Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = red ginseng (RG)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1834 KiB  
Article
Enhanced Minor Ginsenoside Contents of Nano-Sized Black Korean Ginseng through Hot Melt Extrusion
by Junho Lee, Ha-Yeon Lee and Jong-Suep Baek
Materials 2024, 17(18), 4612; https://doi.org/10.3390/ma17184612 - 20 Sep 2024
Viewed by 1222
Abstract
Black ginseng (BG), a traditional medicinal herb produced through a nine-stage steaming and drying process, exhibits stronger pharmacological efficacy, including antioxidant, anti-inflammatory, and anti-cancer properties, when compared to white and red ginseng. The ginsenosides in BG are classified as major and minor types, [...] Read more.
Black ginseng (BG), a traditional medicinal herb produced through a nine-stage steaming and drying process, exhibits stronger pharmacological efficacy, including antioxidant, anti-inflammatory, and anti-cancer properties, when compared to white and red ginseng. The ginsenosides in BG are classified as major and minor types, with minor ginsenosides demonstrating superior pharmacological properties. However, their low concentrations limit their availability for research and clinical applications. In this study, hot melt extrusion (HME) was utilized as an additional processing technique to enhance the content of minor ginsenoside in BG, and the physicochemical properties of the formulation were analyzed. Ginsenoside content in BG and HME-treated BG (HME-BG) was analyzed using high-performance liquid chromatography (HPLC), while their physicochemical properties were evaluated through dynamic light scattering (DLS), electrophoretic light scattering (ELS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FT-IR). HME treatment resulted in a significant increase in minor ginsenosides Rg3 and compound K (CK) by 330% and 450%, respectively, while major ginsenosides Rg1 and Rb1 decreased or were not detected. Additionally, HME-BG demonstrated reduced particle size, improved PDI, and decreased crystallinity. HME treatment effectively converts major ginsenosides in BG into minor ginsenosides, enhancing its pharmacological efficacy and showing great potential for research and development applications. Full article
(This article belongs to the Special Issue Nonconventional Technology in Materials Processing-3rd Edition)
Show Figures

Figure 1

14 pages, 9686 KiB  
Article
Target Cell Extraction and Spectrum–Effect Relationship Coupled with BP Neural Network Classification for Screening Potential Bioactive Components in Ginseng Extract with a Protective Effect against Myocardial Damage
by Junyi Li, Min Lin, Zexin Xie, Liwenyu Chen, Jin Qi and Boyang Yu
Molecules 2024, 29(9), 2028; https://doi.org/10.3390/molecules29092028 - 28 Apr 2024
Cited by 4 | Viewed by 1916
Abstract
Cardiovascular disease has become a common ailment that endangers human health, having garnered widespread attention due to its high prevalence, recurrence rate, and sudden death risk. Ginseng possesses functions such as invigorating vital energy, enhancing vein recovery, promoting body fluid and blood nourishment, [...] Read more.
Cardiovascular disease has become a common ailment that endangers human health, having garnered widespread attention due to its high prevalence, recurrence rate, and sudden death risk. Ginseng possesses functions such as invigorating vital energy, enhancing vein recovery, promoting body fluid and blood nourishment, calming the nerves, and improving cognitive function. It is widely utilized in the treatment of various heart conditions, including palpitations, chest pain, heart failure, and other ailments. Although numerous research reports have investigated the cardiovascular activity of single ginsenoside, there remains a lack of systematic research on the specific components group that predominantly contribute to cardiovascular efficacy in ginseng medicinal materials. In this research, the spectrum–effect relationship, target cell extraction, and BP neural network classification were used to establish a rapid screening system for potential active substances. The results show that red ginseng extract (RGE) can improve the decrease in cell viability and ATP content and inhibit the increase in ROS production and LDH release in OGD-induced H9c2 cells. A total of 70 ginsenosides were identified in RGE using HPLC-Q-TOF-MS/MS analysis. Chromatographic fingerprints were established for 12 batches of RGE by high-performance liquid chromatography (HPLC). A total of 36 common ingredients were found in 12 batches of RGE. The cell viability, ATP, ROS, and LDH of 12 batches RGE were tested to establish gray relationship analysis (GRA) and partial least squares discrimination analysis (PLS-DA). BP neural network classification and target cell extraction were used to narrow down the scope of Spectral efficiency analysis and screen the potential active components. According to the cell experiments, RGE can improve the cell viability and ATP content and reduce the oxidative damage. Then, seven active ingredients, namely, Ginsenoside Rg1, Rg2, Rg3, Rb1, Rd, Re, and Ro, were screened out, and their cardiovascular activity was confirmed in the OGD model. The seven ginsenosides were the main active substances of red ginseng in treating myocardial injury. This study offers a reference for quality control in red ginseng and preparations containing red ginseng for the management of cardiovascular diseases. It also provides ideas for screening active ingredients of the same type of multi-pharmacologically active traditional Chinese medicines. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Graphical abstract

