Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (149)

Search Parameters:
Keywords = reducing sugar release

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 4320 KiB  
Article
Proof of Concept for Enhanced Sugar Yields and Inhibitors Reduction from Aspen Biomass via Novel, Single-Step Nitrogen Explosive Decompression (NED 3.0) Pretreatment Method
by Damaris Okafor, Lisandra Rocha-Meneses, Vahur Rooni and Timo Kikas
Energies 2025, 18(15), 4026; https://doi.org/10.3390/en18154026 - 29 Jul 2025
Viewed by 202
Abstract
The transition to sustainable energy sources has intensified interest in lignocellulosic biomass (LCB) as a feedstock for second-generation biofuels. However, the inherent structural recalcitrance of LCB requires the utilization of an effective pretreatment to enhance enzymatic hydrolysis and subsequent fermentation yields. This manuscript [...] Read more.
The transition to sustainable energy sources has intensified interest in lignocellulosic biomass (LCB) as a feedstock for second-generation biofuels. However, the inherent structural recalcitrance of LCB requires the utilization of an effective pretreatment to enhance enzymatic hydrolysis and subsequent fermentation yields. This manuscript presents a novel, single-step, and optimized nitrogen explosive decompression system (NED 3.0) designed to address the critical limitations of earlier NED versions by enabling the in situ removal of inhibitory compounds from biomass slurry and fermentation inefficiency at elevated temperatures, thereby reducing or eliminating the need for post-treatment detoxification. Aspen wood (Populus tremula) was pretreated by NED 3.0 at 200 °C, followed by enzymatic hydrolysis and fermentation. The analytical results confirmed substantial reductions in common fermentation inhibitors, such as acetic acid (up to 2.18 g/100 g dry biomass) and furfural (0.18 g/100 g dry biomass), during early filtrate recovery. Hydrolysate analysis revealed a glucose yield of 26.41 g/100 g dry biomass, corresponding to a hydrolysis efficiency of 41.3%. Fermentation yielded up to 8.05 g ethanol/100 g dry biomass and achieved a fermentation efficiency of 59.8%. Inhibitor concentrations in both hydrolysate and fermentation broth remained within tolerable limits, allowing for effective glucose release and sustained fermentation performance. Compared with earlier NED configurations, the optimized system improved sugar recovery and ethanol production. These findings confirm the operational advantages of NED 3.0, including reduced inhibitory stress, simplified process integration, and chemical-free operation, underscoring its potential for scalability in line with the EU Green Deal for bioethanol production from woody biomass. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

19 pages, 2173 KiB  
Article
The Effect of Slow-Release Fertilizer on the Growth of Garlic Sprouts and the Soil Environment
by Chunxiao Han, Zhizhi Zhang, Renlong Liu, Changyuan Tao and Xing Fan
Appl. Sci. 2025, 15(15), 8216; https://doi.org/10.3390/app15158216 - 24 Jul 2025
Viewed by 337
Abstract
To address the issue of excessive chemical fertilizer use in agricultural production, this study conducted a pot experiment with four treatments: CK (no fertilization), T1 (the application of potassium magnesium sulfate fertilizer), T2 (the application of slow-release fertilizer equal to T1), and T3 [...] Read more.
To address the issue of excessive chemical fertilizer use in agricultural production, this study conducted a pot experiment with four treatments: CK (no fertilization), T1 (the application of potassium magnesium sulfate fertilizer), T2 (the application of slow-release fertilizer equal to T1), and T3 (the application of slow-release fertilizer with the same fertility as T1). The effects of these treatments on garlic seedling yield, growth quality, chlorophyll content, photosynthetic characteristics, and the soil environment were investigated to evaluate the feasibility of replacing conventional fertilizers with slow-release formulations. The results showed that compared with CK, all three fertilized treatments (T1, T2, and T3) significantly increased the plant heights and stem diameters of the garlic sprouts (p < 0.05). Plant height increased by 14.85%, 17.81%, and 27.75%, while stem diameter increased by 9.36%, 8.83%, and 13.96%, respectively. Additionally, the chlorophyll content increased by 4.34%, 7.22%, and 8.05% across T1, T2, and T3, respectively. Among the treatments, T3 exhibited the best overall growth performance. Compared with those in the CK group, the contents of soluble sugars, soluble proteins, free amino acids, vitamin C, and allicin increased by 64.74%, 112.17%, 126.82%, 36.15%, and 45.43%, respectively. Furthermore, soil organic matter, available potassium, magnesium, and phosphorus increased by 109.02%, 886.25%, 91.65%, and 103.14%, respectively. The principal component analysis indicated that soil pH and exchangeable magnesium were representative indicators reflecting the differences in the soil’s chemical properties under different fertilization treatments. Compared with the CK group, the metal contents in the T1 group slightly increased, while those in T2 and T3 generally decreased, suggesting that the application of slow-release fertilizer exerts a certain remediation effect on soils contaminated with heavy metals. This may be attributed to the chemical precipitation and ion exchange capacities of phosphogypsum, as well as the high adsorption and cation exchange capacity of bentonite, which help reduce the leaching of soil metal ions. In summary, slow-release fertilizers not only promote garlic sprout growth but also enhance soil quality by regulating its chemical properties. Full article
(This article belongs to the Section Ecology Science and Engineering)
Show Figures

