Pasture Recovery Period Affects Humic Substances and Oxidations of Organic Matter in Eastern Amazon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Evaluated Systems and Usage History
2.3. Collection of Samples and Evaluations Performed
2.4. Statistical Analysis
3. Results
3.1. Humic Substances
3.2. Oxidisable Fractions
3.3. Multivariate Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benchimol, S.A. Amazônia: A Guerra na Floresta, 2nd ed.; Edua.: Manaus, Brazil, 2011; 214p. [Google Scholar]
- Mesquita, B.A. Política de desenvolvimento e desigualdade regionais: O caráter seletivo e residual da intervenção governamental no Maranhão. Rev. Polít. Públicas 2007, 11, 27–50. [Google Scholar]
- Silva, C.A.A.C.; Oliveira, K.A.; Castro, M.P.P.; Oliveira, A.K.S.; Almeida, E.I.B.; Sousa, W.S. Analysis of the dynamics in the use of Maranhão land in the Legal Amazon. Rev. Verde 2019, 14, 443–452. [Google Scholar] [CrossRef]
- Dias-Filho, M.B. Recuperação de pastagens degradadas na Amazônia: Desafios, oportunidades e perspectivas. In Políticas Agroambientais e Sustentabilidade: Desafios, Oportunidades e Lições Aprendidas; Sambuichi, R.H.R., Ed.; IPEA: Brasília, Brazil, 2014; pp. 149–169. [Google Scholar]
- Reis, V.R.R.; Deon, D.S.; Muniz, L.C.; Silva, M.B.; Rego, C.A.R.M.; Garcia, U.S.; Cantanhêde, I.S.L.; Costa, J.B. Carbon stocks and soil organic matter quality under different of land uses in the maranhense amazon. J. Agric. Sci. 2018, 10, 329–337. [Google Scholar] [CrossRef]
- Celetano, D.; Rousseau, G.X.; Muniz, F.H.; Varga, I.V.D.; Martinz, C.; Carneiro, M.S.; Miranda, M.V.C.; Barros, M.N.R.; Freitas, L.; Narvaes, I.S.; et al. Towards zero deforestation and forest restoration in the Amazon region of Maranhão state, Brazil. Land Use Policy 2017, 68, 692–698. [Google Scholar] [CrossRef]
- Silva Júnior, C.H.L.; Celentano, D.; Rousseau, G.X.; De Moura, E.G.; Varga, I.V.D.; Martinez, C.; Martins, M.B. Amazon forest on the edge of collapse in the Maranhão State, Brazil. Land Use Policy 2020, 97, 104806. [Google Scholar] [CrossRef]
- INPE—National Institute for Space Research. Monitoramento da Cobertura Florestal da Amazônia por Satélites—Sistemas Prodes, Deter, Degrad e Queimadas; INPE: São José do Campos, Brazil, 2020; [Updated 2020 July 8]; Available online: http://terrabrasilis.dpi.inpe.br/app/dashboard/deforestation/biomes/legal_amazon/rates (accessed on 23 February 2023).
