Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (88)

Search Parameters:
Keywords = recovering forest stand

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 9376 KB  
Article
Quercus pyrenaica Forests Under Contrasting Management Histories in Northern Portugal: Carbon Storage and Understory Biodiversity
by Eduardo Pousa, María Villa, Júlio Henrique Germano de Souza and Marina Castro
Land 2025, 14(10), 1953; https://doi.org/10.3390/land14101953 - 26 Sep 2025
Viewed by 336
Abstract
Old-growth forests are crucial for biodiversity conservation and climate change mitigation due to their high carbon storage, structural complexity, and resilience to environmental stressors. Yet, such ecosystems are rare in Europe, and their ecological functioning remains poorly understood. This study assesses the capacity [...] Read more.
Old-growth forests are crucial for biodiversity conservation and climate change mitigation due to their high carbon storage, structural complexity, and resilience to environmental stressors. Yet, such ecosystems are rare in Europe, and their ecological functioning remains poorly understood. This study assesses the capacity of Quercus pyrenaica forests in the Montesinho-Nogueira Natura 2000 site (Bragança, Portugal) to develop maturity attributes under different forest management histories. We compare an area with low human intervention for over 80 years (10.2 ha) to two areas harvested for traditional small-scale firewood and timber extraction around 30 years ago (11.4 ha and 2.73 ha). Dendrometric measurements, carbon storage, floristic inventories of understory vegetation, and regeneration surveys were conducted across 42 sub-plots during June–July 2024. Results show that older forests store significantly more carbon and support greater biodiversity, evenness and regeneration, while younger forests present higher values of species richness, including several rare taxa. Our findings suggest that under favorable conditions, secondary forests can recover substantial biomass and carbon stocks within a few decades, while mature stands continue to accumulate carbon and maintain complex structures. Differences in floristic composition between sites may also reflect distinct silvopastoral practices between patches, such as itinerant grazing through forest patches, which historically characterized the Montesinho landscape. These results highlight the value of preserving a mosaic of successional stages, as both mature and intermediate-phase forests, together with compatible human activities, provide complementary biodiversity benefits and contribute to the multifunctionality of Mediterranean agroforestry systems. Full article
Show Figures

Figure 1

18 pages, 3423 KB  
Article
Fire Effects on Lichen Biodiversity in Longleaf Pine Habitat
by Roger Rosentreter, Ann DeBolt and Brecken Robb
Forests 2025, 16(9), 1385; https://doi.org/10.3390/f16091385 - 28 Aug 2025
Viewed by 738
Abstract
Longleaf pine forests are economically important habitats that stabilize and enrich the soil and store carbon over long periods. When mixed with oaks, these forests provide an abundance of lichen habitats. The tree canopy lichens promote greater moisture capture and retention and encourage [...] Read more.
Longleaf pine forests are economically important habitats that stabilize and enrich the soil and store carbon over long periods. When mixed with oaks, these forests provide an abundance of lichen habitats. The tree canopy lichens promote greater moisture capture and retention and encourage canopy insects. Ground lichens limit some vascular plant germination and growth, promoting a more open and healthy pine community. There is a longstanding mutualistic relationship between longleaf pine habitat and lichens. Longleaf pine habitat has a long history of natural summer burning, which promotes a diverse understory and limits tree densities. Lichen diversity exceeds vascular plant diversity in many mature longleaf pine habitats, yet information on the impacts of prescribed fire on lichen species in these habitats is limited. We assessed lichen diversity and abundance before and after a prescribed ground fire in a longleaf pine/wiregrass habitat near Ocala, Florida. Pre-burn, we found greater lichen abundance and diversity on hardwoods, primarily oak species, than on pines. Post-burn, lichen abundance on hardwoods dropped overall by 28%. Lichen abundance on conifers dropped overall by 94%. Ground lichen species were basically eliminated, with a 99.5% loss. Our study provides insights into retaining lichen diversity after a prescribed burn. Hardwood trees, whether alive or standing dead, help retain lichen biodiversity after burning, whereas conifer trees do not support as many species. Landscapes may need to be actively managed by raking pine needle litter away from ground lichen beds, moistening the ground, or removing some lichen material before the burn and returning it to the site post-fire. Based on these results, we suggest retaining some oaks and conducting burns in a mosaic pattern that retains unburned areas. This will allow for lichens to recover between burns, significantly enhancing biodiversity and the ecological health of these longleaf pine communities. Full article
(This article belongs to the Special Issue The Role of Bryophytes and Lichens in Forest Ecosystem Dynamics)
Show Figures