Figure 1

17 pages, 1915 KiB  
Article
Optimizing Nutrition Protocols for Improved Rice Yield, Quality, and Nitrogen Use Efficiency in Coastal Saline Soils
by Xiang Zhang, Xiaoyu Geng, Yang Liu, Lulu Wang, Jizou Zhu, Weiyi Ma, Xiaozhou Sheng, Lei Shi, Yinglong Chen, Pinglei Gao, Huanhe Wei and Qigen Dai
Agronomy 2025, 15(7), 1662; https://doi.org/10.3390/agronomy15071662 - 9 Jul 2025
Viewed by 269
Abstract
This study evaluated the effects of one-time application of controlled-release fertilizer (CRF) on rice (Oryza sativa L.) grain yield, grain quality, and agronomic nitrogen use efficiency (ANUE, ANUE (kg/kg) = (Grain yield with N application − grain yield without N application)/N application [...] Read more.
This study evaluated the effects of one-time application of controlled-release fertilizer (CRF) on rice (Oryza sativa L.) grain yield, grain quality, and agronomic nitrogen use efficiency (ANUE, ANUE (kg/kg) = (Grain yield with N application − grain yield without N application)/N application amount) in coastal saline soils. A two-year field experiment (2023–2024) was conducted using two rice varieties (Nanjing 5718 and Yongyou 4953) under four nitrogen treatments: N0 (no nitrogen fertilization), N1 (270 kg·hm−2, with a ratio of 5:1:2:2 at 1-day before transplanting, 7-day after transplanting, panicle initiation, and penultimate-leaf appearance stage, respectively), N2 (270 kg·hm−2, one-time application at 1-day before transplanting as 50% CRF with 80-day release period + 50% urea), and N3 (270 kg·hm−2, 50% one-time application of CRF with 120-day release period at the seedling stage + 50% urea at 1-day before transplanting). Compared with N1, the N3 treatment significantly increased grain yield by 10.2% to 12.9% and improved ANUE by 18.5% to 51.6%. It also improved processing quality (higher brown rice, milled rice, and head rice rates), appearance quality (reduced chalkiness degree and chalky rice percentage), and taste value (by 19.3% to 31.2%). These improvements were associated with lower amylose, protein, and soluble sugar contents and favorable changes in starch composition and pasting properties. While N2 slightly improved some quality traits, it significantly reduced yield and ANUE. Correlation analysis revealed that starch and protein composition, as well as pasting properties, were significantly associated with taste value and related attributes such as appearance, stickiness, balance degree, and hardness. Overall, one-time application of CRF with a 120-day release period at the seedling stage, combined with basal urea, offers an effective strategy to boost yield, quality, and ANUE in coastal saline rice systems. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