- Rosset, J.S.; Lana, M.C.; Pereira, M.G.; Schiavo, J.A.; Rampim, L.; Sarto, M.V.M. Frações químicas e oxidáveis da matéria orgânica do solo sob diferentes sistemas de manejo, em Latossolo Vermelho. Pesq. Agropec. Bras. 2016, 51, 1529–1538. [Google Scholar] [CrossRef]
- Piano, J.T.; Moraes Rego, C.A.R.; Vengen, A.P.; Egewarth, J.F.; Egewarth, V.A.; Mattei, E.; Oliveira, P.S.R.; López de Herrera, J. Soil organic matter fractions and carbon management index under integrated crop-livestock system. Biosci. J. 2020, 36, 743–760. [Google Scholar] [CrossRef]
- Morais, D.H.O.; Silva, C.A.; Rosset, J.S.; Farias, P.G.S.; Souza, C.B.S.; Barros Ozório, J.M.; Castilho, S.C.P.; Marra, L.M. Stock and indices of carbon management under different soil use systems. Rev. Bras. Ciênc. Ambient. 2021, 56, 286–295. [Google Scholar] [CrossRef]
- Swift, R.S. Organic matter characterization. In Methods of Soil Analysis, 3rd ed.; Chemical Methods; Book Series, 5; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M., Madison, E., Eds.; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, 1996; pp. 1011–1020. [Google Scholar]
- Chan, K.Y.; Bowman, A.; Oates, A. Oxidizible organic carbon fractions and soil quality changes in an paleustalf under different pasture leys. Soil Sci. 2001, 166, 61–67. [Google Scholar] [CrossRef]
- Rosa, D.M.; Nóbrega, L.H.P.; Mauli, M.M.; Lima, G.P.; Pacheco, F.P. Substâncias húmicas do solo cultivado com plantas de cobertura em rotação com milho e soja. Rev. Ciênc. Agron. 2017, 48, 221–230. [Google Scholar] [CrossRef]
- Mendonça, E.S.; Matos, E.S. Matéria Orgânica do Solo: Métodos de Análises, 2nd ed.; UFV-Gefert: Viçosa, Brasil, 2017; 221p. [Google Scholar]
- Guareschi, R.F.; Pereira, M.G.; Perin, A. Oxidizable carbon fractions in Red Latosol under different management systems. Rev. Ciênc. Agron. 2013, 44, 242–250. [Google Scholar] [CrossRef]
- Araújo, E.P. Atlas do Maranhão. In Secretaria de Estado do Planejamento e Orçamento, Núcleo Geoambiental da UEMA; SEPLAN: São Luís, Brazil, 2013; 90p. [Google Scholar]
- Alvares, C.A.; Stape, J.J.; Sentelhas, P.C.; Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2014, 22, 711–728. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, update 2015. In International Soil Classification Systems for Naming Soils and Creating Legends for Soil Maps; (Update 2015); World Soil Resources Reports, 106; FAO: Rome, Italy, 2015; 192p. [Google Scholar]
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Araújo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos, 5th ed.; UFV-Gefert: Viçosa, Brasil, 2018; 356p. [Google Scholar]
- Rios, L. Estudos de Geografia do Maranhão; Gráphis Editora: São Luís, Brazil, 2001; 50p. [Google Scholar]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análises de Solo, 3rd ed.; UFV-Gefert: Viçosa, Brasil, 2017; 573p. [Google Scholar]
- Yeomans, J.C.; Bremner, J.M. A rapid and precise metlhod for routine determination of carbon in soil. Commun. Soil Sci. Plant Anal. 1988, 19, 1467–1476. [Google Scholar] [CrossRef]
- Benites, V.M.; Madari, B.; Machado, P.L.O.A. Extração e Fracionamento Quantitativo de Substâncias Húmicas do Solo: Um Procedimento Simplificado de Baixo Custo; Comunicado Técnico, 16; Embrapa Solos: Rio de Janeiro, Brazil, 2003; 7p. [Google Scholar]
- R Core Team. R: A language and environment for statistical computing. In R Foundation for Statistical Computing; R Core Team: Vienna, Austria, 2021. [Google Scholar]
- Elias, F.; Ferreira, J.; Lennox, G.D.; Berenguer, E.; Ferreira, S.; Schwartz, G.; Melo, L.O.; Reis Júnior, D.N.; Nascimento, R.O.; Ferreira, F.N.; et al. Assessing the growth and climate sensitivity of secondary forests in highly deforested Amazonian landscapes. Ecology 2020, 101, e02654. [Google Scholar] [CrossRef] [PubMed]
- Bastos, A.S.; Sanquetta, C.; Maniesi, V.; Sanquetta, M.N.I.; Corte, A.P.D. Estoques de carbono e propriedades físicas de plintossolos em diferentes usos do solo na Amazônia. Ciênc. Florest. 2021, 31, 749–765. [Google Scholar] [CrossRef]
- Santos, C.C.; Ferraz Junior, A.S.L.; Sá, S.O.; Muñoz Gutiérrez, J.A.; Braun, H.; Sarrazin, M.; Brossard, M.; Desjardins, T. Soil carbon stock and Plinthosol fertility in smallholder land-use systems in the eastern Amazon, Brazil. Carbon Manag. 2018, 9, 655–664. [Google Scholar] [CrossRef]
- Sanquetta, C.R.; Alexis, S.B.; Sanquetta, M.N.I.; Rosario, P.H.C.K.; Corte, A.P.D.; Piva, L.R.O. Biomass and carbon stocks of cultivated pasture in northern Rondonia. BIOFIX Sci. J. 2020, 5, 102–107. [Google Scholar] [CrossRef]
- MCTI—Ministério da Ciência, Tecnologia e Inovação. Relatório de Referência—Setor uso da Terra, Mudança do Uso da terra e Florestas. Terceiro Inventário Brasileiro de Emissões e Remoções Antrópicas de Gases de Efeito Estufa. Brasília. 2015. Available online: https://repositorio.mcti.gov.br/handle/mctic/5279 (accessed on 23 February 2023).
