Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = reconfigurable carrier frequency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 127269 KB  
Article
A Novel 28-GHz Meta-Window for Millimeter-Wave Indoor Coverage
by Chun Yang, Chuanchuan Yang, Cheng Zhang and Hongbin Li
Electronics 2025, 14(9), 1893; https://doi.org/10.3390/electronics14091893 - 7 May 2025
Viewed by 1394
Abstract
Millimeter-wave signals experience substantial path loss when penetrating common building materials, hindering seamless indoor coverage from outdoor networks. To address this limitation, we present the 28-GHz “Meta-Window”, a mass-producible, visible transparent device designed to enhance millimeter-wave signal focusing. Fabricated via metal sputtering and [...] Read more.
Millimeter-wave signals experience substantial path loss when penetrating common building materials, hindering seamless indoor coverage from outdoor networks. To address this limitation, we present the 28-GHz “Meta-Window”, a mass-producible, visible transparent device designed to enhance millimeter-wave signal focusing. Fabricated via metal sputtering and etching on a standard soda-lime glass substrate, the meta-window incorporates subwavelength metallic structures arranged in a rotating pattern based on the Pancharatnam–Berry phase principle, enabling 0–360° phase control within the 25–32 GHz frequency band. A 210 mm × 210 mm prototype operating at 28 GHz was constructed using a 69 × 69 array of metasurface unit cells, leveraging planar electromagnetic lens principles. Experimental results demonstrate that the meta-window achieves greater than 20 dB signal focusing gain between 26 and 30 GHz, consistent with full-wave electromagnetic simulations, while maintaining up to 74.93% visible transmittance. This dual transparency—for both visible light and millimeter-wave frequencies—was further validated by a communication prototype system exhibiting a greater than 20 dB signal-to-noise ratio improvement and successful demodulation of a 64-QAM single-carrier signal (1 GHz bandwidth, 28 GHz) with an error vector magnitude of 4.11%. Moreover, cascading the meta-window with a reconfigurable reflecting metasurface antenna array facilitates large-angle beam steering; stable demodulation (error vector magnitude within 6.32%) was achieved within a ±40° range using the same signal parameters. Compared to conventional transmissive metasurfaces, this approach leverages established glass manufacturing techniques and offers potential for direct building integration, providing a promising solution for improving millimeter-wave indoor penetration and coverage. Full article
Show Figures

Figure 1

13 pages, 4389 KB  
Article
Reconfigurable Terahertz Metamaterials Based on the Refractive Index Change of Epitaxial Vanadium Dioxide Films Across the Metal–Insulator Transition
by Chang Lu and Weizheng Liang
Nanomaterials 2025, 15(6), 439; https://doi.org/10.3390/nano15060439 - 13 Mar 2025
Cited by 1 | Viewed by 740
Abstract
The intrinsic metal–insulator transition (MIT) of VO2 films near room temperature presents significant potential for reconfigurable metamaterials in the terahertz (THz) frequency range. While previous designs primarily focused on changes in electrical conductivity across the MIT, the accompanying dielectric changes due to [...] Read more.
The intrinsic metal–insulator transition (MIT) of VO2 films near room temperature presents significant potential for reconfigurable metamaterials in the terahertz (THz) frequency range. While previous designs primarily focused on changes in electrical conductivity across the MIT, the accompanying dielectric changes due to the mesoscopic carrier confinement effect have been largely unexplored. In this study, we integrate asymmetric split-ring resonators on 35 nm epitaxial VO2 film and identify a “dielectric window” at the early stages of the MIT. This is characterized by a redshift in the resonant frequency without a significant degradation in the resonant quality. This phenomenon is attributed to an inhomogeneous phase transition in the VO2 film, which induces a purely dielectric change at the onset of the MIT, while the electrical conductivity transition occurs later, slightly above the percolation threshold. Our findings provide deeper insights into the THz properties of VO2 films and pave the way for dielectric-based, VO2 hybrid reconfigurable metamaterials. Full article
Show Figures