Figure 1

19 pages, 1658 KB  
Article
Long-Term Effects of Forest Management on Boreal Forest Soil Organic Carbon
by Holly D. Deighton, F. Wayne Bell and Zoë Lindo
Forests 2025, 16(6), 902; https://doi.org/10.3390/f16060902 - 28 May 2025
Cited by 1 | Viewed by 848
Abstract
Boreal forests have historically been regarded as some of the largest terrestrial carbon (C) sinks. However, increased soil organic matter (SOM) decomposition due to forest harvesting and post-harvest silviculture (e.g., site preparation, planting, and managing for competing vegetation) may exacerbate the effects of [...] Read more.
Boreal forests have historically been regarded as some of the largest terrestrial carbon (C) sinks. However, increased soil organic matter (SOM) decomposition due to forest harvesting and post-harvest silviculture (e.g., site preparation, planting, and managing for competing vegetation) may exacerbate the effects of climate warming and shift boreal forests from being C sinks to C sources. We used an established stand-scale, fully replicated, experimental study to identify how two levels of forest management (harvesting = Harvest Only, and harvesting with post-harvest silviculture = Harvest Plus) influence SOC dynamics at three boreal forest sites varying in soil texture. Each site was surveyed for forest floor (litter and F/H horizons) and mineral soils pre-harvest (0) and 5, 14, and 20 years post-harvest. We predicted that sites harvested and left to revegetate naturally would have the lowest SOC stocks after 20 years, as sites that were planted and managed for competing vegetation would recover faster and contribute to a larger nutrient pool, and that the sand-dominated site would have the largest SOC losses following harvest due to the inherently lower ability of sand soils to chemically and/or physically protect SOC from decomposition following harvest. Over a 20-year period, both forest management treatments generally resulted in reduced total (litter, F/H, and mineral horizon) SOC stocks compared with the control: the Harvest Only treatment reduced overall SOC stocks by 15% at the silt-dominated site and 31% at the clay-dominated site but increased overall SOC stocks by 4% at the sand-dominated site, whereas the Harvest Plus treatment reduced overall SOC stocks by 32% at the sand- and silt-dominated sites and 5% at the clay-dominated site. This suggests that harvesting and leaving plots to revegetate naturally on sand-dominated sites and harvesting followed by post-harvest silviculture on clay-dominated sites may minimize total SOC losses at similar sites, though a full replicated field experiment is needed to test this hypothesis. Most treatment effects in this study were observed only in the second decade post-harvest (14 and 20 years post-harvest), highlighting the importance of long-term field experiments on the effects of forest harvesting and post-harvest silviculture. This research improves our understanding of the relationship between C dynamics, forest management, and soil texture, which is integral for developing sustainable management strategies that optimize C sequestration and contribute to the resilience of boreal forest ecosystems in the face of climate change. Full article
Show Figures

Figure 1

23 pages, 4375 KB  
Article
Leafing Out: Leaf Area Index as an Indicator for Mountain Forest Recovery Following Mixed-Severity Wildfire in Southwest Colorado
by Michael Remke, Katie Schneider and Julie Korb
Forests 2025, 16(6), 872; https://doi.org/10.3390/f16060872 - 22 May 2025
Cited by 1 | Viewed by 786
Abstract
Wildfire is a critical driver of ecological processes in western U.S. forests, but recent shifts in climate, land use, and fire suppression have altered forest structure and disturbance regimes. Understanding post-fire recovery is essential for land management, particularly across complex montane landscapes like [...] Read more.
Wildfire is a critical driver of ecological processes in western U.S. forests, but recent shifts in climate, land use, and fire suppression have altered forest structure and disturbance regimes. Understanding post-fire recovery is essential for land management, particularly across complex montane landscapes like the southern Rocky Mountains. We assessed forest recovery in montane conifer forests, ranging from ponderosa pine to spruce-fir, following a large mixed-severity fire using field-based forest stand data and remotely sensed Leaf Area Index (LAI) measurements. Our objectives were to determine whether LAI is a meaningful proxy for post-fire vegetative recovery and how recovery patterns vary by forest type, burn severity, and abiotic factors. Stand characteristics predicted crown burn severity inconsistently and did not predict soil burn severity. LAI correlated strongly with live overstory tree density and shrub cover (R2 = 0.70). Recovery trajectories varied by forest type, with lower-severity burns generally recovering four years post-fire, while high-severity burns showed delayed recovery. Regeneration patterns were strongly influenced by climate, with higher seedling densities occurring at wetter sites. Our findings highlight the utility of LAI as a proxy for vegetative recovery and underscore the importance of forest type, fire severity, and climatic factors when assessing post-fire resilience. Full article
Show Figures