- Bayer, C.; Amado, T.J.C.; Tornquist, C.G.; Cerri, C.E.C.; Dieckow, J.; Zanatta, J.A.; Nicoloso, R.D.S. Estabilização do carbono no solo e mitigação das emissões de gases de efeito estufa na agricultura conservacionista. In Viçosa, Minas Gerais, Sociedade Brasileira de Ciência do Solo; Tópicos em Ciência do Solo; Klauberg Filho, O., Mafra, A.L., Gatiboni, L.C., Eds.; Sociedade Brasileira de Ciência do Solo—SBCS: Viçosa, Brasil, 2011; pp. 55–117. [Google Scholar]
- Oliveira, J.M.; Madari, B.E.; Carvalho, M.T.M.; Assis, P.C.R.; Silveira, A.L.R.; Lima, M.L.L.; Wruck, F.J.; Medeiros, J.C.; Machado, P.L.O.A. Integrated farming systems for improving soil carbon balance in the southern Amazon of Brazil. Reg. Environ. Chang. 2017, 18, 105–116. [Google Scholar] [CrossRef]
- Sarto, M.V.M.; Borges, W.L.B.; Bassegio, D.; Pires, C.A.B.; Rice, C.W.; Rosolem, C.A. Soil microbial community, enzyme activity, C and N stocks and soil aggregation as affected by land use and soil depth in a tropical climate region of Brazil. Arch. Microbiol. 2020, 202, 2809–2824. [Google Scholar] [CrossRef] [PubMed]
- Salton, J.C.; Tomazi, M. Sistema Radicular de Plantas e Qualidade do Solo; Comunicado técnico 198; Embrapa Agropecuária Oeste: Dourados, Brazil, 2014; 6p. [Google Scholar]
- Oliveira, T.P.; Ensinas, S.C.; Barbosa, G.F.; Nanzer, M.C.; Barreta, P.G.V.; Silva, M.F.G.; Queiroz, G.R.S.S.; do Prado, E.A.F. Carbono lábil e frações oxidáveis de carbono em solos cultivados sob diferentes formas de uso e manejo. Rev. Bras. Agropecuária Sustentável 2018, 8, 49–56. [Google Scholar] [CrossRef]
- Ebeling, A.G.; Anjos, L.H.C.; Pereira, M.G.; Valladares, G.S.; Pérez, D.V. Substâncias húmicas e suas relações com o grau de subsidência em Organossolos de diferentes ambientes de formação no Brasil. Rev. Ciênc. Agron. 2013, 44, 225–233. [Google Scholar] [CrossRef]
- Cunha, T.F.; Canellas, L.P.; Santas, G.A.; Ribeiro, L.P. Fracionamento da matéria orgânica humificada de solos brasileiros. In Humosfera: Tratado Preliminar Sobre a Química das Substâncias Húmicas; Canellas, L.P., Santos, G.A., de Janeiro, R., Eds.; UENF: Rio de Janeiro, Brazil, 2005; 54–80p. [Google Scholar]
- Ebeling, A.G.; Anjos, L.H.C.; Pereira, M.G.; Pinheiro, É.F.M.; Valladares, G.S. Substâncias húmicas e relação com atributos edáficos. Bragantia 2011, 70, 157–165. [Google Scholar] [CrossRef]
- Li, C.; Gao, S.; Gao, Q.; Wang, L.; Zhang, J. Characterization of bulk soil MA and its alkaline-soluble and alkaline-insoluble fractions. Rev. Bras. Cienc. Solo 2015, 39, 120–126. [Google Scholar] [CrossRef]