Graphical abstract

15 pages, 12241 KB  
Article
Design and Characterization of a Digitally Tunable Gm-C Filter for Multi-Standard Receivers
by Mateus S. Oliveira, Matheus B. S. Carvalho, Crístian Müller, Lucas Compassi-Severo, Paulo C. C. de Aguirre and Alessandro G. Girardi
Electronics 2024, 13(14), 2866; https://doi.org/10.3390/electronics13142866 - 20 Jul 2024
Viewed by 2615
Abstract
This paper presents the design, simulation, prototyping, and measurement results of a digitally tunable fourth order Gm-C low-pass filter (LPF) for multi-standard radio receivers. The LPF cut-off frequency can be tunned by digitally selecting the transconductance of the basic reconfigurable operational transconductance amplifiers [...] Read more.
This paper presents the design, simulation, prototyping, and measurement results of a digitally tunable fourth order Gm-C low-pass filter (LPF) for multi-standard radio receivers. The LPF cut-off frequency can be tunned by digitally selecting the transconductance of the basic reconfigurable operational transconductance amplifiers (OTAs) that compose the circuit. Four operation modes allow for control of the OTA transconductances and, consequently, the scaling of power consumption. The filter was designed and prototyped in a 1.8 V 180 nm CMOS process. The measurement results indicate that the configurability provides a cutoff frequency of 1.90/3.56/6.07/8.15 MHz with a power consumption ranging from 9.9 to 13.1 mW. The designed filter achieves an IIP3 of 8.17 dBm for a signal bandwidth of 8.15 MHz. The performance, in terms of power dissipation, noise, and cut-off frequency, is at the same order of magnitude compared to recent related works reported in the literature. The advantages are a compact area, small sensitivity to component mismatches, and low design complexity. The proposed filter presents electrical characteristics suitable for the application in radio receivers for multi-carrier WCDMA signals. Full article
Show Figures

Figure 1

22 pages, 12624 KB  
Article
A Fault-Tolerant Control Method Based on Reconfiguration SPWM Signal for Cascaded Multilevel IGBT-Based Propulsion in Electric Ships
by Fan Zhang, Zhiwei Zhang, Zhonglin Zhang, Tianzhen Wang, Jingang Han and Yassine Amirat
J. Mar. Sci. Eng. 2024, 12(3), 500; https://doi.org/10.3390/jmse12030500 - 18 Mar 2024
Cited by 4 | Viewed by 1630
Abstract
Electric ships have been developed in recent years to reduce greenhouse gas emissions. In this system, inverters are the key equipment for the permanent-magnet synchronous motor (PMSM) drive system. The cascaded insulated-gated bipolar transistor (IGBT)-based H-bridge inverter is one of the most attractive [...] Read more.
Electric ships have been developed in recent years to reduce greenhouse gas emissions. In this system, inverters are the key equipment for the permanent-magnet synchronous motor (PMSM) drive system. The cascaded insulated-gated bipolar transistor (IGBT)-based H-bridge inverter is one of the most attractive multilevel topologies for modern electric ship applications. Usually, the fault-tolerant control strategy is designed to keep the ship in operation for a certain period. However, the fault-tolerant control strategy with hardware redundancy is expensive and slow in response. In addition, after fault-tolerant control, the ship’s PMSM may experience shock and overheating, and IGBT life is reduced due to uneven switching frequency distribution. Therefore, a stratified reconfiguration carrier disposition Sinusoidal Pulse Width Modulation (SPWM) fault-tolerant control strategy is proposed. The proposed strategy can achieve fault tolerance without any extra hardware. A reconfiguration carrier is applied to improve the fundamental amplitude of inverter output voltage to maintain the operation of the ship’s PMSM. In addition, the available states of faulty H-bridge are fully used to contribute to the output. These can improve the life of IGBTs by reducing and balancing the power loss of each H-bridge. The principles of the proposed strategy are described in detail in this study. Taking a cascaded H-bridge seven-level inverter as an example, simulation and experimental results verify that the proposed strategy, in general, has a potential future application on electric ships. Full article
(This article belongs to the Special Issue Advanced Research on the Sustainable Maritime Transportation)
Show Figures