12 pages, 4932 KiB  
Article
Red Ginseng Attenuates the Hepatic Cellular Senescence in Aged Mice
by Da-Yeon Lee, Juliana Arndt, Jennifer F. O’Connell, Josephine M. Egan and Yoo Kim
Biology 2024, 13(1), 36; https://doi.org/10.3390/biology13010036 - 8 Jan 2024
Cited by 5 | Viewed by 3517
Abstract
Cellular senescence is defined as an irreversible cell cycle arrest accompanied by morphological and physiological alterations during aging. Red ginseng (RG), processed from fresh ginseng (Panax ginseng C.A. Meyer) with a one-time steaming and drying process, is a well-known beneficial herbal medicine [...] Read more.
Cellular senescence is defined as an irreversible cell cycle arrest accompanied by morphological and physiological alterations during aging. Red ginseng (RG), processed from fresh ginseng (Panax ginseng C.A. Meyer) with a one-time steaming and drying process, is a well-known beneficial herbal medicine showing antioxidant, anti-inflammatory, and anti-aging properties. The current study aimed to investigate the benefits of RG in alleviating hepatic cellular senescence and its adverse effects in 19-month-old aged mice. We applied two different intervention methods and durations to compare RG’s effects in a time-dependent manner: (1) oral gavage injection for 4 weeks and (2) ad libitum intervention for 14 weeks. We observed that 4-week RG administration was exerted to maintain insulin homeostasis against developing age-associated insulin insensitivity and suppressed cellular senescence pathway in the liver and primary hepatocytes. Moreover, with remarkable improvement of insulin homeostasis, 14-week RG supplementation downregulated the activation of c-Jun N-terminal kinase (JNK) and its downstream transcriptional factor nuclear factor-κB (NF-κB) in aged mice. Lastly, RG treatment significantly reduced the senescence-associated β-galactosidase (SA-β-gal)-positive cells in primary hepatocytes and ionizing radiation (IR)-exposed mouse embryonic fibroblasts (MEFs). Taken together, we suggest that RG can be a promising candidate for a senolytic substance by preventing hepatic cellular senescence. Full article
Show Figures

Figure 1

11 pages, 1902 KiB  
Communication
Pharmacokinetic Profiling of Ginsenosides, Rb1, Rd, and Rg3, in Mice with Antibiotic-Induced Gut Microbiota Alterations: Implications for Variability in the Therapeutic Efficacy of Red Ginseng Extracts
by Jeon-Kyung Kim, Min Sun Choi, Hee-Seo Park, Kyung Hwa Kee, Dong-Hyun Kim and Hye Hyun Yoo
Foods 2023, 12(23), 4342; https://doi.org/10.3390/foods12234342 - 1 Dec 2023
Cited by 5 | Viewed by 2566
Abstract
Ginsenoside Rg3 is reported to contribute to the traditionally known diverse effects of red ginseng extracts. Significant individual variations in the therapeutic efficacy of red ginseng extracts have been reported. This study aimed to investigate the effect of amoxicillin on the pharmacokinetics of [...] Read more.
Ginsenoside Rg3 is reported to contribute to the traditionally known diverse effects of red ginseng extracts. Significant individual variations in the therapeutic efficacy of red ginseng extracts have been reported. This study aimed to investigate the effect of amoxicillin on the pharmacokinetics of ginsenosides Rb1, Rd, and Rg3 in mice following the oral administration of red ginseng extracts. We examined the α-diversity and β-diversity of gut microbiota and conducted pharmacokinetic studies to measure systemic exposure to ginsenoside Rg3. We also analyzed the microbiome abundance and microbial metabolic activity involved in the biotransformation of ginsenoside Rb1. Amoxicillin treatment reduced both the α-diversity and β-diversity of the gut microbiota and decreased systemic exposure to ginsenoside Rg3 in mice. The area under the curve (AUC) values for Rg3 in control and amoxicillin-treated groups were 247.7 ± 96.6 ng·h/mL and 139.2 ± 32.9 ng·h/mL, respectively. The microbiome abundance and microbial metabolic activity involved in the biotransformation of ginsenoside Rb1 were also altered by amoxicillin treatment. The metabolizing activity was reduced from 0.13 to 0.05 pmol/min/mg on average. Our findings indicate that amoxicillin treatment potentially reduces the gut-microbiota-mediated metabolism of ginsenoside Rg3 in mice given red ginseng extracts, altering its pharmacokinetics. Gut microbiome variations may thus influence individual ginsenoside pharmacokinetics, impacting red ginseng extract’s efficacy. Our results suggest that modulating the microbiome could enhance the efficacy of red ginseng. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Graphical abstract