Figure 1

20 pages, 10496 KB  
Article
Biotic Factors Affecting Elm Health in Ukraine
by Valentyna Meshkova, Olena Kuznetsova, Oleksandr Borysenko, Volodymyr Korsovetskyi and Tetiana Pyvovar
Forests 2024, 15(12), 2209; https://doi.org/10.3390/f15122209 - 15 Dec 2024
Cited by 1 | Viewed by 1267
Abstract
Elms (Ulmus spp.) are widely spread in the forest, shelter belts, and urban landscaping. This research aimed to reveal the trends of Ulmus sp. health in Ukraine under biotic damage. The tasks included: (i) analyzing the presence of Ulmus sp. in the [...] Read more.
Elms (Ulmus spp.) are widely spread in the forest, shelter belts, and urban landscaping. This research aimed to reveal the trends of Ulmus sp. health in Ukraine under biotic damage. The tasks included: (i) analyzing the presence of Ulmus sp. in the forests; (ii) studying the dynamics of Ulmus sp. health for 2001–2015 in the monitoring plots in the frame of the International Cooperative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP-Forests); (iii) assessing the prevalence of the dominant biotic factors affecting elm health and the probability of tree death or recovery. As a result of research, elms were found in 3.58% of the area in the stands with other main forest-forming species in the forests subordinated to the State Specialized Forest Enterprise «Forests of Ukraine». Four elm species are present in the forests of all regions of Ukraine. In the Forest zone, U. minor predominates, U. glabra is more common in the western part of the country, and U. pumila in the southern and eastern regions. In the ICP-Forests monitoring plots for 2001–2015, a trend of elm deterioration in 2007–2012 was found. The highest incidence of trees with disease symptoms was recorded for U. pumila. In the sample plots for 2023–2024, the health of three elm species tended to deteriorate. In 2024, mortality occurred among all elm species with symptoms of Dutch elm disease (DED) and among U. pumila trees with symptoms of wetwood. However, several trees have recovered. The results show the gaps in our knowledge that need to be filled, particularly in identifying resistant individuals and using their progeny to create resistant stands. Full article
(This article belongs to the Special Issue Forest Resistance to Complex Actions of Insects and Pathogens)
Show Figures

Figure 1

14 pages, 3846 KB  
Article
Changes in Soil Physicochemical Properties and Fungal Communities Following a Forest Fire in the Pine Forest of Uljin, Republic of Korea
by Seok Hui Lee, Su Ho Lee, Jun Won Kang and Yeong Dae Park
Forests 2024, 15(11), 1942; https://doi.org/10.3390/f15111942 - 4 Nov 2024
Cited by 3 | Viewed by 1449
Abstract
Soil samples from the rhizosphere of pine (Pinus densiflora) stands in the fire-disturbed Uljin forest were collected to analyze their physicochemical properties and fungal communities. In the burned area, soil pH decreased by 0.56, and organic matter content decreased by 0.32%p [...] Read more.
Soil samples from the rhizosphere of pine (Pinus densiflora) stands in the fire-disturbed Uljin forest were collected to analyze their physicochemical properties and fungal communities. In the burned area, soil pH decreased by 0.56, and organic matter content decreased by 0.32%p compared to the undisturbed area. Fungal community analysis revealed that all alpha diversity indices decreased in the burned area, but there were no differences according to fire severity. Soil pH, available phosphorus, and total nitrogen showed a positive correlation with the alpha diversity. Additionally, beta diversity analysis also indicated significant differences in the fungal communities between the burned area and the control sites (p value = 0.031). The changes in fungal communities were considered to be influenced by the decline in the order Atheliales, genus Russula, and genus Trechispora. A prediction analysis of the functional traits of fungi showed that the number of fungi involved in nutrient absorption and decomposition decreased in the burned area. It seems that the soil restoration of pine forests is progressing very slowly, as the soil fungi related to nutrient absorption by pine trees have not recovered even 18 months after the forest fire. Therefore, it is necessary to monitor continuous fungal communities in pine forest restoration after a forest fire to determine forest ecosystem restoration success and stabilization. Full article
(This article belongs to the Special Issue Soil Microbial Ecology in Forest Ecosystems)
Show Figures