17 pages, 3983 KiB  
Article
Reduced Precipitation Alters Soil Nutrient Dynamics by Regulating the Chemical Properties of Deadwood Substrates
by Laicong Luo, Xi Yuan, Chunsheng Wu, Dehuan Zong, Xueying Zhong, Kang Lin, Long Li, Bingxu Yang, Xuejiao Han, Chao Luo, Wenping Deng, Shijie Li and Yuanqiu Liu
Forests 2025, 16(7), 1112; https://doi.org/10.3390/f16071112 - 4 Jul 2025
Viewed by 233
Abstract
Global climate change has intensified the heterogeneity of precipitation regimes in subtropical regions, and the increasing frequency of extreme drought events poses a significant threat to biogeochemical cycling in forest ecosystems. Yet, the pathways by which reduced precipitation regulates deadwood decomposition and thereby [...] Read more.
Global climate change has intensified the heterogeneity of precipitation regimes in subtropical regions, and the increasing frequency of extreme drought events poses a significant threat to biogeochemical cycling in forest ecosystems. Yet, the pathways by which reduced precipitation regulates deadwood decomposition and thereby influences soil nutrient pools remain poorly resolved. Here, we investigated a Cunninghamia lanceolata (Lamb.) Hook. plantation in subtropical China under ambient precipitation (CK) and precipitation reduction treatments of 30%, 50%, and 80%, systematically examining how reduced precipitation alters the chemical properties of deadwood substrates and, in turn, soil nutrient status. Our findings reveal that (1) as precipitation declined, soil water content decreased significantly (p < 0.01), while deadwood pH declined and total organic carbon (TOC), nonstructural carbohydrates (NSCs), and lignin content markedly accumulated (p < 0.01); (2) these shifts in deadwood chemistry affected feedback mechanisms, leading to the suppression of soil nutrient pools: extreme drought (80% reduction) significantly reduced soil TOC, dissolved organic carbon (DOC), total nitrogen (TN), and total phosphorus (TP) (p < 0.01) and inhibited N and P mineralization, whereas the 30% reduction treatment elicited a transient increase in soil microbial biomass carbon (MBC), indicative of microbial acclimation to mild water stress; and (3) principal component analysis (PCA) showed that the 80% reduction treatment drove lignin accumulation in deadwood, while the 30% reduction treatment exerted the greatest influence on soil DOC, TOC, and MBC; partial least squares path modeling (PLS-PM) further demonstrated that soil water content and deadwood substrate properties (pH, lignin, soluble sugars, TOC, C/N, and lignin/N) were strongly negatively correlated (r = −0.9051, p < 0.01), and that deadwood chemistry was, in turn, negatively correlated with soil nutrient variables (pH, TOC, DOC, MBC, TP, TN, and dissolved organic nitrogen [DON]; r = −0.8056, p < 0.01). Together, these results indicate that precipitation reduction—by drying soils—profoundly modifies deadwood chemical composition (lignin accumulation and NSC retention) and thereby, via slowed organic-matter mineralization, constrains soil nutrient release and accumulation. This work provides a mechanistic framework for understanding forest carbon–nitrogen cycling under climate change. Full article
(This article belongs to the Special Issue Deadwood Decomposition and Its Impact on Forest Soil)
Show Figures

Figure 1

21 pages, 2890 KiB  
Article
Modulation of Biochemical Traits in Cold-Stored ‘Karaerik’ Grapes by Different Edible Coatings
by Nurhan Keskin, Sinem Karakus, Harlene Hatterman-Valenti, Ozkan Kaya, Seyda Cavusoglu, Onur Tekin, Birhan Kunter, Sıddık Keskin, Ahmet Çağlar Kaya and Birol Karadogan
Horticulturae 2025, 11(6), 672; https://doi.org/10.3390/horticulturae11060672 - 12 Jun 2025
Viewed by 407
Abstract
Understanding the effects of edible coatings on postharvest quality and shelf life of ‘Karaerik’ grapes is crucial for improving storage outcomes and reducing losses. However, limited information exists regarding the effectiveness of different coating materials on this regionally significant variety. In this study, [...] Read more.
Understanding the effects of edible coatings on postharvest quality and shelf life of ‘Karaerik’ grapes is crucial for improving storage outcomes and reducing losses. However, limited information exists regarding the effectiveness of different coating materials on this regionally significant variety. In this study, ‘Karaerik’ grapes were treated with carboxymethyl cellulose (CMC) and locust bean gum (KB) coatings and stored under cold conditions (0 ± 0.5 °C, 90–95% relative humidity) for 0, 25, 45, and 60 days. Storage duration and coating treatments significantly affected most physical, physiological, and biochemical parameters. During storage, grape weight loss progressively increased, reaching 9.60% in the control by day 60. Coatings slightly reduced this loss, with KB showing the lowest (5.11%) compared to the control (5.69%). Respiration initially declined but surged again at day 60, especially in the control (96.4 μmol CO2/kg·hour), while coatings helped mitigate this rise. Ethylene release remained unchanged. A slight pH decline (~4.6%) was observed in the control, while KB-treated grapes maintained higher pH and lower acidity. Soluble solids remained stable across treatments. Color changed notably during storage: a* nearly doubled (more redness), b* increased (less blue), and chroma (C*) declined by ~25%, especially in uncoated grapes. Total sugar dropped by ~43% in KB-treated grapes, with the control retaining the most. Tartaric acid decreased by ~55%, notably in KB samples. Antioxidant activity and total phenolics declined significantly (~66%) in the control. CMC coating better-preserved antioxidant capacity, while the control showed the highest phenolic levels overall. Ferulic, gallic, and chlorogenic acids increased toward the end of storage, particularly in coated grapes. In contrast, rutin and vanillic acid peaked mid-storage and were better preserved in the control. The heatmap showed significant metabolite changes in fruit samples across 0D, 25D, 45D, and 60D storage periods under CMC, CNT, and KB treatments, with distinct clustering patterns revealing treatment-specific biochemical responses. The correlation matrix revealed strong positive relationships (r > 0.70) between total sugar, glucose, and fructose levels, while ethylene showed significant negative correlations (−0.65 to −0.85) with maturity index, pH, and total soluble solids, indicating interconnected metabolic pathways during fruit ripening and storage. We conclude that edible coating selection significantly influences grape biochemical stability during cold storage, with CMC emerging as a superior choice for maintaining certain quality parameters. Full article
Show Figures