22 pages, 8079 KiB  
Article
Structural-Activity Relationship of Rare Ginsenosides from Red Ginseng in the Treatment of Alzheimer’s Disease
by Xianwen Ye, Haixia Zhang, Qian Li, Hongmin Ren, Xinfang Xu and Xiangri Li
Int. J. Mol. Sci. 2023, 24(10), 8625; https://doi.org/10.3390/ijms24108625 - 11 May 2023
Cited by 14 | Viewed by 3206
Abstract
Rare ginsenosides are the major components of red ginseng. However, there has been little research into the relationship between the structure of ginsenosides and their anti-inflammatory activity. In this work, BV-2 cells induced by lipopolysaccharide (LPS) or nigericin, the anti-inflammatory activity of eight [...] Read more.
Rare ginsenosides are the major components of red ginseng. However, there has been little research into the relationship between the structure of ginsenosides and their anti-inflammatory activity. In this work, BV-2 cells induced by lipopolysaccharide (LPS) or nigericin, the anti-inflammatory activity of eight rare ginsenosides, and the target proteins expression of AD were compared. In addition, the Morris water maze test, HE staining, thioflavins staining, and urine metabonomics were used to evaluate the effect of Rh4 on AD mice. Our results showed that their configuration influences the anti-inflammatory activity of ginsenosides. Ginsenosides Rk1, Rg5, Rk3, and Rh4 have significant anti-inflammatory activity compared to ginsenosides S-Rh1, R-Rh1, S-Rg3, and R-Rg3. Ginsenosides S-Rh1 and S-Rg3 have more pronounced anti-inflammatory activity than ginsenosides R-Rh1 and R-Rg3, respectively. Furthermore, the two pairs of stereoisomeric ginsenosides can significantly reduce the level of NLRP3, caspase-1, and ASC in BV-2 cells. Interestingly, Rh4 can improve the learning ability of AD mice, improve cognitive impairment, reduce hippocampal neuronal apoptosis and Aβ deposition, and regulate AD-related pathways such as the tricarboxylic acid cycle and the sphingolipid metabolism. Our findings conclude that rare ginsenosides with a double bond have more anti-inflammatory activity than those without, and 20(S)-ginsenosides have more excellent anti-inflammatory activity than 20(R)-ginsenosides. Full article
(This article belongs to the Special Issue Advances in Alzheimer’s Disease Drug Research and Development)
Show Figures

Figure 1

13 pages, 2348 KiB  
Article
Antitumor Effect of Korean Red Ginseng through Blockade of PD-1/PD-L1 Interaction in a Humanized PD-L1 Knock-In MC38 Cancer Mouse Model
by Eun-Ji Lee, Ju-Hye Yang, Hye Jin Yang, Chong-Kwan Cho, Jang-Gi Choi and Hwan-Suck Chung
Int. J. Mol. Sci. 2023, 24(3), 1894; https://doi.org/10.3390/ijms24031894 - 18 Jan 2023
Cited by 6 | Viewed by 3402
Abstract
Blocking immune checkpoints, programmed death-1 (PD-1) and its ligand PD-L1, has proven a promising anticancer strategy for enhancing cytotoxic T cell activity. Although we previously demonstrated that ginsenoside Rg3, Rh2, and compound K block the interaction of PD-1 and PD-L1, the antitumor effect [...] Read more.
Blocking immune checkpoints, programmed death-1 (PD-1) and its ligand PD-L1, has proven a promising anticancer strategy for enhancing cytotoxic T cell activity. Although we previously demonstrated that ginsenoside Rg3, Rh2, and compound K block the interaction of PD-1 and PD-L1, the antitumor effect through blockade of this interaction by Korean Red Ginseng alone is unknown. Therefore, we determined the effects of Korean Red Ginseng extract (RGE) on the PD-1/PD-L1 interaction and its antitumor effects using a humanized PD-1/PD-L1-expressing colorectal cancer (CRC) mouse model. RGE significantly blocked the interaction between human PD-1 and PD-L1 in a competitive ELISA. The CD8+ T cell-mediated tumor cell killing effect of RGE was evaluated using murine hPD-L1-expressing MC38 cells and tumor-infiltrating hPD-1-expressing CD8+ T cells isolated from hPD-L1 MC38 tumor-bearing hPD-1 mice. RGE also reduced the survival of hPD-L1 MC38 cells in a cell co-culture system using tumor-infiltrating CD8+ T cells as effector cells combined with hPD-L1 MC38 target cells. RGE or Keytruda (positive control) treatment markedly suppressed the growth of hPD-L1 MC38 allograft tumors, increased CD8+ T cell infiltration into tumors, and enhanced the production of Granzyme B. RGE exhibits anticancer effects through the PD-1/PD-L1 blockade, which warrants its further development as an immunotherapy. Full article
Show Figures