Figure 1

16 pages, 7224 KB  
Article
Machine-Learning-Assisted Instantaneous Frequency Measurement Method Based on Thin-Film Lithium Niobate on an Insulator Phase Modulator for Radar Detection
by Qianqian Jia, Zichuan Xiang, Dechen Li, Jianguo Liu and Jinye Li
Sensors 2024, 24(5), 1489; https://doi.org/10.3390/s24051489 - 25 Feb 2024
Cited by 2 | Viewed by 2121
Abstract
A simple microwave photonic, reconfigurable, instantaneous frequency measurement system based on low-voltage thin-film lithium niobate on an insulator phase modulator is put forward and experimentally demonstrated. Changing the wavelength of the optical carrier can realize the flexibility of the frequency measurement range and [...] Read more.
A simple microwave photonic, reconfigurable, instantaneous frequency measurement system based on low-voltage thin-film lithium niobate on an insulator phase modulator is put forward and experimentally demonstrated. Changing the wavelength of the optical carrier can realize the flexibility of the frequency measurement range and accuracy, showing that during the ranges of 0–10 GHz, 3–15 GHz, and 12–18 GHz, the average measurement errors are 26.9 MHz, 44.57 MHz, and 13.6 MHz, respectively, thanks to the stacked integrated learning models. Moreover, this system is still able to respond to microwave signals of as low as −30 dBm with the frequency measurement error of 62.06 MHz, as that low half-wave voltage for the phase modulator effectively improves the sensitivity of the system. The general-purpose, miniaturized, reconfigurable, instantaneous frequency measurement modules have unlimited potential in areas such as radar detection and early warning reception. Full article
(This article belongs to the Special Issue Recent Advances of Optoelectronic Devices and Semiconductor Sensors)
Show Figures

Figure 1

12 pages, 9225 KB  
Article
Design Optimization of Silicon-Based Optically Excited Terahertz Wave Modulation
by Chenyu Zhao, Dayong Wang, Shufeng Lin, Jie Zhao, Yunxin Wang and Lu Rong
Photonics 2024, 11(3), 202; https://doi.org/10.3390/photonics11030202 - 24 Feb 2024
Cited by 3 | Viewed by 2038
Abstract
The modulation of a terahertz (THz) wave on amplitude, phase and polarization is important for the application of THz technology, especially in the field of imaging, and is one of the current research hotspots. Silicon-based, optically excited THz modulator is a wavefront modulation [...] Read more.
The modulation of a terahertz (THz) wave on amplitude, phase and polarization is important for the application of THz technology, especially in the field of imaging, and is one of the current research hotspots. Silicon-based, optically excited THz modulator is a wavefront modulation technique with a simple, compact and reconfigurable optical path. It can realize the dynamic modulation of THz wavefronts by only changing the projected two-dimensional pattern, but it still suffers from the problems of lower modulation efficiency and slower modulation rates. In this article, the Drude model in combination with the multiple thin layers structure model and Fresnel matrix method is used to compare the modulation efficiencies of three modulation modes and more factors. The method is more accurate than the popular proposed method, especially when the thickness of the excited photoconductive layers reaches a few hundred microns. In comparing the three modes, namely transmission, ordinary reflection and total internal reflection, it is found the total internal reflection modulation mode has the best modulation efficiency. Further, under this mode, the effects of three factors, including the lifetime of photo-excited carriers, the wavelength of pump light and the frequency of THz wave, on the performance of THz modulator are analyzed. The simulation results show that the realization of total internal reflection using silicon prisms is a simple and effective method to improve the modulation efficiency of a silicon-based optically excited THz modulator, which provides references for the design of a photo-induced THz modulator. Full article
Show Figures

