Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = reclamation scenarios

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 20396 KiB  
Article
Constructing Ecological Security Patterns in Coal Mining Subsidence Areas with High Groundwater Levels Based on Scenario Simulation
by Shiyuan Zhou, Zishuo Zhang, Pingjia Luo, Qinghe Hou and Xiaoqi Sun
Land 2025, 14(8), 1539; https://doi.org/10.3390/land14081539 - 27 Jul 2025
Viewed by 305
Abstract
In mining areas with high groundwater levels, intensive coal mining has led to the accumulation of substantial surface water and significant alterations in regional landscape patterns. Reconstructing the ecological security pattern (ESP) has emerged as a critical focus for ecological restoration in coal [...] Read more.
In mining areas with high groundwater levels, intensive coal mining has led to the accumulation of substantial surface water and significant alterations in regional landscape patterns. Reconstructing the ecological security pattern (ESP) has emerged as a critical focus for ecological restoration in coal mining subsidence areas with high groundwater levels. This study employed the patch-generating land use simulation (PLUS) model to predict the landscape evolution trend of the study area in 2032 under three scenarios, combining environmental characteristics and disturbance features of coal mining subsidence areas with high groundwater levels. In order to determine the differences in ecological network changes within the study area under various development scenarios, morphological spatial pattern analysis (MSPA) and landscape connectivity analysis were employed to identify ecological source areas and establish ecological corridors using circuit theory. Based on the simulation results of the optimal development scenario, potential ecological pinch points and ecological barrier points were further identified. The findings indicate that: (1) land use changes predominantly occur in urban fringe areas and coal mining subsidence areas. In the land reclamation (LR) scenario, the reduction in cultivated land area is minimal, whereas in the economic development (ED) scenario, construction land exhibits a marked increasing trend. Under the natural development (ND) scenario, forest land and water expand most significantly, thereby maximizing ecological space. (2) Under the ND scenario, the number and distribution of ecological source areas and ecological corridors reach their peak, leading to an enhanced ecological network structure that positively contributes to corridor improvement. (3) By comparing the ESP in the ND scenario in 2032 with that in 2022, the number and area of ecological barrier points increase substantially while the number and area of ecological pinch points decrease. These areas should be prioritized for ecological protection and restoration. Based on the scenario simulation results, this study proposes a planning objective for a “one axis, four belts, and four zones” ESP, along with corresponding strategies for ecological protection and restoration. This research provides a crucial foundation for decision-making in enhancing territorial space planning in coal mining subsidence areas with high groundwater levels. Full article
Show Figures

Figure 1

24 pages, 5725 KiB  
Article
Modeling of Hydrological Processes in a Coal Mining Subsidence Area with High Groundwater Levels Based on Scenario Simulations
by Shiyuan Zhou, Hao Chen, Qinghe Hou, Haodong Liu and Pingjia Luo
Hydrology 2025, 12(7), 193; https://doi.org/10.3390/hydrology12070193 - 19 Jul 2025
Viewed by 362
Abstract
The Eastern Huang–Huai region of China is a representative mining area with a high groundwater level. High-intensity underground mining activities have not only induced land cover and land use changes (LUCC) but also significantly changed the watershed hydrological behavior. This study integrated the [...] Read more.
The Eastern Huang–Huai region of China is a representative mining area with a high groundwater level. High-intensity underground mining activities have not only induced land cover and land use changes (LUCC) but also significantly changed the watershed hydrological behavior. This study integrated the land use prediction model PLUS and the hydrological simulation model MIKE 21. Taking the Bahe River Watershed in Huaibei City, China, as an example, it simulated the hydrological response trends of the watershed in 2037 under different land use scenarios. The results demonstrate the following: (1) The land use predictions for each scenario exhibit significant variation. In the maximum subsidence scenario, the expansion of water areas is most pronounced. In the planning scenario, the increase in construction land is notable. Across all scenarios, the area of cultivated land decreases. (2) In the maximum subsidence scenario, the area of high-intensity waterlogging is the greatest, accounting for 31.35% of the total area of the watershed; in the planning scenario, the proportion of high-intensity waterlogged is the least, at 19.10%. (3) In the maximum subsidence scenario, owing to the water storage effect of the subsidence depression, the flood peak is conspicuously delayed and attains the maximum value of 192.3 m3/s. In the planning scenario, the land reclamation rate and ecological restoration rate of subsidence area are the highest, while the regional water storage capacity is the lowest. As a result, the total cumulative runoff is the greatest, and the peak flood value is reduced. The influence of different degrees of subsidence on the watershed hydrological behavior varies, and the coal mining subsidence area has the potential to regulate and store runoff and perform hydrological regulation. The results reveal the mechanism through which different land use scenarios influence hydrological processes, which provides a scientific basis for the territorial space planning and sustainable development of coal mining subsidence areas. Full article
Show Figures