Figure 1

19 pages, 2045 KiB  
Article
Dermal Delivery of Korean Red Ginseng Extract: Impact on Storage Stability of Different Carrier Systems and Evaluation of Rg1 and Rb1 Skin Permeation Ex Vivo
by Victoria Klang, Eva-Maria Schweiger, Simone Strohmaier, Verena Ina Walter, Zorana Dekic and Ammar Tahir
Pharmaceutics 2023, 15(1), 56; https://doi.org/10.3390/pharmaceutics15010056 - 24 Dec 2022
Cited by 4 | Viewed by 3580
Abstract
The root extract of Panax ginseng C.A. Meyer (Korean red ginseng/KRG extract) is a traditional Asian remedy introduced to dermal products for its antioxidative potential. However, little is known about technological aspects or skin penetration of main ginsenosides. Thus, stable oil-in-water nanoemulsions (NEs) [...] Read more.
The root extract of Panax ginseng C.A. Meyer (Korean red ginseng/KRG extract) is a traditional Asian remedy introduced to dermal products for its antioxidative potential. However, little is known about technological aspects or skin penetration of main ginsenosides. Thus, stable oil-in-water nanoemulsions (NEs) and hydrogels for dermal delivery of KRG extract were developed and characterised using light scattering methods, analysis of flow properties and pH measurements. In addition, Rg1 and Rb1 contents were monitored by UHPLC/MS. Different surfactants (phosphatidylcholine, monoacylphosphatidylcholine and polysorbate 80) and polymers (polyacrylic acid and hydroxyethylcellulose) were tested and compared for their compatibility with KRG extract. The results showed that incorporation of KRG extract led to a significantly reduced formulation pH in hydroxyethylcellulose gels (−22%), NEs (−15%) and carbomer gels (−4–5%). The dynamic viscosity was in the range of 24–28 Pas at 10 s−1 for carbomer gels. The highest storage stability and skin permeation were observed for a hydroalcoholic gel with carbomer 50,000 and TRIS buffer (each of 1% w/w), containing ethanol (20% w/w) and KRG extract (2% w/w). Ex vivo diffusion cell studies confirmed skin permeation of the moderately lipophilic Rg1, but not the more hydrophilic Rb1 with a larger molecular weight. Full article
Show Figures