Figure 1

21 pages, 5758 KB  
Article
CMOS Wireless Hybrid Transceiver Powered by Integrated Photodiodes for Ultra-Low-Power IoT Applications
by Sasan Nikseresht, Daniel Fernández, Jordi Cosp-Vilella, Irina Selin-Lorenzo and Jordi Madrenas
Electronics 2024, 13(1), 28; https://doi.org/10.3390/electronics13010028 - 20 Dec 2023
Cited by 2 | Viewed by 1988
Abstract
In this article, a communication platform for a self-powered integrated light energy harvester based on a wireless hybrid transceiver is proposed. It consists of an optical receiver and a reconfigurable radio frequency (RF) transmitter. The hybrid optical/RF communication approach improves load balancing, energy [...] Read more.
In this article, a communication platform for a self-powered integrated light energy harvester based on a wireless hybrid transceiver is proposed. It consists of an optical receiver and a reconfigurable radio frequency (RF) transmitter. The hybrid optical/RF communication approach improves load balancing, energy efficiency, security, and interference reduction. A light beam for communication in the downlink, coupled with a 1 MHz radio frequency signal for the uplink, offers a small area and ultra-low-power consumption design for Smart Dust/IoT applications. The optical receiver employs a new charge-pump-based technique for the automatic acquisition of a reference voltage, enabling compensation for comparator offset errors and variations in DC-level illumination. On the uplink side, the reconfigurable transmitter supports OOK/FSK/BPSK data modulation. Electronic components and the energy harvester, including integrated photodiodes, have been designed, fabricated, and experimentally tested in a 0.18 µm triple-well CMOS technology in a 1.5 × 1.3 mm2 chip area. Experiments show the correct system behavior for general and pseudo-random stream input data, with a minimum pulse width of 50 µs and a data transmission rate of 20 kb/s for the optical receiver and 1 MHz carrier frequency. The maximum measured power of the signal received from the transmitter is approximately −18.65 dBm when using a light-harvested power supply. Full article
Show Figures

Figure 1

19 pages, 7547 KB  
Communication
A Photonics-Assisted Binary/Quaternary Phase-Coded Microwave Signal Generator Applicable to Digital I/O Interfaces
by Jing Yin, Yan Zhao, Feng Yang, Dengcai Yang and Xiaoyu Wang
Micromachines 2023, 14(5), 1034; https://doi.org/10.3390/mi14051034 - 11 May 2023
Cited by 1 | Viewed by 1981
Abstract
A photonics-assisted binary/quaternary phase-coded microwave signal generator with fundamental/doubling reconfigurable carrier frequency applicable to digital I/O interfaces is proposed and has been verified by experiments. This scheme is based on a cascade modulation scheme, which is used to reconfigure fundamental/doubling carrier frequency and [...] Read more.
A photonics-assisted binary/quaternary phase-coded microwave signal generator with fundamental/doubling reconfigurable carrier frequency applicable to digital I/O interfaces is proposed and has been verified by experiments. This scheme is based on a cascade modulation scheme, which is used to reconfigure fundamental/doubling carrier frequency and load the phase-coded signal, respectively. By controlling the radio frequency (RF) switch and the bias voltages of the modulator, the switching of the fundamental or doubling carrier frequency can be realized. When the amplitudes and sequence pattern of the two independent coding signals are set reasonably, binary or quaternary phase-coded signals can be realized. The sequence pattern of coding signals is applicable to digital I/O interfaces and can be directly generated through the IO interfaces of FPGA instead of an expensive high-speed arbitrary waveform generator (AWG) or other digital-to-analog conversion (DAC) systems. A proof-of-concept experiment is carried out, and the performance of the proposed system is evaluated from the aspects of phase recovery accuracy and pulse compression capability. In addition, the influence of residual carrier suppression and polarization crosstalk in non-ideal states on phase shifting based on polarization adjustment has also been analyzed. Full article
(This article belongs to the Special Issue Multi-Functional Integration Microwave Photonic Systems)
Show Figures