- Valladares, G.S.; Batistella, M.; Pereira, M.G. Changes promoted by management in Oxisol, Rondônia, Brazilian Amazon. Bragantia 2011, 70, 631–637. [Google Scholar] [CrossRef]
- Pereira, M.A.; Costa, F.P.; Montagner, D.B.; Euclides, V.P.B.; Araújo, A.R.; Barbosa, R.A.; Souza, J.A.B.A. Pastagens: Condicionantes Econômicos e Seus Efeitos nas Decisões de Formação e Manejo; Comunicado técnico, 150; Embrapa Gado de Corte: Campo Grande, Brazil, 2020; 24p. [Google Scholar]
- Araújo, E.A.; Ker, J.C.; Mendonça, E.S.; Silva, I.R.; Oliveira, E.K. Impact of forest-pasture conversion on stocks and dynamics of soil carbon and humic substances in the Amazon. Acta Amaz. 2011, 41, 103–114. [Google Scholar] [CrossRef]
- Xu, H.; Qu, Q.; Chen, Y.; Liu, G.; Xue, S. Responses of soil enzyme activity and soil organic carbon stability over time after cropland abandonment in different vegetation zones of the Loess Plateau of China. Catena 2021, 196, 104812. [Google Scholar] [CrossRef]
- Xu, H.; Qu, Q.; Lu, B.; Zhang, Y.; Liu, G.; Xue, S. Variation in soil organic carbon stability and driving factors after vegetation restoration in different vegetation zones on the Loess Plateau, China. Soil Tillage Res. 2020, 204, 104727. [Google Scholar] [CrossRef]
- Luo, Y.; Li, Y.; Leng, Z.; Rao, J.; Huang, D.; Yu, P. Dynamics of soil organic carbon fractions in soil aggregates of mollisols under different land-uses in northeast China. Fresenius Environ. Bull. 2021, 30, 4544–4552. [Google Scholar]
- Song, Y.; Zhai, J.; Zhang, J.; Qiao, L.; Wang, G.; Ma, L.; Xue, S. Forest management practices of Pinus tabulaeformis plantations alter soil organic carbon stability by adjusting microbial characteristics on the Loess Plateau of China. Sci. Total Env. 2021, 766, 144209. [Google Scholar] [CrossRef] [PubMed]
Areas | Layer (m) | pH | OM | P | K | Ca | Mg | Al | H + Al |
---|---|---|---|---|---|---|---|---|---|
CaCl2 | g kg−3 | mg dm−3 | -----------------cmolc dm−3----------------- | ||||||
SF | 0.0–0.2 | 4.49 | 15.72 | 1.78 | 0.15 | 1.61 | 1.73 | 0.26 | 2.67 |
0.2–0.4 | 4.18 | 7.59 | 1.74 | 0.14 | 0.97 | 2.21 | 0.91 | 3.65 | |
PP | 0.0–0.2 | 4.58 | 10.14 | 1.56 | 0.28 | 2.36 | 2.28 | 0.16 | 2.51 |
0.2–0.4 | 4.25 | 6.85 | 1.37 | 0.29 | 2.42 | 3.45 | 1.37 | 4.97 | |
P5 | 0.0–0.2 | 4.33 | 12.43 | 1.36 | 0.14 | 0.58 | 1.24 | 0.28 | 2.84 |
0.2–0.4 | 4.15 | 5.04 | 0.92 | 0.10 | 0.38 | 1.33 | 0.62 | 3.09 | |
P8 | 0.0–0.2 | 4.56 | 12.43 | 1.10 | 0.20 | 1.67 | 3.16 | 0.23 | 3.60 |
0.2–0.4 | 4.38 | 6.05 | 0.95 | 0.23 | 1.25 | 4.22 | 1.04 | 5.96 | |
Areas | Layer (m) | Sand | Silt | Clay | |||||
-------------------------g kg−1------------------------ | |||||||||
SF | 0.0–0.2 | 746.7 | 135.3 | 118.1 | |||||