Figure 1

14 pages, 1560 KiB  
Article
Pharmacokinetic Comparison of Ginsenosides between Fermented and Non-Fermented Red Ginseng in Healthy Volunteers
by Myeong-Bae Shin, Sung-Ah Kim, Sooyoung Lee, Wang-Seob Shim, Kyung-Tae Lee, Seung-Kwon Lee, Sung-Vin Yim and Bo-Hyung Kim
Pharmaceutics 2022, 14(12), 2807; https://doi.org/10.3390/pharmaceutics14122807 - 15 Dec 2022
Cited by 5 | Viewed by 3052
Abstract
Fermentation of red ginseng (RG) produces fermented red ginseng (FRG), thereby increasing the relative amount of downstream ginsenosides, including compound Y (CY), F2, Rh2, compound K (CK), compound O, protopanaxadiol (PPD), and protopanaxatriol (PPT). These downstream ginsenosides have beneficial pharmacological effects, and are [...] Read more.
Fermentation of red ginseng (RG) produces fermented red ginseng (FRG), thereby increasing the relative amount of downstream ginsenosides, including compound Y (CY), F2, Rh2, compound K (CK), compound O, protopanaxadiol (PPD), and protopanaxatriol (PPT). These downstream ginsenosides have beneficial pharmacological effects, and are easily absorbed by the human body. Based on these expectations, a randomized, single-dose, two-period, crossover clinical trial was planned to compare the pharmacokinetic characteristics of seven types (Rb1, CY, F2, CK, Rh2, PPD, and PPT) of ginsenoside components after FRG and RG administration. The safety and tolerability profiles were assessed in this clinical trial. Sixteen healthy Korean male subjects were administered 6 g of FRG or RG. All ginsenosides except Rb1 showed higher systemic exposure after FRG administration than after RG administration, based on comparisons of ginsenoside Cmax and area under the concentration–time curve (AUC) between FRG and RG. CK, the main ginsenoside component produced during the fermentation process, had 69.23/74.53-fold higher Cmax/AUClast after administration of FRG than RG, and Rh2 had 20.27/18.47-fold higher Cmax/AUClast after administration of FRG than RG. In addition, CY and F2 were detected in FRG; however, all plasma concentrations of CY and F2, except in one subject, were below the lower limit of quantification in RG. There were no clinically significant findings with respect to clinical laboratory tests, blood pressures, or adverse events. Therefore, regular administration of FRG may exert better pharmacological effects than RG. Full article
Show Figures

Figure 1

19 pages, 2737 KiB  
Article
By-Product of the Red Ginseng Manufacturing Process as Potential Material for Use as Cosmetics: Chemical Profiling and In Vitro Antioxidant and Whitening Activities
by Hui-E Zhang, Meng-Yao Chu, Tao Jiang, Xin-Hong Song, Jian-Feng Hou, Li-Ye Cheng, Ye Feng, Chang-Bao Chen and En-Peng Wang
Molecules 2022, 27(23), 8202; https://doi.org/10.3390/molecules27238202 - 24 Nov 2022
Cited by 10 | Viewed by 3388
Abstract
Red ginseng (RG), which is obtained from heated Panax ginseng and is produced by steaming followed by drying, is a valuable herb in Asian countries. Steamed ginseng dew (SGD) is a by-product produced in processing red ginseng. In the present study, phytochemical profiling [...] Read more.
Red ginseng (RG), which is obtained from heated Panax ginseng and is produced by steaming followed by drying, is a valuable herb in Asian countries. Steamed ginseng dew (SGD) is a by-product produced in processing red ginseng. In the present study, phytochemical profiling of extracts of red ginseng and steamed ginseng dew was carried out using gas chromatography-mass spectrometry (GC-MS) and rapid resolution liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (RRLC-Q-TOF-MS) analysis. Additionally, antioxidant activities (DPPH, ·OH, and ABTS scavenging ability) and whitening activities (tyrosinase and elastase inhibitory activity) were analyzed. Phytochemical profiling revealed the presence of 66 and 28 compounds that were non-saponin components in chloroform extracts of red ginseng and steamed ginseng dew (RG-CE and SGD-CE), respectively. Meanwhile, there were 20 ginsenosides identified in n-butanol extracts of red ginseng and steamed ginseng dew (RG-NBE and SGD-NBE). By comparing the different polar extracts of red ginseng and steamed ginseng dew, it was found that the ethyl acetate extract of red ginseng (RG-EAE) had the best antioxidant capacity and whitening effect, the water extract of steamed ginseng dew (SGD-WE) had stronger antioxidant capacity, and the SGD-NBE and SGD-CE had a better whitening effect. This study shows that RG and SGD have tremendous potential to be used in the cosmetic industries. Full article
Show Figures