Figure 1

21 pages, 5559 KB  
Article
Ecophysiology of Mediterranean Chestnut (Castanea sativa Mill.) Forests: Effects of Pruning Studied through an Advanced IoT System
by Maria Vincenza Chiriacò, Nafeesa Samad, Federico Magnani, Gilmo Vianello, Livia Vittori-Antisari, Ilaria Mazzoli, Roberto Ranieri and Riccardo Valentini
Forests 2024, 15(9), 1579; https://doi.org/10.3390/f15091579 - 9 Sep 2024
Cited by 1 | Viewed by 1665
Abstract
Chestnut (Castanea sativa Mill.) forests in the Mediterranean region are facing increasing abandonment due to a combination of factors, ranging from climate change to socioeconomic issues. The recovery of chestnut ecosystems and their preservation and valorization are key to ensuring the supply [...] Read more.
Chestnut (Castanea sativa Mill.) forests in the Mediterranean region are facing increasing abandonment due to a combination of factors, ranging from climate change to socioeconomic issues. The recovery of chestnut ecosystems and their preservation and valorization are key to ensuring the supply of the wide spectrum of ecosystem services they provide and to preventing detrimental environmental shifts. The study’s objective was to provide evidence on the effects of different management options on the ecophysiology of chestnut forests, with diverse pruning intensities (low, medium, and high intensity versus no pruning) tested in an abandoned chestnut stand in central Italy with the aim of recovering and rehabilitating it for fruit production. Innovative Internet of Things (IoT) ‘Tree Talker’ devices were installed on single trees to continuously monitor and measure ecophysiological (i.e., water transport, net primary productivity, foliage development) and microclimatic parameters. Results show a reduction in water use in trees subjected to medium- and high-intensity pruning treatments, along with a decrease in the carbon sequestration function. However, interestingly, the results highlight that trees regain their usual sap flow and carbon sink activity at the end of the first post-pruning growing season and fully realign during the following year, as also confirmed by the NDVI values. As such, this paper demonstrates the efficacy of recovering and managing abandoned chestnut forests, and the initial setback in carbon sequestration resulting from pruning is rapidly remedied with the advantage of reviving trees for fruit production. Additionally, the reduced water demand induced by pruning could represent a promising adaptation strategy to climate change, bolstering the resilience of chestnut trees to prolonged and intensified drought periods, which are projected to increase under future climate scenarios, particularly in the Mediterranean region. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

14 pages, 1350 KB  
Article
Pasture Recovery Period Affects Humic Substances and Oxidations of Organic Matter in Eastern Amazon
by Carlos Augusto Rocha de Moraes Rego, Juan López de Herrera, Paulo Sérgio Rabello de Oliveira, Luciano Cavalcante Muniz, Jean Sérgio Rosset, Eloisa Mattei, Lucas da Silveira, Marinez Carpiski Sampaio, Marcos Gervasio Pereira, Karolline Rosa Cutrim Silva and Ismênia Ribeiro de Oliveira
Agronomy 2024, 14(9), 1937; https://doi.org/10.3390/agronomy14091937 - 28 Aug 2024
Cited by 1 | Viewed by 1008
Abstract
Land management practices that overlook soil limitations and potential have led to varying degrees of degradation. This study evaluates the carbon content in chemical and oxidisable soil fractions across different pasture recovery periods, comparing them to secondary forests. The management practices assessed include [...] Read more.
Land management practices that overlook soil limitations and potential have led to varying degrees of degradation. This study evaluates the carbon content in chemical and oxidisable soil fractions across different pasture recovery periods, comparing them to secondary forests. The management practices assessed include the following: secondary forest (SF), perennial pasture (PP), perennial pasture recovered five years ago (P5), and perennial pasture recovered eight years ago (P8), all on Plinthosols. We analysed carbon levels in oxidisable fractions and humic substances at depths of 0–0.10 m, 0.10–0.20 m, 0.20–0.30 m, and 0.30–0.40 m. The SF and P8 areas showed the highest organic matter content within the humic fractions, compared to the PP and P5 areas. Additionally, the P8 area demonstrated an increase in the labile and moderately recalcitrant fractions of organic matter, standing out among the different fractions evaluated. The multivariate principal component analysis indicated that P8 has the greatest impact on soil quality, followed by FS, P5, and PP. The pasture recovery over the past eight years has significantly improved soil carbon accumulation, highlighting the benefits of land restoration. Full article
(This article belongs to the Special Issue Soil Health and Crop Management in Conservation Agriculture)
Show Figures