Figure 1

12 pages, 1702 KiB  
Article
Use of Sugar Dispensers at Lower Density Can Decrease Mealybug (Hemiptera: Pseudococcidae) Infestation in Vineyards by Disrupting Ants
by Giovanni Burgio, Serena Magagnoli, Luca Casoli, Marco Profeta, Donato Antonio Grasso, Enrico Schifani, Daniele Giannetti and Martina Parrilli
Insects 2025, 16(5), 468; https://doi.org/10.3390/insects16050468 - 29 Apr 2025
Viewed by 644
Abstract
Vineyard mealybugs (Hemiptera: Pseudococcidae) are economic pests in vineyards, demanding integrated control strategies. Several ant species can facilitate mealybug infestation by protecting them from natural enemies in a mutualistic relationship known as trophobiosis. In the frame of an ant management system, the provision [...] Read more.
Vineyard mealybugs (Hemiptera: Pseudococcidae) are economic pests in vineyards, demanding integrated control strategies. Several ant species can facilitate mealybug infestation by protecting them from natural enemies in a mutualistic relationship known as trophobiosis. In the frame of an ant management system, the provision of sugary liquid has proved worldwide to improve mealybug control. In the present study, a field trial was carried out within an important vineyard cultivation area of northern Italy with the aim of testing a lower density (80/ha) of sugar dispenser to facilitate the practicality of this method. The sugar dispensers tested, along with predators and parasitoid release, were effective in reducing mealybug infestations by 22% and resulted in a double increase in larval density of the predator Cryptolaemus mountrouzieri Mulsant. Mealybug parasitism was in general high, but it was not improved by sugar dispensers at this density. Our field validation confirms the importance of ants in mealybug infestation dynamics, and the benefits of ant management in the context of integrated strategies against mealybugs. Full article
Show Figures

Figure 1

12 pages, 1938 KiB  
Article
The Effect of Raw Sugar Addition on Flavor and Retronasal Olfaction Profiles of Processed Brown Sugar
by Yonathan Asikin, Yuki Nakaza, Moena Oe, Eriko Arakaki, Goki Maeda, Hirotaka Kaneda, Kensaku Takara and Koji Wada
Foods 2025, 14(9), 1480; https://doi.org/10.3390/foods14091480 - 24 Apr 2025
Viewed by 519
Abstract
Processed brown sugar is produced by combining non-centrifugal cane sugar (NCS), raw sugar, and molasses. The present study aimed to examine the effects of NCS and raw sugar blending (10%:90%, 50%:50%, 75%:25%, and 90%:10%) on color traits, non-volatile and volatile compounds, retronasal aroma [...] Read more.
Processed brown sugar is produced by combining non-centrifugal cane sugar (NCS), raw sugar, and molasses. The present study aimed to examine the effects of NCS and raw sugar blending (10%:90%, 50%:50%, 75%:25%, and 90%:10%) on color traits, non-volatile and volatile compounds, retronasal aroma release, and sensory profiles of processed brown sugar, and hence, its flavor quality. The International Commission for Uniform Methods of Sugar Analysis (ICUMSA) color index and the +L* (brightness) and +b* (yellowness) color spaces were gradually altered upon the addition of raw sugar, with strong Pearson’s negative correlations between the ICUMSA value and both color space indices (r = −0.9554 and r = −0.9739, respectively), causing a lighter color of the final product. Raw sugar addition also significantly reduced the concentration of non-volatile compounds, such as glucose and organic acids (p < 0.05). As the raw sugar proportion increased from 10 to 90%, the concentrations of total volatile compounds and Maillard reaction products (MRPs), such as pyrazines, furans, and furanones, also decreased significantly from 62.58 to 22.73 µg/100 g and 34.75 to 6.80 µg/100 g, respectively. Reduced intensities of ion masses of in-mouth and in-nose retronasal odors from volatile MRPs, as well as roasted aroma and richness properties, were observed in processed brown sugars with greater raw sugar content. Taken together, a higher proportion of raw sugar in processed brown sugar manufacturing enhances brightness while reducing acidity and aftertaste; however, increased NCS content results in darker products with greater roasted aroma and richness, affecting flavor quality. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