Graphical abstract

15 pages, 4366 KiB  
Article
Network Pharmacology of Ginseng (Part III): Antitumor Potential of a Fixed Combination of Red Ginseng and Red Sage as Determined by Transcriptomics
by Alexander Panossian, Sara Abdelfatah and Thomas Efferth
Pharmaceuticals 2022, 15(11), 1345; https://doi.org/10.3390/ph15111345 - 30 Oct 2022
Cited by 6 | Viewed by 3207
Abstract
Background: This study aimed to assess the effect of a fixed combination of Red Ginseng and Red Sage (RG–RS) on the gene expression of neuronal cells to evaluate the potential impacts on cellular functions and predict its relevance in the treatment of stress [...] Read more.
Background: This study aimed to assess the effect of a fixed combination of Red Ginseng and Red Sage (RG–RS) on the gene expression of neuronal cells to evaluate the potential impacts on cellular functions and predict its relevance in the treatment of stress and aging-related diseases and disorders. Methods: Gene expression profiling was conducted by transcriptome-wide mRNA microarray analyses of murine HT22 hippocampal cell culture after treatment with RG–RS preparation. Ingenuity pathway analysis (IPA) was performed with datasets of significantly upregulated or downregulated genes and the expected effects on the physiological and cellular function and the diseases were identified. Results: RG–RS deregulates 1028 genes associated with cancer and 139 with metastasis, suggesting a predicted decrease in tumorigenesis, the proliferation of tumor cells, tumor growth, metastasis, and an increase in apoptosis and autophagy by their effects on the various signaling and metabolic pathways, including the inhibition of Warburg’s aerobic glycolysis, estrogen-mediated S-phase entry signaling, osteoarthritis signaling, and the super-pathway of cholesterol biosynthesis. Conclusion: The results of this study provide evidence of the potential efficacy of the fixed combination of Red Ginseng (Panax ginseng C.A. Mey.) and Red Sage/Danshen (Salvia miltiorrhiza Bunge) in cancer. Further clinical and experimental studies are required to assess the efficacy and safety of RG–RS in preventing the progression of cancer, osteoarthritis, and other aging-related diseases. Full article
Show Figures

Figure 1

16 pages, 7894 KiB  
Article
Anticolon Cancer Effect of Korean Red Ginseng via Autophagy- and Apoptosis-Mediated Cell Death
by Kyoung Ah Kang, Cheng Wen Yao, Mei Jing Piao, Ao Xuan Zhen, Pincha Devage Sameera Madushan Fernando, Herath Mudiyanselage Udari Lakmini Herath, Seung Eun Song, Suk Ju Cho and Jin Won Hyun
Nutrients 2022, 14(17), 3558; https://doi.org/10.3390/nu14173558 - 29 Aug 2022
Cited by 10 | Viewed by 3212 | Correction
Abstract
Ginseng (Panax ginseng Meyer) has been used in East Asian traditional medicine for a long time. Korean red ginseng (KRG) is effective against several disorders, including cancer. The cytotoxic effects of KRG extract in terms of autophagy- and apoptosis-mediated cell death and [...] Read more.
Ginseng (Panax ginseng Meyer) has been used in East Asian traditional medicine for a long time. Korean red ginseng (KRG) is effective against several disorders, including cancer. The cytotoxic effects of KRG extract in terms of autophagy- and apoptosis-mediated cell death and its mechanisms were investigated using human colorectal cancer lines. KRG induced autophagy-mediated cell death with enhanced expression of Atg5, Beclin-1, and LC3, and formed characteristic vacuoles in HCT-116 and SNU-1033 cells. An autophagy inhibitor prevented cell death induced by KRG. KRG generated mitochondrial reactive oxygen species (ROS); antioxidant countered this effect and decreased autophagy. KRG caused apoptotic cell death by increasing apoptotic cells and sub-G1 cells, and by activating caspases. A caspase inhibitor suppressed cell death induced by KRG. KRG increased phospho-Bcl-2 expression, but decreased Bcl-2 expression. Moreover, interaction of Bcl-2 with Beclin-1 was attenuated by KRG. Ginsenoside Rg2 was the most effective ginsenoside responsible for KRG-induced autophagy- and apoptosis-mediated cell death. KRG induced autophagy- and apoptosis-mediated cell death via mitochondrial ROS generation, and thus its administration may inhibit colon carcinogenesis. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