Figure 1

20 pages, 1416 KB  
Article
Adaptive Parameters for LoRa-Based Networks Physical-Layer
by Edelberto Franco Silva, Lucas M. Figueiredo, Leonardo A. de Oliveira, Luciano J. Chaves, André L. de Oliveira, Denis Rosário and Eduardo Cerqueira
Sensors 2023, 23(10), 4597; https://doi.org/10.3390/s23104597 - 9 May 2023
Cited by 12 | Viewed by 4839
Abstract
Sub-GHz communication provides long-range coverage with low power consumption and reduced deployment cost. LoRa (Long-Range) has emerged, among existing LPWAN (Low Power Wide Area Networks) technologies, as a promising physical layer alternative to provide ubiquitous connectivity to outdoor IoT devices. LoRa modulation technology [...] Read more.
Sub-GHz communication provides long-range coverage with low power consumption and reduced deployment cost. LoRa (Long-Range) has emerged, among existing LPWAN (Low Power Wide Area Networks) technologies, as a promising physical layer alternative to provide ubiquitous connectivity to outdoor IoT devices. LoRa modulation technology supports adapting transmissions based on parameters such as carrier frequency, channel bandwidth, spreading factor, and code rate. In this paper, we propose SlidingChange, a novel cognitive mechanism to support the dynamic analysis and adjustment of LoRa network performance parameters. The proposed mechanism uses a sliding window to smooth out short-term variations and reduce unnecessary network re-configurations. To validate our proposal, we conducted an experimental study to evaluate the performance concerning the Signal-to-Noise Ratio (SNR) parameter of our SlidingChange against InstantChange, an intuitive mechanism that considers immediate performance measurements (parameters) for re-configuring the network. The SlidingChange is compared with LR-ADR too, a state-of-the-art-related technique based on simple linear regression. The experimental results obtained from a testbed scenario demonstrated that the InstanChange mechanism improved the SNR by 4.6%. When using the SlidingChange mechanism, the SNR was around 37%, while the network reconfiguration rate was reduced by approximately 16%. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

15 pages, 4760 KB  
Communication
Generation of a Fundamental/Doubled Frequency Phase-Coded Microwave Signal Based on Polarization Multiplexed Technology
by Jing Yin, Yan Zhao, Feng Yang, Dengcai Yang and Yunxin Wang
Photonics 2023, 10(3), 293; https://doi.org/10.3390/photonics10030293 - 10 Mar 2023
Cited by 2 | Viewed by 1775
Abstract
Microwave photonic phase-shifting technology can be used to generate high-frequency, broadband, and tunable phase-coded microwave signals, which are helpful in solving the contradiction between the detection range and the range resolution in radar systems. A method for generating a reconfigurable carrier phase-coded signal [...] Read more.
Microwave photonic phase-shifting technology can be used to generate high-frequency, broadband, and tunable phase-coded microwave signals, which are helpful in solving the contradiction between the detection range and the range resolution in radar systems. A method for generating a reconfigurable carrier phase-coded signal of a fundamental or doubled carrier frequency, based on polarization multiplexed technology, is proposed and verified by the experiments in this paper. A dual-parallel dual-polarization Mach–Zehnder modulator (DP-DPMZM) and a polarization-dependent phase modulator (PD-PM) were used to load the carrier and the phase-shifting signal, respectively. By reasonably configuring the state of the RF switch and the bias voltages of the sub-DPMZM, the fundamental or doubled carrier frequency can be obtained through photoelectric conversion. The reconfigurable carrier frequency gives the system a wider work bandwidth range and can effectively reduce the frequency requirement for local oscillator (LO) signals. By adjusting the driving voltage, the broadband microwave signal can be phase-shifted within the range of 360°, and when the phase-shifted control signal is a multilevel amplitude signal, it can generate binary, quaternary, or other high-order phase-coded signals, which have high reconfigurable performance and potential application value in multifunctional radar systems. In addition, the scheme has wideband tunability, since no optical filter is involved. The proposed scheme was theoretically analyzed and experimentally verified. Binary, quaternary, and octal phase-coded signals, with fundamental and doubled frequencies centered at 8 GHz and 16 GHz, were successfully generated. Full article
Show Figures