18 pages, 1246 KiB  
Article
Role of In-House Enzymatic Cocktails from Endophytic Fungi in the Saccharification of Corn Wastes Towards a Sustainable and Integrated Biorefinery Approach
by Patrísia de Oliveira Rodrigues, Anderson Gabriel Corrêa, Lucas Carvalho Basílio de Azevedo, Daniel Pasquini and Milla Alves Baffi
Fermentation 2025, 11(3), 155; https://doi.org/10.3390/fermentation11030155 - 19 Mar 2025
Viewed by 726
Abstract
The valorization of agri-food wastes can provide value-added products, enzymes and biofuels. For the second-generation ethanol (2G) production, pulps rich in cellulose are desirable in order to release fermentable sugars. This study investigated the homemade biosynthesis of cellulases and hemicellulases via solid-state fermentation [...] Read more.
The valorization of agri-food wastes can provide value-added products, enzymes and biofuels. For the second-generation ethanol (2G) production, pulps rich in cellulose are desirable in order to release fermentable sugars. This study investigated the homemade biosynthesis of cellulases and hemicellulases via solid-state fermentation (SSF) using sugarcane bagasse (SB) and wheat bran (WB) for the growth of endophytic fungi (Beauveria bassiana, Trichoderma asperellum, Metarhizium anisopliae and Pochonia chlamydosporia). Cocktails with high enzymatic levels were obtained, with an emphasis for M. anisopliae in the production of β-glucosidase (83.61 U/g after 288 h) and T. asperellum for xylanase (785.50 U/g after 144 h). This novel M. anisopliae β-glucosidase demonstrated acidophile and thermotolerant properties (optimum activity at pH 5.5 and 60 °C and stability in a wide pH range and up to 60 °C), which are suitable for lignocellulose saccharifications. Hence, the M. anisopliae multi-enzyme blend was selected for the hydrolysis of raw and organosolv-pretreated corn straw (CS) and corncob (CC) using 100 CBU/g cellulose. After the ethanol/water (1:1) pretreatment, solid fractions rich in cellulose (55.27 in CC and 50.70% in CS) and with low concentrations of hemicellulose and lignin were found. Pretreated CC and CS hydrolysates reached a maximum TRS release of 12.48 and 13.68 g/L, with increments of 100.80 and 73.82% in comparison to untreated biomass, respectively, emphasizing the fundamental role of a pretreatment in bioconversions. This is the first report on β-glucosidase biosynthesis using M. anisopliae and its use in biomass hydrolysis. These findings demonstrated a closed-loop strategy for internal enzyme biosynthesis integrated to reducing sugar release which would be applied for further usage in biorefineries. Full article
Show Figures

Figure 1

23 pages, 3617 KiB  
Article
Exploration of Pea Protein Isolate–Sodium Alginate Complexes as a Novel Strategy to Substitute Sugar in Plant Cream: Synergistic Interactions Between the Two at the Interface
by Jingru Sun, Xiyuan Yang, Jingjing Diao, Yichang Wang and Changyuan Wang
Foods 2025, 14(6), 991; https://doi.org/10.3390/foods14060991 - 14 Mar 2025
Viewed by 974
Abstract
This study aims to explore the feasibility of using pea protein isolate (PPI)/sodium alginate (SA) complex as a sugar substitute to develop low sugar plant fat cream. Firstly, this study analyzed the influence of SA on the structure and physicochemical properties of PPI [...] Read more.
This study aims to explore the feasibility of using pea protein isolate (PPI)/sodium alginate (SA) complex as a sugar substitute to develop low sugar plant fat cream. Firstly, this study analyzed the influence of SA on the structure and physicochemical properties of PPI and evaluated the types of interaction forces between PPI and SA. The addition of SA effectively induces the unfolding and structural rearrangement of PPI, causing structural changes and subunit dissociation of PPI, resulting in the exposure of internal-SH groups. In addition, the addition of SA increased the content of β-folding in PPI, making the structure of PPI more flexible and reducing interfacial tension. The ITC results indicate that the binding between PPI and SA exhibits characteristics of rapid binding and slow dissociation, which is spontaneous and accompanied by heat release. Next, the effect of PPI/SA ratio on the whipping performance and quality of low sugar plant fat creams was studied by using PPI/SA complex instead of 20% sugar in the cream. When using a PPI/SA complex with a mass ratio of 1:0.3 instead of sugar, the stirring performance, texture, and stability of plant fat cream reach their optimum. Finally, the relevant analysis results indicate that the flexibility and interface characteristics of PPI are key factors affecting the quality of cream. This study can provide theoretical support for finding suitable sugar substitute products and developing low sugar plant fat cream. Full article
Show Figures