18 pages, 2919 KiB  
Article
Changes in Chemical Compositions and Antioxidant Activities from Fresh to Fermented Red Mountain-Cultivated Ginseng
by Hee Yul Lee, Jin Hwan Lee, Eui-Cheol Shin, Du Yong Cho, Jea Gack Jung, Min Ju Kim, Jong Bin Jeong, Dawon Kang, Sang Soo Kang and Kye Man Cho
Molecules 2022, 27(14), 4550; https://doi.org/10.3390/molecules27144550 - 17 Jul 2022
Cited by 13 | Viewed by 2567
Abstract
This study investigated changes in nutrients (fatty acids, amino acids, and minerals), ginsenosides, and volatile flavors, and antioxidant activities during food processing of mountain-cultivated ginseng (MCG) with the cocktail lactic acid bacteria. Fatty acid content increased, but the free amino acid content decreased, [...] Read more.
This study investigated changes in nutrients (fatty acids, amino acids, and minerals), ginsenosides, and volatile flavors, and antioxidant activities during food processing of mountain-cultivated ginseng (MCG) with the cocktail lactic acid bacteria. Fatty acid content increased, but the free amino acid content decreased, and minerals were practically unaffected during processing. Total phenolic and flavonoid contents and maillard reaction products increased markedly according to processing stage. The total ginsenosides levels increased from 31.25 mg/g (DMCG) to 32.36 mg/g (red MCG, RMCG) and then decreased (27.27 mg/g, at fermented RMCG) during processing. Particularly, the contents of F2 (0.31 → 1.02 → 2.27 mg/g), Rg3 (0.36 → 0.77 → 1.93 mg/g), and compound K (0.5 → 1.68 → 4.13 mg/g) of ginsenosides and β-panasinsene (17.28 → 22.69 → 31.61%), biocycloelemene (0.11 → 0.84 → 0.92%), δ-cadinene (0.39 → 0.5 → 0.94%), and alloaromadendrene (1.64 → 1.39 → 2.6%) of volatile flavor compounds increased during processing, along with to the antioxidant effects (such as DPPH, ABTS, and hydroxyl radical scavenging activities, and FRAP). This study may provide several choices for the use of ginseng in functional foods and functional cosmetics. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Graphical abstract

14 pages, 4559 KiB  
Article
Korean Red Ginseng and Ginsenoside Rg3 Suppress Asian Sand Dust-Induced Epithelial–Mesenchymal Transition in Nasal Epithelial Cells
by Seung-Heon Shin, Mi-Kyung Ye, Dong-Won Lee, Mi-Hyun Chae and You-Jin Hwang
Molecules 2022, 27(9), 2642; https://doi.org/10.3390/molecules27092642 - 20 Apr 2022
Cited by 6 | Viewed by 2629
Abstract
Chronic rhinosinusitis (CRS) is characterized by chronic inflammation of the sinonasal mucosa with epithelial dedifferentiation toward the mesenchymal phenotype, known as the epithelial–mesenchymal transition (EMT). Asian sand dust (ASD) can induce nasal mucosal inflammation and cause the development of EMT. Korean red ginseng [...] Read more.
Chronic rhinosinusitis (CRS) is characterized by chronic inflammation of the sinonasal mucosa with epithelial dedifferentiation toward the mesenchymal phenotype, known as the epithelial–mesenchymal transition (EMT). Asian sand dust (ASD) can induce nasal mucosal inflammation and cause the development of EMT. Korean red ginseng (KRG) and ginsenoside Rg3 have been used as traditional herbal medicines to treat various diseases. The aim of this study was to investigate their effect on ASD-induced EMT in nasal epithelial cells. Primary nasal epithelial cells were incubated with ASD with or without KRG or Rg3, and the production of transforming growth factor-β1 (TGF-β1) and interleukin (IL)-8 was measured. EMT markers were determined by RT-PCR, Western blot analysis, and confocal microscopy, and transcription factor expression by Western blot analysis. The effect on cell migration was evaluated using the wound scratch assay. Results showed ASD-induced TGF-β1 production, downregulation of E-cadherin, and upregulation of fibronectin in nasal epithelial cells. KRG and Rg3 suppressed TGF-β1 production (31.7% to 43.1%), upregulated the expression of E-cadherin (26.4% to 88.3% in mRNA), and downregulated that of fibronectin (14.2% to 46.2% in mRNA and 52.3% to 70.2% in protein). In addition, they suppressed the ASD-induced phosphorylation of ERK, p38, and mTOR, as well as inhibiting the ASD-induced migration of nasal epithelial cells (25.2% to 41.5%). The results of this study demonstrate that KRG and Rg3 inhibit ASD-induced EMT by suppressing the activation of ERK, p38, and mTOR signaling pathways in nasal epithelial cells. Full article
Show Figures