Figure 1

20 pages, 1502 KB  
Article
Using Multi-Source National Forest Inventory Data for the Prediction of Tree Lists of Individual Stands for Long-Term Simulation
by Jouni Siipilehto, Helena M. Henttonen, Matti Katila and Harri Mäkinen
Remote Sens. 2024, 16(14), 2513; https://doi.org/10.3390/rs16142513 - 9 Jul 2024
Viewed by 2103
Abstract
Forest resource maps and small area estimates have been produced by combining national forest inventory (NFI) field plot data, multispectral satellite images and numerical map data. We evaluated k-nearest neighbors (k-NN) method-based predictions of forest variables for pixels in predicting [...] Read more.
Forest resource maps and small area estimates have been produced by combining national forest inventory (NFI) field plot data, multispectral satellite images and numerical map data. We evaluated k-nearest neighbors (k-NN) method-based predictions of forest variables for pixels in predicting tree lists of individual stands, including tree diameters at breast height and tree heights and then calculated stem volumes and tree species proportions. We compared alternative parameters (k-NN) using k of either 1 or 5 according to preliminary plot-level study and applying either measured trees (1-NN_trees) or mean stand characteristics (k-NN_stand). In the 1-NN_trees method, a tree list was generated based on the measured trees of the NFI plots, whereas in the 1-NN_stand and 5-NN_stand methods, a Weibull-based diameter distribution was recovered from the stand characteristics of the same inventory plots. In both methods, tree lists were predicted for each 16 m × 16 m pixel included in the stand compartment. Both methods performed well and resulted in 8–14% differences in the total volume compared with the field inventory of the 27 stands used for the evaluation. Moreover, the main tree species was correctly predicted for 74% of cases. The RMSE in total volume ranged from 25% (5-NN_stand) to 31% (1-NN_stand), while the smallest RMSEs in volume by tree species were 61% for broadleaves and 65% for pine and spruce using the 5-NN_stand. When comparing input data for a long-term growth simulation, the choice of the method was less influential as the effect of the error in the initial stand characteristics decreased over time during the simulation period. After 30-year simulation of the inventoried stands, the respective RMSEs were 9.4% for total volume and 39%, 50% and 59% for tree species, respectively. The satellite-based data with NFI plots were useful for predicting tree lists for pixels of a stand. However, the accuracy for operational forest management was still questionable. For a larger area’s strategic information, the accuracy is considered adequate. Full article
(This article belongs to the Special Issue Remote Sensing-Assisted Forest Inventory Planning)
Show Figures