0.2–0.4 | 707.2 | 124.3 | 168.6 | ||||||
PP | 0.0–0.2 | 579.3 | 343.0 | 77.8 | |||||
0.2–0.4 | 616.1 | 260.4 | 123.7 | ||||||
P5 | 0.0–0.2 | 745.5 | 103.5 | 150.5 | |||||
0.2–0.4 | 704.5 | 169.5 | 125.5 | ||||||
P8 | 0.0–0.2 | 741.9 | 120.8 | 137.3 | |||||
0.2–0.4 | 723.1 | 97.3 | 179.7 |
Areas | Area History |
---|---|
Secondary forest (SF) | The area in question represents the transition between the Maranhão Amazon forest and the Babassu forest, characterised by a predominance of secondary vegetation. Classified as an Open Ombrophylous forest, it stands out for the prevalent presence of the babassu palm (Attalea speciosa Mart.) in the Cocais Woods [17]. Apart from the babassu palm, there is a diverse array of vegetation, including Açaí palms (Euterpe oleracea Mart.), Bacaba (Oenocarpus spp.), Andiroba (Carapa spp.), Jatobá (Hymenaea spp.), and Embaúba (Cecropia spp.) [21]. This region serves as a reference for the natural soil conditions due to its preservation history, with an average age of over 50 years. |
Perennial pasture (PP) | A pasture area initially planted with Jaraguá grass (Hyparrhenia rufa (Ness) Stapf) around 1970 remained until 1999. Subsequently, the pasture was renewed without soil correction or fertilisation, replaced by Brachiaria brizantha cv. Marandu through clearing, burning of plant residues, and broadcast seeding. This pasture is utilised for continuous grazing of beef cattle in an extensive system at a stocking rate of approximately 0.7 animal units per hectare per year. Periodic mechanised mowing is conducted to control natural regeneration. |
Perennial pasture recovered five years ago (P5) | In a crop–livestock integration system (ILP), the process involved vegetation removal using a loader machine and harrowing across the entire area. Subsequently, mechanised sowing took place, combining corn DKB 175 with Brachiaria brizantha cv. Marandu. During planting, forage seeds were mixed with fertiliser, including 200 kg ha−1 of formulated 08-20-20 + Zn base fertiliser and a top dressing of 100 kg ha−1 of urea. The resulting pasture is utilised for rotational grazing of beef cattle, managing a stocking rate of 1.0 animal unit per hectare per year. |
Perennial pasture recovered eight years ago (P8) | An area initially managed similarly to PP underwent recovery in 2012 within an ILP system. The process involved vegetation removal using a loader machine and harrowing across the entire area. Mechanised sowing followed, combining corn DKB 175 with Brachiaria brizantha cv. Marandu. Forage seeds were mixed with fertiliser during planting, with a fertilisation regimen of 200 kg ha−1 of formulated 08-20-20 + Zn base fertiliser and a top dressing of 100 kg ha−1 of urea. The resulting pasture is utilised for rotational grazing of beef cattle, maintaining a stocking rate of 1.0 animal unit per hectare per year. |
