the elderly. However, most existing studies have concentrated on short-term or single-scale analyses, lacking a comprehensive understanding of how land cover changes and urbanization affect the vulnerability of the elderly to extreme heat. [...] Read more.
Heatwaves intensified by climate change increasingly threaten urban populations, especially the elderly. However, most existing studies have concentrated on short-term or single-scale analyses, lacking a comprehensive understanding of how land cover changes and urbanization affect the vulnerability of the elderly to extreme heat. This study aims to investigate the spatiotemporal distribution patterns of heat-related health risks among the elderly in Nanchang City and to identify their key driving factors within the context of rapid urbanization. This study employs Crichton’s risk triangle framework to the heat-related health risks for the elderly in Nanchang, China, from 2002 to 2020 by integrating meteorological records, land surface temperature, land cover data, and socioeconomic indicators. The model captures the spatiotemporal dynamics of heat hazards, exposure, and vulnerability and identifies the key drivers shaping these patterns. The results show that the heat health risk index has increased significantly over time, with notably higher levels in the urban core compared to those in suburban areas. A 1% rise in impervious surface area corresponds to a 0.31–1.19 increase in the risk index, while a 1% increase in green space leads to a 0.21–1.39 reduction. Vulnerability is particularly high in economically disadvantaged, medically under-served peripheral zones. These findings highlight the need to optimize the spatial distribution of urban green space and control the expansion of impervious surfaces to mitigate urban heat risks. In high-vulnerability areas, improving infrastructure, expanding medical resources, and establishing targeted heat health monitoring and early warning systems are essential to protecting elderly populations. Overall, this study provides a comprehensive framework for assessing urban heat health risks and offers actionable insights into enhancing climate resilience and health risk management in rapidly urbanizing regions. Full article
(This article belongs to the Special Issue Climate Adaptation Planning in Urban Areas)
Show Figures

Figure 1

19 pages, 12174 KiB  
Article
Spatiotemporal Trends and Exceedance Drivers of Ozone Concentration in the Yangtze River Delta Urban Agglomeration, China
by Junli Xu and Jian Wang
Atmosphere 2025, 16(8), 907; https://doi.org/10.3390/atmos16080907 - 26 Jul 2025
Viewed by 218
Abstract
The Yangtze River Delta urban agglomeration, characterized by high population density, an advanced transportation system, and a concentration of industrial activity, is one of the regions severely affected by O3 pollution in central and eastern China. Using data collected from 251 monitoring [...] Read more.
The Yangtze River Delta urban agglomeration, characterized by high population density, an advanced transportation system, and a concentration of industrial activity, is one of the regions severely affected by O3 pollution in central and eastern China. Using data collected from 251 monitoring stations between 2015 and 2025, this paper analyzed the spatio-temporal variation of 8 h O3 concentrations and instances of exceedance. On the basis of exploring the influence of meteorological factors on regional 8 h O3 concentration, the potential source contribution areas of pollutants under the exceedance condition were investigated using the HYSPLIT model. The results indicate a rapid increase in the 8 h O3 concentration at a rate of 0.91 ± 0.98 μg·m−3·a−1, with the average number of days exceeding concentration standards reaching 41.05 in the Yangtze River Delta urban agglomeration. Spatially, the 8 h O3 concentrations were higher in coastal areas and lower in inland regions, as well as elevated in plains compared to hilly terrains. This distribution was significantly distinct from the concentration growth trend characterized by higher levels in the northwest and lower levels in the southeast. Furthermore, it diverged from the spatial characteristics where exceedances primarily occurred in the heavily industrialized northeastern region and the lightly industrialized central region, indicating that the growth and exceedance of 8 h O3 concentrations were influenced by disparate factors. Local human activities have intensified the emissions of ozone precursor substances, which could be the key driving factor for the significant increase in regional 8 h O3 concentrations. In the context of high temperatures and low humidity, this has contributed to elevated levels of 8 h O3 concentrations. When wind speeds were below 2.5 m·s−1, the proportion of 8 h O3 concentrations exceeding the standards was nearly 0 under almost calm wind conditions, and it showed an increasing trend with rising wind speeds, indicating that the potential precursor sources that caused high O3 concentrations originated occasionally from inland regions, with very limited presence within the study area. This observation implies that the main cause of exceedances was the transport effect of pollution from outside the region. Therefore, it is recommended that the Yangtze River Delta urban agglomeration adopt economic and technological compensation mechanisms within and between regions to reduce the emission intensity of precursor substances in potential source areas, thereby effectively controlling O3 concentrations and improving public living conditions and quality of life. Full article
Show Figures