Figure 1

20 pages, 3628 KiB  
Article
In Vitro Investigation of the Effects of Bacillus subtilis-810B and Bacillus licheniformis-809A on the Rumen Fermentation and Microbiota
by Raphaële Gresse, Bruno Ieda Cappellozza, Didier Macheboeuf, Angélique Torrent, Jeanne Danon, Lena Capern, Dorthe Sandvang, Vincent Niderkorn, Giuseppe Copani and Evelyne Forano
Animals 2025, 15(4), 476; https://doi.org/10.3390/ani15040476 - 7 Feb 2025
Cited by 2 | Viewed by 1920
Abstract
Direct-fed microbials (DFMs) have shown the potential to improve livestock performance and overall health. Extensive research has been conducted to identify new DFMs and understand their mechanisms of action in the gut. Bacillus species are multifunctional spore-forming bacteria that exhibit resilience to harsh [...] Read more.
Direct-fed microbials (DFMs) have shown the potential to improve livestock performance and overall health. Extensive research has been conducted to identify new DFMs and understand their mechanisms of action in the gut. Bacillus species are multifunctional spore-forming bacteria that exhibit resilience to harsh conditions, making them ideal candidates for applications in the feed industry and livestock production. This study investigates the mode of action of B. licheniformis and B. subtilis in the rumen using diverse in vitro techniques. Our results revealed that both strains germinated and grew in sterile rumen and intestinal contents from dairy cows and bulls. Gas composition analysis of in vitro cultures in a medium containing 40% rumen fluid demonstrated that germination of B. licheniformis and B. subtilis strains reduced oxygen levels, promoting an anaerobic environment favorable to rumen microbes. Enzymatic activity assays showed that B. licheniformis released sugars from complex substrates and purified polysaccharides in filtered rumen content. Additionally, the combination of B. licheniformis and B. subtilis survived and grew in the presence of a commercial monensin dose in rumen fluid media. The effects of B. licheniformis and B. subtilis on rumen fermentation activity and microbiota were studied using an in vitro batch fermentation assay. In fermenters that received a combination of B. licheniformis and B. subtilis, less CO2 was produced while dry matter degradation and CH4 production was comparable to the control condition, indicating better efficiency of dry matter utilization by the microbiota. The investigation of microbiota composition between supplemented and control fermenters showed no significant effect on alpha and beta diversity. However, the differential analysis highlighted changes in several taxa between the two conditions. Altogether, our data suggests that the administration of these strains of Bacillus could have a beneficial impact on rumen function, and consequently, on health and performance of ruminants. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

11 pages, 5748 KiB  
Article
Modeling the Chemical Hydrolysis of Mesquite (Prosopis laevigata) Seed Husk Using Response Surface Methodology and Artificial Neural Networks
by Rogelio Pérez-Cadena, Silvana Vázquez-Maldonado, Alejandro Téllez-Jurado, Maria Guadalupe Serna-Diaz and Joselito Medina-Marin
Appl. Sci. 2025, 15(3), 1419; https://doi.org/10.3390/app15031419 - 30 Jan 2025
Viewed by 815
Abstract
The increasing emission of greenhouse gases that comes with the rise in industrialization is harmful to the environment. Thus, finding new renewable energy sources is becoming increasingly important in the energy field. One such renewable energy source is biomass, which provides valuable energy [...] Read more.
The increasing emission of greenhouse gases that comes with the rise in industrialization is harmful to the environment. Thus, finding new renewable energy sources is becoming increasingly important in the energy field. One such renewable energy source is biomass, which provides valuable energy carriers—for example, biofuels. The objective of this work was to evaluate the release of total reducing sugars (TRSs) from mesquite pod seed hulls by chemical and enzymatic hydrolysis. The husks were crushed and separated by screens (#16, #30 and #50). The effect of hydrolysis time (10, 20, and 30 min) and sulfuric acid concentration (0, 0.25, and 0.5 N) was analyzed. The #50 mesh showed the highest TRS release, increasing from 3.19 to 17.49 g/L as the reaction time was extended. Additionally, enzymatic hydrolysis with endo-1, 4-β-xylanase and β-glucanase enzymes was evaluated on the solid and liquid fractions obtained. Statistical analysis with Design Expert showed that, for the solid fractions, after 31 h there were no significant differences, reaching 79.46 g/L TRS. In the liquid fractions, the TRS released reached 113.37 g/L after 54 h of enzymatic treatment. The release of TRS by chemical hydrolysis was also modeled with artificial neural networks, considering the particle size, the hydrolysis time, and the sulfuric acid concentration. The coefficient of determination (r2) indicates that the ANNs present a better data fit (r2 > 0.99) to predict the experimental conditions that maximize the study variables. Full article
Show Figures