Areas | Layers (m) | |||
---|---|---|---|---|
0.00–0.10 | 0.10–0.20 | 0.20–0.30 | 0.30–0.40 | |
SF | 1.33 ± 0.06 ns | 1.41 ± 0.03 ns | 1.43 ± 0.02 ns | 1.48 ± 0.01 ns |
PP | 1.42 ± 0.03 | 1.43 ± 0.02 | 1.43 ± 0.04 | 1.45 ± 0.03 |
P5 | 1.35 ± 0.03 | 1.48 ± 0.02 | 1.43 ± 0.01 | 1.43 ± 0.01 |
P8 | 1.37 ± 0.03 | 1.43 ± 0.02 | 1.43 ± 0.02 | 1.44 ± 0.03 |
Areas | TOC | FA | HA | HUM | AE | HA/FA | AE/HUM |
---|---|---|---|---|---|---|---|
------------------------------g kg−1------------------------------ | |||||||
0.00–0.10 m | |||||||
SF | 9.65 a | 1.04 a | 1.21 a | 7.32 b | 2.25 a | 1.15 b | 0.31 a |
PP | 7.27 b | 0.52 c | 0.66 b | 5.22 c | 1.18 d | 1.28 b | 0.23 b |
P5 | 7.66 b | 0.55 c | 0.98 b | 5.37 c | 1.53 c | 1.88 a | 0.29 a |
P8 | 9.86 a | 0.76 b | 1.08 a | 9.13 a | 1.84 b | 1.42 ab | 0.20 b |
0.10–0.20 m | |||||||
SF | 4.31 c | 0.44 b | 0.36 b | 4.02 b | 0.79 b | 0.81 ab | 0.21 ab |
PP | 5.38 a | 0.35 b | 0.26 b | 4.24 b | 0.61 b | 0.76 b | 0.14 c |
P5 | 4.68 b | 0.52 b | 0.54 a | 4.06 b | 1.06 a | 1.13 a | 0.26 a |
P8 | 5.63 a | 0.72 a | 0.35 b | 5.24 a | 1.07 a | 0.51 b | 0.20 b |
0.20–0.30 m | |||||||
SF | 3.75 c | 0.43 b | 0.26 a | 3.74 a | 0.69 b | 0.61 b | 0.19 b |
PP | 4.84 a | 0.26 d | 0.18 b | 3.85 a | 0.43 d | 0.67 ab | 0.11 c |
P5 | 4.05 c | 0.34 c | 0.27 a | 3.87 a | 0.61 c | 0.81 a | 0.16 b |
P8 | 4.49 b | 0.71 a | 0.26 a | 3.50 a | 0.97 a | 0.37 c | 0.28 a |
0.30–0.40 m | |||||||
SF | 3.79 b | 0.34 b | 0.17 a | 3.47 a | 0.52 b | 0.51 b | 0.15 c |
PP | 5.15 a | 0.26 c | 0.17 a | 3.07 ab | 0.43 c | 0.67 a | 0.14 c |
P5 | 4.06 b | 0.34 b | 0.17 a | 3.24 c | 0.51 b | 0.51 b | 0.19 b |
P8 | 4.81 a | 0.94 a | 0.17 a | 3.15 b | 1.11 a | 0.19 d | 0.36 a |
Areas | F1 | F2 | F3 | F4 | F1/F4 | NLC | LC/TOC |
---|---|---|---|---|---|---|---|
------------------------g kg−1------------------------- | g kg−1 | % | |||||
0.00–0.10 m | |||||||
SF | 3.24 b | 0.76 a | 1.35 b | 4.30 a | 0.76 b | 6.41 a | 33.61 b |
PP | 2.01 d | 0.31 b | 1.16 ab | 3.79 a | 0.54 c | 5.26 b | 27.71 d |
P5 | 2.31 c | 0.75 a | 0.94 c | 3.66 a | 0.63 bc | 5.35 b | 30.18 c |
P8 | 3.63 a | 0.59 a | 1.78 a | 3.86 a | 0.96 a | 6.23 a | 36.89 a |
0.10–0.20 m | |||||||
SF | 1.27 b | 0.76 a | 0.97 a | 1.31 c | 0.99 b | 3.04 b | 29.55 bc |
PP | 1.41 b | 0.47 a | 0.51 b | 3.00 a | 0.48 c | 3.97 a | 26.16 c |
P5 | 1.97 a | 0.55 a | 0.63 b | 1.53 c | 1.33 a | 2.71 b | 42.18 a |