Figure 1

21 pages, 2514 KiB  
Article
Investigations into Picture Defogging Techniques Based on Dark Channel Prior and Retinex Theory
by Lihong Yang, Zhi Zeng, Hang Ge, Yao Li, Shurui Ge and Kai Hu
Appl. Sci. 2025, 15(15), 8319; https://doi.org/10.3390/app15158319 - 26 Jul 2025
Viewed by 151
Abstract
To address the concerns of contrast deterioration, detail loss, and color distortion in images produced under haze conditions in scenarios such as intelligent driving and remote sensing detection, an algorithm for image defogging that combines Retinex theory and the dark channel prior is [...] Read more.
To address the concerns of contrast deterioration, detail loss, and color distortion in images produced under haze conditions in scenarios such as intelligent driving and remote sensing detection, an algorithm for image defogging that combines Retinex theory and the dark channel prior is proposed in this paper. The method involves building a two-stage optimization framework: in the first stage, global contrast enhancement is achieved by Retinex preprocessing, which effectively improves the detail information regarding the dark area and the accuracy of the transmittance map and atmospheric light intensity estimation; in the second stage, an a priori compensation model for the dark channel is constructed, and a depth-map-guided transmittance correction mechanism is introduced to obtain a refined transmittance map. At the same time, the atmospheric light intensity is accurately calculated by the Otsu algorithm and edge constraints, which effectively suppresses the halo artifacts and color deviation of the sky region in the dark channel a priori defogging algorithm. The experiments based on self-collected data and public datasets show that the algorithm in this paper presents better detail preservation ability (the visible edge ratio is minimally improved by 0.1305) and color reproduction (the saturated pixel ratio is reduced to about 0) in the subjective evaluation, and the average gradient ratio of the objective indexes reaches a maximum value of 3.8009, which is improved by 36–56% compared with the classical DCP and Tarel algorithms. The method provides a robust image defogging solution for computer vision systems under complex meteorological conditions. Full article
Show Figures

Figure 1

27 pages, 1525 KiB  
Article
Understanding Farmers’ Knowledge, Perceptions, and Adaptation Strategies to Climate Change in Eastern Rwanda
by Michel Rwema, Bonfils Safari, Mouhamadou Bamba Sylla, Lassi Roininen and Marko Laine
Sustainability 2025, 17(15), 6721; https://doi.org/10.3390/su17156721 - 24 Jul 2025
Viewed by 447
Abstract
This study investigates farmers’ knowledge, perceptions, and adaptation strategies to climate change in Rwanda’s Eastern Province, integrating social and physical science approaches. Analyzing meteorological data (1981–2021) and surveys from 204 farmers across five districts, we assessed climate trends and adaptation behaviors using statistical [...] Read more.
This study investigates farmers’ knowledge, perceptions, and adaptation strategies to climate change in Rwanda’s Eastern Province, integrating social and physical science approaches. Analyzing meteorological data (1981–2021) and surveys from 204 farmers across five districts, we assessed climate trends and adaptation behaviors using statistical methods (descriptive statistics, Chi-square, logistic regression, Regional Kendall test, dynamic linear state-space model). Results show that 85% of farmers acknowledge climate change, with 54% observing temperature increases and 37% noting rainfall declines. Climate data confirm significant rises in annual minimum (+0.76 °C/decade) and mean temperatures (+0.48 °C/decade), with the largest seasonal increase (+0.86 °C/decade) in June–August. Rainfall trends indicate a non-significant decrease in March–May and a slight increase in September–December. Farmers report crop failures, yield reductions, and food shortages as major climate impacts. Common adaptations include agroforestry, crop diversification, and fertilizer use, though financial limitations, information gaps, and input scarcity impede adoption. Despite limited formal education (53.9% primary, 22.3% no formal education), indigenous knowledge aids seasonal prediction. Farm location, group membership, and farming goal are key adaptation enablers. These findings emphasize the need for targeted policies and climate communication to enhance rural resilience by strengthening smallholder farmer support systems for effective climate adaptation. Full article
Show Figures