Figure 1

25 pages, 1886 KiB  
Article
The Role of Oxidative Stress in the Antifungal Activity of Two Mollusk Fractions on Resistant Fungal Strains
by Lyudmila Velkova, Radoslav Abrashev, Jeny Miteva-Staleva, Vladislava Dishliyska, Aleksandar Dolashki, Boryana Spasova, Pavlina Dolashka, Maria Angelova and Ekaterina Krumova
Int. J. Mol. Sci. 2025, 26(3), 985; https://doi.org/10.3390/ijms26030985 - 24 Jan 2025
Cited by 2 | Viewed by 1245
Abstract
Fungal infections are a significant global public health challenge because of their widespread occurrence, morbidity, and profound social and economic consequences. Antifungal resistance is also an increasing concern, posing a substantial risk to public health. There is a growing interest in searching for [...] Read more.
Fungal infections are a significant global public health challenge because of their widespread occurrence, morbidity, and profound social and economic consequences. Antifungal resistance is also an increasing concern, posing a substantial risk to public health. There is a growing interest in searching for new antifungal drugs isolated from natural sources. This study aimed to evaluate the antifungal activity of novel mollusk fractions against fungal strains resistant to nystatin and amphotericin B. In addition, the role of oxidative stress in the mechanism of damage was determined. The mucus from the garden snail Cornu aspersum (MCa/1-20) and the hemolymph fraction from the marine snail Rapana venosa (HLRv/3-100) were obtained and characterized via 12% sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometric -analyses. The results demonstrate that the spores and biomass of both mollusk fractions have a significant fungicidal effect against Penicillium griseofulvum, and Aspergillus niger. Compared to the control group, the release of intracellular proteins and reducing sugars was significantly increased in the treated groups. The data showed increased levels of oxidative stress biomarkers (lipid peroxidation and oxidatively damaged proteins) and a downregulated antioxidant enzyme defense, corresponding to increased antifungal activity. To our knowledge, this is the first study evaluating oxidative stress as a factor in mollusk fractions’ antifungal activity. Full article
(This article belongs to the Special Issue Advances in Research on Antifungal Resistance)
Show Figures

Figure 1

18 pages, 3031 KiB  
Article
Surfactant-Enhanced Enzymatic Hydrolysis of Eucalyptus Kraft Pulp: The Interrelationship Between Lignin Reduction and Sugar Recovery
by Jesús J. Ascencio, Leticia S. Magalhães, Fabrício B. Ferreira, Otto Heinz, André Ferraz and Anuj K. Chandel
Catalysts 2025, 15(1), 47; https://doi.org/10.3390/catal15010047 - 7 Jan 2025
Cited by 2 | Viewed by 1307
Abstract
This study examines the effect of surfactant-enhanced enzymatic hydrolysis on eucalyptus Kraft pulps produced under high (CPHA) and mild (CPMA) alkali conditions to optimize saccharification and sugar yield. Compositional analysis revealed an increase in glucan content, from 40% in untreated eucalyptus to 70.1% [...] Read more.
This study examines the effect of surfactant-enhanced enzymatic hydrolysis on eucalyptus Kraft pulps produced under high (CPHA) and mild (CPMA) alkali conditions to optimize saccharification and sugar yield. Compositional analysis revealed an increase in glucan content, from 40% in untreated eucalyptus to 70.1% in CPHA. Both pulps were hydrolyzed using Cellic® CTec3 HS enzyme (Novozymes). A 22 factorial design revealed maximum sugar conversion (~100%) with enzyme loading of 10 FPU/g carbohydrate and 10% (w/v) solids. Tween 20 significantly boosted hydrolysis in CPMA, increasing reducing sugars from 42 g/L to 65 g/L and efficiency from 59.6% to 92.2% within 6 h. By contrast, Tween 80 and PEG 400 showed limited effects on CPMA. Surfactants mitigated lignin–enzyme interactions, especially in CPMA, as higher lignin content restricted hydrolysis efficiency. Phenolic content in the hydrolysates revealed that Tween 80 increased the release of inhibitory compounds, while Tween 20 kept phenolic levels lower. Overall, Tween 20 improved sugar yields and hydrolysis efficiency even with moderate lignin removal during kraft pretreatment, highlighting its potential to reduce enzyme loading and costs in industrial biorefineries. This study underscores the importance of optimizing surfactant selection based on biomass composition for effective enzymatic hydrolysis for cellulosic sugar recovery. Full article
(This article belongs to the Section Biomass Catalysis)
Show Figures