P8 | 2.01 a | 0.51 a | 0.57 b | 2.54 b | 0.80 b | 3.62 a | 35.80 b |
0.20–0.30 m | |||||||
SF | 1.02 c | 0.67 ab | 0.56 b | 1.50 b | 0.70 b | 2.72 b | 27.37 c |
PP | 1.38 b | 0.81 a | 0.71 ab | 1.94 a | 0.76 b | 3.46 a | 28.61 bc |
P5 | 1.40 b | 0.62 ab | 0.48 b | 1.55 ab | 0.91 b | 2.65 b | 34.73 ab |
P8 | 1.82 a | 0.36 b | 0.94 a | 1.38 b | 1.36 a | 2.68 b | 40.46 a |
0.30–0.40 m | |||||||
SF | 1.00 c | 0.53 ab | 0.42 bc | 1.75 b | 0.73 b | 2.79 b | 27.13 b |
PP | 1.43 b | 0.31 b | 0.30 c | 3.10 a | 0.46 b | 3.71 b | 27.88 b |
P5 | 1.25 bc | 0.58 ab | 0.68 ab | 1.55 b | 0.85 ab | 2.81 b | 30.82 ab |
P8 | 1.80 a | 0.64 a | 0.93 a | 1.58 b | 1.18 a | 3.02 a | 37.55 a |
Variance Component | Principal Component | |
---|---|---|
1 | 2 | |
Eigenvalues | 4.706 | 3.841 |
Proportion (%) | 52.285 | 42.682 |
Cumulative proportion (%) | 52.285 | 94.966 |
Variables | ||
TOC | 0.718 | 0.695 |
F1 | 0.931 | 0.120 |
F2 | 0.005 | −0.924 |
F3 | 0.990 | 0.103 |
F4 | −0.379 | 0.919 |
CNL | 0.048 | 0.931 |
FA | 0.996 | −0.059 |
HA | 0.488 | −0.871 |
HUM | 0.984 | 0.080 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Moraes Rego, C.A.R.; López de Herrera, J.; Oliveira, P.S.R.d.; Muniz, L.C.; Rosset, J.S.; Mattei, E.; Silveira, L.d.; Sampaio, M.C.; Pereira, M.G.; Silva, K.R.C.; et al. Pasture Recovery Period Affects Humic Substances and Oxidations of Organic Matter in Eastern Amazon. Agronomy 2024, 14, 1937. https://doi.org/10.3390/agronomy14091937
de Moraes Rego CAR, López de Herrera J, Oliveira PSRd, Muniz LC, Rosset JS, Mattei E, Silveira Ld, Sampaio MC, Pereira MG, Silva KRC, et al. Pasture Recovery Period Affects Humic Substances and Oxidations of Organic Matter in Eastern Amazon. Agronomy. 2024; 14(9):1937. https://doi.org/10.3390/agronomy14091937
Chicago/Turabian Stylede Moraes Rego, Carlos Augusto Rocha, Juan López de Herrera, Paulo Sérgio Rabello de Oliveira, Luciano Cavalcante Muniz, Jean Sérgio Rosset, Eloisa Mattei, Lucas da Silveira, Marinez Carpiski Sampaio, Marcos Gervasio Pereira, Karolline Rosa Cutrim Silva, and et al. 2024. "Pasture Recovery Period Affects Humic Substances and Oxidations of Organic Matter in Eastern Amazon" Agronomy 14, no. 9: 1937. https://doi.org/10.3390/agronomy14091937
APA Stylede Moraes Rego, C. A. R., López de Herrera, J., Oliveira, P. S. R. d., Muniz, L. C., Rosset, J. S., Mattei, E., Silveira, L. d., Sampaio, M. C., Pereira, M. G., Silva, K. R. C., & de Oliveira, I. R. (2024). Pasture Recovery Period Affects Humic Substances and Oxidations of Organic Matter in Eastern Amazon. Agronomy, 14(9), 1937. https://doi.org/10.3390/agronomy14091937