Graphical abstract

19 pages, 2340 KiB  
Article
Analysis of Olive Tree Flowering Behavior Based on Thermal Requirements: A Case Study from the Northern Mediterranean Region
by Maja Podgornik, Jakob Fantinič, Tjaša Pogačar and Vesna Zupanc
Climate 2025, 13(8), 156; https://doi.org/10.3390/cli13080156 - 23 Jul 2025
Viewed by 366
Abstract
In recent years, early olive fruit drop has been observed in the northern Mediterranean regions, causing significant economic losses, although the exact cause remains unknown. Recent studies have identified several possible causes; however, our understanding of how olive trees respond to these environmental [...] Read more.
In recent years, early olive fruit drop has been observed in the northern Mediterranean regions, causing significant economic losses, although the exact cause remains unknown. Recent studies have identified several possible causes; however, our understanding of how olive trees respond to these environmental stresses remains limited. This study includes an analysis of selected meteorological and flowering data for Olea europaea L. “Istrska belica” to evaluate the use of a chilling and forcing model for a better understanding of flowering time dynamics under a changing climate. The flowering process is influenced by high diurnal temperature ranges (DTRs) during the pre-flowering period, resulting in earlier flowering. Despite annual fluctuations due to various climatic factors, an increase in DTRs has been observed in recent decades, although the mechanisms by which olive trees respond to high DTRs remain unclear. The chilling requirements are still well met in the region (1500 ± 250 chilling units), although their total has declined over the years. According to the Chilling Hours Model, chilling units—referred to as chilling hours—represent the number of hours with temperatures between 0 and 7.2 °C, accumulated throughout the winter season. Growing degree hours (GDHs) are strongly correlated with the onset of flowering. These results suggest that global warming is already affecting the synchrony between olive tree phenology and environmental conditions in the northern Mediterranean and may be one of the reason for the green drop. Full article
(This article belongs to the Section Climate Adaptation and Mitigation)
Show Figures

Figure 1

27 pages, 48299 KiB  
Article
An Extensive Italian Database of River Embankment Breaches and Damages
by Michela Marchi, Ilaria Bertolini, Laura Tonni, Luca Morreale, Andrea Colombo, Tommaso Simonelli and Guido Gottardi
Water 2025, 17(15), 2202; https://doi.org/10.3390/w17152202 - 23 Jul 2025
Viewed by 168
Abstract
River embankments are critical flood defense structures, stretching for thousands of kilometers across alluvial plains. They often originated as natural levees resulting from overbank flows and were later enlarged using locally available soils yet rarely designed according to modern engineering standards. Substantially under-characterized, [...] Read more.
River embankments are critical flood defense structures, stretching for thousands of kilometers across alluvial plains. They often originated as natural levees resulting from overbank flows and were later enlarged using locally available soils yet rarely designed according to modern engineering standards. Substantially under-characterized, their performance to extreme events provides an invaluable opportunity to highlight their vulnerability and then to improve monitoring, management, and reinforcement strategies. In May 2023, two extreme meteorological events hit the Emilia-Romagna region in rapid succession, causing numerous breaches along river embankments and therefore widespread flooding of cities and territories. These were followed by two additional intense events in September and October 2024, marking an unprecedented frequency of extreme precipitation episodes in the history of the region. This study presents the methodology adopted to create a regional database of 66 major breaches and damages that occurred during May 2023 extensive floods. The database integrates multi-source information, including field surveys; remote sensing data; and eyewitness documentation collected before, during, and after the events. Preliminary interpretation enabled the identification of the most likely failure mechanisms—primarily external erosion, internal erosion, and slope instability—often acting in combination. The database, unprecedented in Italy and with few parallels worldwide, also supported a statistical analysis of breach widths in relation to failure mechanisms, crucial for improving flood hazard models, which often rely on generalized assumptions about breach development. By offering insights into the real-scale behavior of a regional river defense system, the dataset provides an important tool to support river embankments risk assessment and future resilience strategies. Full article
(This article belongs to the Special Issue Recent Advances in Flood Risk Assessment and Management)
Show Figures