Figure 1

17 pages, 10105 KB  
Article
Joint Estimation for Time Delay and Direction of Arrival in Reconfigurable Intelligent Surface with OFDM
by Jinzhi Du, Weijia Cui, Bin Ba, Chunxiao Jian and Liye Zhang
Sensors 2022, 22(18), 7083; https://doi.org/10.3390/s22187083 - 19 Sep 2022
Cited by 3 | Viewed by 2498
Abstract
Recently, the joint estimation for time delay (TD) and direction of arrival (DOA) has suffered from the high complexity of processing multi-dimensional signal models and the ineffectiveness of correlated/coherent signals. In order to improve this situation, a joint estimation method using orthogonal frequency [...] Read more.
Recently, the joint estimation for time delay (TD) and direction of arrival (DOA) has suffered from the high complexity of processing multi-dimensional signal models and the ineffectiveness of correlated/coherent signals. In order to improve this situation, a joint estimation method using orthogonal frequency division multiplexing (OFDM) and a uniform planar array composed of reconfigurable intelligent surface (RIS) is proposed. First, the time-domain coding function of the RIS is combined with the multi-carrier characteristic of the OFDM signal to construct the coded channel frequency response in tensor form. Then, the coded channel frequency response covariance matrix is decomposed by CANDECOMP/PARAFAC (CPD) to separate the signal subspaces of TD and DOA. Finally, we perform a one-dimensional (1D) spectral search for TD values and a two-dimensional (2D) spectral search for DOA values. Compared to previous efforts, this algorithm not only enhances the adaptability of coherent signals, but also greatly decreases the complexity. Simulation results indicate the robustness and effectiveness for the proposed algorithm in independent, coherent, and mixed multipath environments and low signal-to-noise ratio (SNR) conditions. Full article
Show Figures

Figure 1

15 pages, 25833 KB  
Article
Modeling and Fabrication of a Reconfigurable RF Output Stage for Nanosatellite Communication Subsystems
by Jose L. Alvarez-Flores, Jorge Flores-Troncoso, Leonel Soriano-Equigua, Jorge Simón, Joel A. Castillo, Ramón Parra-Michel and Viktor I. Rodriguez-Abdala
Electronics 2022, 11(1), 149; https://doi.org/10.3390/electronics11010149 - 4 Jan 2022
Cited by 1 | Viewed by 3324
Abstract
Current small satellite platforms such as CubeSats require robust and versatile communication subsystems that allow the reconfiguration of the critical operating parameters such as carrier frequency, transmission power, bandwidth, or filter roll-off factor. A reconfigurable Analog Back-End for the space segment of a [...] Read more.
Current small satellite platforms such as CubeSats require robust and versatile communication subsystems that allow the reconfiguration of the critical operating parameters such as carrier frequency, transmission power, bandwidth, or filter roll-off factor. A reconfigurable Analog Back-End for the space segment of a satellite communication subsystem is presented in this work. This prototype is implemented on a 9.5 cm2 6-layer PCB, and it operates from 0.070 to 6 GHz and complies with CubeSat and IPC-2221 standards. The processing, control, and synchronizing stages are carried out on a Software-Defined Radio approach executed on a baseband processor. Results showed that the signal power at the output of the proposed Analog Back-End is suitable for feeding the following antenna subsystem. Furthermore, the emitted radiation levels by the transmission lines do not generate electromagnetic interference. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

10 pages, 3229 KB  
Article
An Efficient Carrier Synchronization Scheme for Demodulation Systems
by Wanru Hu, Zhugang Wang, Ruru Mei and Meiyan Lin
Electronics 2021, 10(23), 2942; https://doi.org/10.3390/electronics10232942 - 26 Nov 2021
Cited by 4 | Viewed by 3094
Abstract
A simple data-aided carrier synchronization scheme is proposed for variable modulation (VM) communication systems under the initial conditions of a low signal-to-noise ratio (SNR) and normalized carrier frequency offset (CFO) symbol rate of 20%. The proposed carrier synchronization scheme is simplified into two [...] Read more.
A simple data-aided carrier synchronization scheme is proposed for variable modulation (VM) communication systems under the initial conditions of a low signal-to-noise ratio (SNR) and normalized carrier frequency offset (CFO) symbol rate of 20%. The proposed carrier synchronization scheme is simplified into two steps; a reconfigurable L&R (RLR) algorithm and pilot-aided (PA) phase linear interpolation algorithm is applied for carrier frequency recovery (CFR) and carrier phase recovery (CPR), respectively. Furthermore, the autocorrelation values of multi-pilot blocks are superimposed to improve the accuracy of the CFR algorithm, and the algorithm formulas are decomposed and modularized to simplify the implementation complexity of the RLR algorithm. Simulation results show that the RLR algorithm can track and lock the CFO up to a 33.2% symbol rate and reduce the CFO to 0.024%. The bit error rate (BER) performance of the carrier synchronization scheme almost coincides with the theoretical curve results. Comparison of hardware complexity shows that the multiplication resource consumption can be reduced by at least 72.47%. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