Figure 1

15 pages, 2390 KiB  
Article
Saponins of Korean Red Ginseng May Protect Human Skin from Adipokine-Associated Inflammation and Pigmentation Resulting from Particulate Matter Exposure
by Ik Jun Moon, WooHyeong Kim, Su Yeon Kim, JeongHyeon Lee, Hanju Yoo, Seunghyun Bang, Youngsup Song and Sung Eun Chang
Nutrients 2022, 14(4), 845; https://doi.org/10.3390/nu14040845 - 17 Feb 2022
Cited by 8 | Viewed by 3832
Abstract
Background: Exposure to airborne particulate matter (PM) is an ever-increasing concern worldwide. Strategies to counter the detrimental effects that follow cutaneous exposure to PM, such as induction of pigmentation, inflammation, and alterations in adipokine profile, need to be investigated further. Korean red ginseng [...] Read more.
Background: Exposure to airborne particulate matter (PM) is an ever-increasing concern worldwide. Strategies to counter the detrimental effects that follow cutaneous exposure to PM, such as induction of pigmentation, inflammation, and alterations in adipokine profile, need to be investigated further. Korean red ginseng (KRG) extracts and individual ingredients have been demonstrated to play an effective role in suppression of ROS, inflammation, and resultant skin aging. In addition, recent investigations revealed that Rg3 and Rf saponins work as antimelanogenic agents. In this study, we investigated whether saponins of KRG can protect against or reverse the PM-induced detrimental effects. Methods: The biological effects of PM and saponins were evaluated both in vitro and ex vivo. Cell viability and intracellular ROS levels were determined in normal human epidermal melanocytes (NHMs), human epidermal keratinocytes (NHKs), and their cocultures. Experiments to demonstrate the protective properties of saponins against consequences of exposure to PM were performed. Melanin assay, quantitative real-time PCR, and Western blotting were carried out to determine the effects on melanogenesis and the implicated molecular signaling pathways. Results: Exposure to PM resulted in decreased keratinocyte viability, which was coupled with augmented oxidative stress. These changes were attenuated by treatment with saponins. PM exposure resulted in increased expression of leptin, which was reduced by saponins. Moreover, PM exposure led to increased melanin production in a coculture model, which was mitigated by treatment with saponins. Treatment with saponins resulted in a decrease in matrix metalloproteinase (MMP) levels after exposure to PM. Conclusion: Saponins of KRG can protect the skin from the harmful effects of PM exposure by reducing levels of ROS, leptin, inflammatory cytokines, and melanin. Full article
(This article belongs to the Special Issue Association of Nutrition, Obesity and Skin)
Show Figures

Figure 1

11 pages, 1200 KiB  
Article
Quality Distinguish of Red Ginseng from Different Origins by HPLC–ELSD/PDA Combined with HPSEC–MALLS–RID, Focus on the Sugar-Markers
by Qian Cheng, Shuhuan Peng, Fangyi Li, Pengdi Cui, Chunxia Zhao, Xiaohui Yan, Tongchuan Suo, Chunhua Wang, Yongzhi He and Zheng Li
Separations 2021, 8(11), 198; https://doi.org/10.3390/separations8110198 - 27 Oct 2021
Cited by 6 | Viewed by 3483
Abstract
Red ginseng (RG) has been extensively utilized in Asian countries due to its pharmacological effects. For the quality evaluation of RG, small molecules, such as ginsenosides, have been widely considered as candidates of its quality markers (Q-markers), and various analytical techniques have been [...] Read more.
Red ginseng (RG) has been extensively utilized in Asian countries due to its pharmacological effects. For the quality evaluation of RG, small molecules, such as ginsenosides, have been widely considered as candidates of its quality markers (Q-markers), and various analytical techniques have been developed in order to identify these compounds. However, despite the efforts to analyze the hydrophobic constituents, it is worth pointing out that about 60% of the mass of RG is made of carbohydrates, including mono-, oligo- and polysaccharides. Consequently, the quality differentiation and identification of RG from the perspective of sugar-markers should be focused. High performance liquid chromatography and evaporative light scattering detector (HPLC–ELSD) method for the determination of disaccharides in RG was established. Furthermore, high performance size exclusion chromatography–multi-angle laser light scattering–refractive index detector (HPSEC–MALLS–RID) for the determination of molecular weight and high performance liquid chromatography photodiode array (HPLC–PDA) for the determination of compositional monosaccharides in RG polysaccharides were also established. HPLC–ELSD/PDA combined with HPSEC–MALLS–RID could be used to determine the contents of disaccharides, molecular weights, and compositional monosaccharides of RG polysaccharides, which could be used for quality control, and this is a new view on the sugar marker to quality differentiation of various origins of RG. Full article
Show Figures

Figure 1

Back to TopTop