Figure 1

25 pages, 2517 KB  
Article
Modelling Diameter at Breast Height Distribution for Eight Commercial Species in Natural-Origin Mixed Forests of Ontario, Canada
by Baburam Rijal and Mahadev Sharma
Forests 2024, 15(6), 977; https://doi.org/10.3390/f15060977 - 2 Jun 2024
Cited by 4 | Viewed by 1931
Abstract
Diameter at breast height (DBH) is a unique attribute used to characterize forest growth and development for forest management planning and to understand forest ecology. Forest managers require an array of DBHs of forest stands, which can be reconstructed using selected probability distribution [...] Read more.
Diameter at breast height (DBH) is a unique attribute used to characterize forest growth and development for forest management planning and to understand forest ecology. Forest managers require an array of DBHs of forest stands, which can be reconstructed using selected probability distribution functions (PDFs). However, there is a lack of practices that fit PDFs of sub-dominating species grown in natural mixed forests. This study aimed to fit PDFs and develop predictive models for PDF parameters, so that the predicted distribution would represent dynamic forest structures and compositions in mixed forest stands. We fitted three of the simplest forms of PDFs, log-normal, gamma, and Weibull, for the DBH of eight tree species, namely balsam fir (Abies balsamea [L.] Mill.), eastern white pine (Pinus strobus L.), paper birch (Betula papyrifera Marshall), red maple (Acer rubrum L.), red pine (Pinus resinosa Aiton), sugar maple (Acer saccharum Marshall), trembling aspen (Populus tremuloides Michx), and white spruce (Picea glauca [Moench] Voss), all grown in natural-origin mixed forests in Ontario province, Canada. We estimated the parameters of the PDFs as a function of DBH mean and standard deviation for these species. Our results showed that log-normal fit the best among the three PDFs. We demonstrated that the predictive model could estimate the recovered parameters unbiasedly for all species, which can be used to reconstruct the DBH distributions of these tree species. In addition to prediction, the cross-validated R2 for the DBH mean ranged between 0.76 for red maple and 0.92 for red pine. However, the R2 for the regression of the standard deviation ranged between 0.00 for red pine and 0.69 for sugar maple, although it produced unbiased predictions and a small mean absolute bias. As these mean and standard deviations are regressed with dynamic covariates (such as stem density and stand basal area), in addition to climate and static geographic variables, the predicted DBH distribution can reflect change over time in response to management or any type of disturbance in the regime of the given geography. The predictive model-based DBH distributions can be applied to the design of appropriate silviculture systems for forest management planning. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

16 pages, 1922 KB  
Article
Carbon Sequestration Dynamics in Peri-Urban Forests: Comparing Secondary Succession and Mature Stands under Varied Forest Management Practices
by Cosmin Ion Braga, Stefan Petrea, Gheorghe Raul Radu, Alexandru Bogdan Cucu, Tibor Serban, Alexandru Zaharia and Stefan Leca
Land 2024, 13(4), 492; https://doi.org/10.3390/land13040492 - 10 Apr 2024
Cited by 5 | Viewed by 2331
Abstract
This study examines the impact of silvicultural and land-use management practices on carbon sequestration in peri-urban forest ecosystems, with a particular focus on human-induced carbon dynamics. The study area’s complex profile spans from a compact native forest to varying degrees of fragmentation. This [...] Read more.
This study examines the impact of silvicultural and land-use management practices on carbon sequestration in peri-urban forest ecosystems, with a particular focus on human-induced carbon dynamics. The study area’s complex profile spans from a compact native forest to varying degrees of fragmentation. This included areas undergoing secondary succession forest without silvicultural interventions (No-SI) alongside sites subjected to high-intensity (High-SI) and low-intensity silvicultural interventions (Low-SI). The research assessed carbon stocks and sequestration in different carbon pools (living biomass, dead organic matter and soil) using field data, allometric equations and laboratory analysis. Findings reveal a significant correlation between the intensity of anthropogenic interventions and variations in carbon stocks. The CASMOFOR model facilitated the reconstruction of carbon stock and carbon-stock change dynamics over four decades (1980–2022), showing disparities in carbon storage capabilities linked to the structural characteristics of the sites. The Low-SI site had the highest carbon stock in all carbon pools (378 tonnes C ha−1), which is more than double compared to High-SI (161 tonnes C ha−1) or No-SI sites (134 tonnes C ha−1). However, the secondary succession forest (No-SI) demonstrated the highest annual carbon stock change (4.4 tonnes C ha−1 year−1), two times higher than the Low-SI mature stand (2.2 tonnes C ha−1 year−1), emphasising the resilience of forest ecosystems to recover and sustain carbon sequestration capacities after harvesting if forest land use remains unchanged. The study underscores the significant importance of anthropogenic interventions on carbon dynamics, especially for living tree biomass, which has consequences in enhancing carbon sequestration and contributing to emission reduction targets. Full article
(This article belongs to the Special Issue Adaptive Sustainable Forest Management to Actual Societal Challenges)
Show Figures