12 pages, 2201 KB  
Article
Strong Terahertz Absorption of Monolayer Graphene Embedded into a Microcavity
by Xuguang Guo, Lejie Xue, Zhenxing Yang, Mengjian Xu, Yiming Zhu, Dixiang Shao, Zhanglong Fu, Zhiyong Tan, Chang Wang, Juncheng Cao and Chao Zhang
Nanomaterials 2021, 11(2), 421; https://doi.org/10.3390/nano11020421 - 7 Feb 2021
Cited by 4 | Viewed by 2870
Abstract
Terahertz reflection behaviors of metallic-grating-dielectric-metal (MGDM) microcavity with a monolayer graphene embedded into the dielectric layer are theoretically investigated. A tunable wideband reflection dip at about the Fabry–Pérot resonant frequency of the structure is found. The reflectance at the dip frequency can be [...] Read more.
Terahertz reflection behaviors of metallic-grating-dielectric-metal (MGDM) microcavity with a monolayer graphene embedded into the dielectric layer are theoretically investigated. A tunable wideband reflection dip at about the Fabry–Pérot resonant frequency of the structure is found. The reflectance at the dip frequency can be electrically tuned in the range of 96.5% and 8.8%. Because of the subwavelength distance between the metallic grating and the monolayer graphene, both of the evanescent grating slit waveguide modes and the evanescent Rayleigh modes play key roles in the strong absorption by the graphene layer. The dependence of reflection behaviors on the carrier scattering rate of graphene is analyzed. A prototype MGDM-graphene structure is fabricated to verify the theoretical analysis. Our investigations are helpful for the developments of electrically controlled terahertz modulators, switches, and reconfigurable antennas based on the MGDM-graphene structures. Full article
(This article belongs to the Special Issue State-of-the-Art Nanophotonics Materials and Devices in China)
Show Figures

Graphical abstract

8 pages, 4720 KB  
Article
Demonstration of a Duplex Microwave Photonic Filter and Its Reconfigurability in a Frequency Range of 0–10 GHz
by Leidy Johana Quintero-Rodríguez, José Roberto Warnes-Lora, Min Won Lee, Jorge Rodríguez-Asomoza and Ignacio Enrique Zaldívar-Huerta
Electronics 2020, 9(12), 2159; https://doi.org/10.3390/electronics9122159 - 16 Dec 2020
Viewed by 1896
Abstract
In this paper, we have demonstrated a duplex microwave photonic filter system. The reconfigurability of a microwave passband filter by using a birefringent optical filter has also been demonstrated experimentally. The effect of filtering normally depends on the intermodal separation of a multimode [...] Read more.
In this paper, we have demonstrated a duplex microwave photonic filter system. The reconfigurability of a microwave passband filter by using a birefringent optical filter has also been demonstrated experimentally. The effect of filtering normally depends on the intermodal separation of a multimode laser diode (MLD), as well as the chromatic dispersion parameter and the length of a Single Mode-Standard Fiber (SM-SF). However, in this work, the intermodal separation of the MLD is altered by an optical filter which consists of a section of birefringent optical fiber (BOF) placed between crossed polarizers. Using this filter, six passbands in the frequency range of 0–10 GHz are obtained. Our duplex Microwave Photonic Filter (MPF) system is driven by only a single optical source. Performance evaluation for the filtered passband is also given in terms of the Signal-to-Noise-Ratio (SNR). On average, an SNR of 13.87 dB is obtained for all the passbands generated by our duplex Microwave Photonic Filter (MPF) system. For potential applications, the generated passbands may be used as radio frequency (RF) carriers to transmit analog or digital data in an optical communications system. Full article
(This article belongs to the Section Microelectronics)
Show Figures

Figure 1

Back to TopTop