Figure 1

21 pages, 4261 KiB  
Article
Seasonal Temperature and Precipitation Patterns in Caucasus Landscapes
by Mariam Elizbarashvili, Nazibrola Beglarashvili, Mikheil Pipia, Elizbar Elizbarashvili and Nino Chikhradze
Atmosphere 2025, 16(7), 889; https://doi.org/10.3390/atmos16070889 - 19 Jul 2025
Viewed by 611
Abstract
The Caucasus region, characterized by its complex topography and diverse climatic regimes, exhibits pronounced spatial variability in temperature and precipitation patterns. This study investigates the seasonal behavior of air temperature, precipitation, vertical temperature gradients, and inversion phenomena across distinct landscape types using observational [...] Read more.
The Caucasus region, characterized by its complex topography and diverse climatic regimes, exhibits pronounced spatial variability in temperature and precipitation patterns. This study investigates the seasonal behavior of air temperature, precipitation, vertical temperature gradients, and inversion phenomena across distinct landscape types using observational data from 63 meteorological stations for 1950–2022. Temperature trends were analyzed using linear regression, while vertical lapse rates and inversion layers were assessed based on seasonal temperature–elevation relationships. Precipitation regimes were evaluated through Mann-Kendall trend tests and Sen’s slope estimators. Results reveal that temperature regimes are strongly modulated by landscape type and elevation, with higher thermal variability in montane and subalpine zones. Seasonal temperature inversions are most frequent in spring and winter, especially in western lowlands and enclosed valleys. Precipitation patterns vary markedly across landscapes: humid lowlands show autumn–winter maxima, while arid and semi-arid zones peak in spring or late autumn. Some landscapes exhibit secondary maxima and minima, influenced by Mediterranean cyclones and regional atmospheric stability. Statistically significant trends include increasing cool-season precipitation in humid regions and decreasing spring rainfall in arid areas. These findings highlight the critical role of topography and landscape structure in shaping regional climate patterns and provide a foundation for improved climate modeling, ecological planning, and adaptation strategies in the Caucasus. Full article
Show Figures

Figure 1

18 pages, 11666 KiB  
Article
A Hybrid XAJ-LSTM-TFM Model for Improved Runoff Simulation in the Poyang Lake Basin: Integrating Physical Processes with Temporal and Lag Feature Learning
by Haoyu Jiang and Chunxiao Zhang
Water 2025, 17(14), 2146; https://doi.org/10.3390/w17142146 - 18 Jul 2025
Viewed by 274
Abstract
As the largest freshwater lake in China, Poyang Lake plays a crucial role in hydrological processes. Conventional models often fail to capture the time-lagged relationships between meteorological drivers and runoff responses, while lacking regional generalization capability. To address these limitations, this study proposes [...] Read more.
As the largest freshwater lake in China, Poyang Lake plays a crucial role in hydrological processes. Conventional models often fail to capture the time-lagged relationships between meteorological drivers and runoff responses, while lacking regional generalization capability. To address these limitations, this study proposes a novel XAJ-LSTM-TFM hybrid model that accounts for time-lagged hydrological responses and enhances the regional applicability of the Xinanjiang model. The model innovatively integrates the physical mechanisms of the Xinanjiang model with the temporal learning capacity of LSTM networks. By incorporating intermediate hydrological variables (including interflow and groundwater flow) along with 1–3 day lagged meteorological features, the model achieves an average 15.3% improvement in Nash–Sutcliffe Efficiency (NSE) across five sub-basins, with the Ganjiang Basin attaining an NSE of 0.812 and a 25.7% reduction in flood peak errors. The results demonstrate superior runoff simulation performance and reliable generalization capability under intensive anthropogenic activities. Full article
Show Figures

Figure 1

Back to TopTop