Figure 1

11 pages, 1281 KB  
Article
Sawlog Recovery in Birch, Black Alder, and Aspen Stands of Hemiboreal Forests in Latvia
by Jānis Donis, Guntars Šņepsts, Pauls Zeltiņš, Jurģis Jansons, Pēteris Zālītis and Āris Jansons
Forests 2024, 15(2), 326; https://doi.org/10.3390/f15020326 - 8 Feb 2024
Cited by 3 | Viewed by 1436
Abstract
In any forest stand, the theoretically modelled output of sawlogs (the most valuable roundwood assortments) will differ from what is actually obtained. The aim of this study was to assess whether it is possible to characterise this difference by site properties or forest [...] Read more.
In any forest stand, the theoretically modelled output of sawlogs (the most valuable roundwood assortments) will differ from what is actually obtained. The aim of this study was to assess whether it is possible to characterise this difference by site properties or forest inventory parameters for birch, black alder, and aspen. We compared theoretically modelled sawlog recovery with actual recovery according to harvester data from final fellings. The difference between the theoretically modelled and actually recovered sawlog outcomes varied from −24.32 to −60.96 percentage points, with overestimations reaching up to three times for aspen. The differences in yield of sawlogs varied among soil types and increased with age and the average diameter of a tree. The sawlog recovery was underestimated up to the mean diameter at breast height of 16 cm and age of 20 years while being overestimated for larger and older trees. The results highlight the necessity to consider decreasing wood quality with increasing age to account for decay, such as stem rot, in assortment tables. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

15 pages, 3527 KB  
Article
Habitat Characteristics of Camellia quephongensis and Adaptation Mechanisms in Que Phong District, North-Central Vietnam
by Tuyen Thi Tran, Kazuya Takahashi, Hiroaki Nishikawa, Reiko Tanabe, Trang Thanh Thi Nguyen, Viet Ha Thi Nguyen, Thanh Mai Thi Nguyen and Hien Van Bui
Int. J. Plant Biol. 2023, 14(4), 959-973; https://doi.org/10.3390/ijpb14040070 - 23 Oct 2023
Cited by 1 | Viewed by 1839
Abstract
Camellia quephongensis Hakoda et Ninh is a yellow-flowered camellia that inhabits the Que Phong District, Nghe An Province, North-Central Vietnam, and its taxon includes approximately 50 species from South China and Vietnam. Researchers have primarily focused on the taxonomy and biochemistry of medicinal [...] Read more.
Camellia quephongensis Hakoda et Ninh is a yellow-flowered camellia that inhabits the Que Phong District, Nghe An Province, North-Central Vietnam, and its taxon includes approximately 50 species from South China and Vietnam. Researchers have primarily focused on the taxonomy and biochemistry of medicinal substances found in camellia flowers and on horticultural studies of their propagation. Consequently, habitat characteristics and adaptation mechanisms still need to be better understood. Thus, this study investigated the habitats of C. quephongensis in terms of landscape and stand composition, analyzed the morphological variabilities and age distribution patterns among different habitat types, and explored its adaptation mechanisms. The results revealed that this species preferentially inhabited forests on vulnerable slopes and stream banks, which were frequently disturbed by slope failure or flooding, while its multi-stemming traits were key factors in recovering from damage and persisting in such habitats. Relatively stable sites with fewer disturbances can be a source habitat, whereas frequently disturbed sites can be a sink habitat for the populations. Regular thinning of the shrub and herb layers in the plantation maintained a stand composition similar to that of natural stands; thus, succession control is recommended to conserve the naturally growing site of this species. The findings of this study will aid in the future conservation and restoration of growing areas. Full article
(This article belongs to the Section Plant Ecology and Biodiversity)
Show Figures