Graphical abstract

18 pages, 4436 KiB  
Article
Combining Controlled-Release and Normal Urea Enhances Rice Grain Quality and Starch Properties by Improving Carbohydrate Supply and Grain Filling
by Chang Liu, Tianyang Zhou, Zhangyi Xue, Chenhua Wei, Kuanyu Zhu, Miao Ye, Weiyang Zhang, Hao Zhang, Lijun Liu, Zhiqin Wang, Junfei Gu and Jianchang Yang
Plants 2025, 14(1), 107; https://doi.org/10.3390/plants14010107 - 2 Jan 2025
Cited by 1 | Viewed by 975
Abstract
Controlled-release nitrogen fertilizers are gaining popularity in rice (Oryza stavia L.) cultivation for their ability to increase yields while reducing environmental impact. Grain filling is essential for both the yield and quality of rice. However, the impact of controlled-release nitrogen fertilizer on [...] Read more.
Controlled-release nitrogen fertilizers are gaining popularity in rice (Oryza stavia L.) cultivation for their ability to increase yields while reducing environmental impact. Grain filling is essential for both the yield and quality of rice. However, the impact of controlled-release nitrogen fertilizer on grain-filling characteristics, as well as the relationship between these characteristics and rice quality, remains unclear. This study aimed to identify key grain-filling characteristics influencing rice milling quality, appearance, cooking and eating qualities, and physicochemical properties of starch. In this study, a two-year field experiment was conducted that included four nitrogen management practices: zero nitrogen input (CK), a local high-yield practice with split urea applications (100% urea, CU), a single basal application of 100% controlled-release nitrogen fertilizer (CRNF), and a basal application blend of 70% controlled-release nitrogen fertilizer with 30% urea (CRNF-CU). The results showed that a sufficient amount of carbohydrates for the rice grain-filling process, as indicated by a higher sugar–spikelet ratio, is essential for improving grain quality. An increased sugar–spikelet ratio enhances the grain-filling process, resulting in an elevated average grain-filling rate (Gmean) and the peak grain-filling rate (Gmax), while also reducing the overall time required for grain filling (D). Compared to CU, CRNF and CRNF-CU treatments did not significantly change milling qualities, but reduced the chalky kernel rate and chalkiness, thereby enhancing the appearance quality. These treatments increased the amylose and amylopectin contents while reducing protein content, though the proportion of protein constituents remained unchanged. These treatments led to larger starch granules with notably smoother surfaces. Additionally, CRNF and CRNF-CU reduced relative crystallinity and structural order, while increasing the amorphous structure in the outer region of starch granules, which lowered rice starch crystal stability. The treatments also increased viscosity and improved the thermodynamic properties of starch, resulting in enhanced eating and cooking quality of the rice. In conclusion, the CRNF-CU is the most effective strategy in this study to enhance both grain yield and quality. This practice ensures an adequate carbohydrate supply for grain filling, which is essential for efficient grain filling and improved overall quality. Full article
(This article belongs to the Special Issue Rice Physiology and Production)
Show Figures

Figure 1

15 pages, 2734 KiB  
Article
Nitric Oxide Pre-Treatment Advances Bulblet Dormancy Release by Mediating Metabolic Changes in Lilium
by Chenglong Yang, Xiaoping Xu, Muhammad Moaaz Ali, Xing He, Wenjie Guo, Faxing Chen and Shaozhong Fang
Int. J. Mol. Sci. 2025, 26(1), 156; https://doi.org/10.3390/ijms26010156 - 27 Dec 2024
Cited by 1 | Viewed by 1196
Abstract
The lily is a globally popular cut flower, and managing dormancy in lily bulblets is essential for continuous, year-round production. While nitric oxide (NO) has been shown to influence seed dormancy and germination, its role in dormancy release in lilies was previously unconfirmed. [...] Read more.
The lily is a globally popular cut flower, and managing dormancy in lily bulblets is essential for continuous, year-round production. While nitric oxide (NO) has been shown to influence seed dormancy and germination, its role in dormancy release in lilies was previously unconfirmed. In this study, we investigated the effects of NO on dormancy release in lily bulblets using SNP and c-PTIO. Results showed that SNP treatment promoted dormancy release, while c-PTIO inhibited it. Measurement of endogenous NO levels in the bulbs, along with enzyme activities of NOS-like and NR and gene expression levels of LoNOS-IP and LoNR, confirmed that NO plays a role in promoting dormancy release in lilies. To further elucidate the physiological mechanisms involved, we analyzed H2O2 levels, antioxidant enzyme activities, endogenous hormone levels, and carbohydrate metabolism in the bulbs. Findings demonstrated that NO facilitated dormancy release by increasing H2O2, gibberellins (GAs), indole-3-acetic acid (IAA), zeatin riboside (ZR), reducing sugars, and by accelerating the metabolism of abscisic acid (ABA) and starch. This study provides a foundation for deeper investigation into the mechanisms underlying dormancy release in lily bulbs. Full article
(This article belongs to the Special Issue Nitric Oxide Signalling in Plants)
Show Figures

Figure 1

Back to TopTop