Figure 1

24 pages, 24682 KB  
Article
Seeing the Forest for the Trees: Mapping Cover and Counting Trees from Aerial Images of a Mangrove Forest Using Artificial Intelligence
by Daniel Schürholz, Gustavo Adolfo Castellanos-Galindo, Elisa Casella, Juan Carlos Mejía-Rentería and Arjun Chennu
Remote Sens. 2023, 15(13), 3334; https://doi.org/10.3390/rs15133334 - 29 Jun 2023
Cited by 14 | Viewed by 6451
Abstract
Mangrove forests provide valuable ecosystem services to coastal communities across tropical and subtropical regions. Current anthropogenic stressors threaten these ecosystems and urge researchers to create improved monitoring methods for better environmental management. Recent efforts that have focused on automatically quantifying the above-ground biomass [...] Read more.
Mangrove forests provide valuable ecosystem services to coastal communities across tropical and subtropical regions. Current anthropogenic stressors threaten these ecosystems and urge researchers to create improved monitoring methods for better environmental management. Recent efforts that have focused on automatically quantifying the above-ground biomass using image analysis have found some success on high resolution imagery of mangrove forests that have sparse vegetation. In this study, we focus on stands of mangrove forests with dense vegetation consisting of the endemic Pelliciera rhizophorae and the more widespread Rhizophora mangle mangrove species located in the remote Utría National Park in the Colombian Pacific coast. Our developed workflow used consumer-grade Unoccupied Aerial System (UAS) imagery of the mangrove forests, from which large orthophoto mosaics and digital surface models are built. We apply convolutional neural networks (CNNs) for instance segmentation to accurately delineate (33% instance average precision) individual tree canopies for the Pelliciera rhizophorae species. We also apply CNNs for semantic segmentation to accurately identify (97% precision and 87% recall) the area coverage of the Rhizophora mangle mangrove tree species as well as the area coverage of surrounding mud and water land-cover classes. We provide a novel algorithm for merging predicted instance segmentation tiles of trees to recover tree shapes and sizes in overlapping border regions of tiles. Using the automatically segmented ground areas we interpolate their height from the digital surface model to generate a digital elevation model, significantly reducing the effort for ground pixel selection. Finally, we calculate a canopy height model from the digital surface and elevation models and combine it with the inventory of Pelliciera rhizophorae trees to derive the height of each individual mangrove tree. The resulting inventory of a mangrove forest, with individual P. rhizophorae tree height information, as well as crown shape and size descriptions, enables the use of allometric equations to calculate important monitoring metrics, such as above-ground biomass and carbon stocks. Full article
(This article belongs to the Special Issue UAV Applications for Forest Management: Wood Volume, Biomass, Mapping)
Show Figures

Figure 1

17 pages, 2661 KB  
Article
Evaluation of Soil Quality in Five Ages of Chinese Fir Plantations in Subtropical China Based on a Structural Equation Model
by Xiaoyu Cao, Yongjun Mo, Wende Yan, Zelian Zhang and Yuanying Peng
Forests 2023, 14(6), 1217; https://doi.org/10.3390/f14061217 - 12 Jun 2023
Cited by 8 | Viewed by 2279
Abstract
Soil quality evaluation provides necessary and fundamental data and information for understanding the current situation of the soils and for promoting the sustainable use of land resources. In this study, soil quality was assessed by developing a structural equation model (SEM) in five [...] Read more.
Soil quality evaluation provides necessary and fundamental data and information for understanding the current situation of the soils and for promoting the sustainable use of land resources. In this study, soil quality was assessed by developing a structural equation model (SEM) in five aged Chinese fir plantations, located in the same soil type, with similar site conditions, in Subtropical China. A total of 150 soil samples were taken from the five aged stands of Chinese fir forests: 8-year-old young forests (stand I), 14-year-old middle-aged forests (stand II), 20-year-old near-mature forests (stand III), 26-year-old mature forests (stand VI), and 33-year-old over-mature forests (stand V). Fifteen soil indicators, including soil bulk density (BD), capillary porosity (CP), total capillary porosity (TCP), water holding capacity (WHC), soil organic matter (SOM), total nitrogen (TN), available nitrogen (AN), available phosphorus (AP), available potassium (AK), soil pH, soil acid phosphatase (ACP), invertase (INV), urease (URE), and catalase (CAT), were measured. The SEM was used to determine the weight of each soil indicator, and the soil quality index (SQI) was estimated for the Chinese fir plantations. Results showed that soil physical indicators, such as BD, CP, TCP, WHC, and chemical indicators, including SOM, TN, and AN, significantly degraded in stand II groups compared with the stand I groups, but were significantly recovered in the stand III groups. However, the enzyme activity of soil biological indicators had different patterns with changes in soil physical and chemical properties. The calculated SQI in the studied Chinese fir forests ranged from 0.4084 to 0.7298, which was significantly higher in the stand V and lower in the stand II (middle-aged stand) than in the other four aged stands (p < 0.05). The SEM weight analysis showed that the BD, SOM, and ACP were the most important indicators affecting the physical, chemical, and biological properties of the soils in Chinese fir forests in the study area. This study provided an innovative scientific approach for estimating the weight of SQI in forests and a theoretical basis and practical application for sustainable management of Chinese fir forest ecosystems. Full article
Show Figures

Figure 1

Back to TopTop