Figure 1

19 pages, 1654 KiB  
Article
Groundwater Impacts and Sustainability in Italian Quarrying: Evaluating the Effectiveness of Existing Technical Standards
by Matteo Paoletti
Water 2025, 17(14), 2044; https://doi.org/10.3390/w17142044 - 8 Jul 2025
Viewed by 308
Abstract
Quarrying is a key driver in economic growth but also poses significant environmental impacts, particularly on groundwater resources. With approximately 4000 active quarries and diverse hydrological and hydrogeological conditions across Italy, the need for effective regulations that ensure both sustainable extraction and groundwater [...] Read more.
Quarrying is a key driver in economic growth but also poses significant environmental impacts, particularly on groundwater resources. With approximately 4000 active quarries and diverse hydrological and hydrogeological conditions across Italy, the need for effective regulations that ensure both sustainable extraction and groundwater protection is paramount. This study analyzed the European directives, national legislation, and regional quarrying plans governing extractive activities, with a particular focus on groundwater protection. By analyzing the Italian quarries and their main hydrogeological characteristics, the most prevalent hydrogeological scenarios associated with quarrying activities across the country have been identified. The findings reveal significant gaps in the current regulatory framework, characterized by fragmentation and inconsistency across regions. Critical concerns across the quarry lifecycle (planning, excavation, and reclamation) are not comprehensively addressed, and mandatory monitoring and safeguard requirements are lacking. A more structured regulatory approach could incorporate key parameters identified in this study, particularly quarry size and groundwater level depth relative to the excavation plan. Additionally, hydrogeological vulnerability must be considered to guide risk assessment, particularly for alluvial and limestone hydrogeological complexes, which host a substantial number of Italian quarries and require stricter safeguards due to their high susceptibility to contamination and hydrodynamic alterations. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

22 pages, 7753 KiB  
Article
A Full-Life-Cycle Modeling Framework for Cropland Abandonment Detection Based on Dense Time Series of Landsat-Derived Vegetation and Soil Fractions
by Qiangqiang Sun, Zhijun You, Ping Zhang, Hao Wu, Zhonghai Yu and Lu Wang
Remote Sens. 2025, 17(13), 2193; https://doi.org/10.3390/rs17132193 - 25 Jun 2025
Viewed by 338
Abstract
Remotely sensed cropland abandonment monitoring is crucial for providing spatially explicit references for maintaining sustainable agricultural practices and ensuring food security. However, abandoned cropland is commonly detected based on multi-date classification or the dynamics of a single vegetation index, with the interactions between [...] Read more.
Remotely sensed cropland abandonment monitoring is crucial for providing spatially explicit references for maintaining sustainable agricultural practices and ensuring food security. However, abandoned cropland is commonly detected based on multi-date classification or the dynamics of a single vegetation index, with the interactions between vegetation and soil time series often being neglected, leading to a failure to understand its full-life-cycle succession processes. To fill this gap, we propose a new full-life-cycle modeling framework based on the interactive trajectories of vegetation–soil-related endmembers to identify abandoned and reclaimed cropland in Jinan from 2000 to 2022. In this framework, highly accurate annual fractional vegetation- and soil-related endmember time series are generated for Jinan City for the 2000–2022 period using spectral mixture models. These are then used to integrally reconstruct temporal trajectories for complex scenarios (e.g., abandonment, weed invasion, reclamation, and fallow) using logistic and double-logistic models. The parameters of the optimization model (fitting type, change magnitude, start timing, and change duration) are subsequently integrated to develop a rule-based hierarchical identification scheme for cropland abandonment based on these complex scenarios. After applying this scheme, we observed a significant decline in green vegetation (a slope of −0.40% per year) and an increase in the soil fraction (a rate of 0.53% per year). These pathways are mostly linked to a duration between 8 and 15 years, with the beginning of the change trend around 2010. Finally, the results show that our framework can effectively separate abandoned cropland from reclamation dynamics and other classes with satisfactory precision, as indicated by an overall accuracy of 86.02%. Compared to the traditional yearly land cover-based approach (with an overall accuracy of 77.39%), this algorithm can overcome the propagation of classification errors (with product accuracy from 74.47% to 85.11%), especially in terms of improving the ability to capture changes at finer spatial scales. Furthermore, it also provides a better understanding of the whole abandonment process under the influence of multi-factor interactions in the context of specific climatic backgrounds and human disturbances, thus helping to inform adaptive abandonment management and sustainable agricultural policies. Full article
Show Figures

Figure 1

21 pages, 3311 KiB  
Article
How Reclamation Policy Shapes China’s Coastal Wetland Ecosystem Services
by Yuefei Zhuo, Tiantian Li, Zhongguo Xu and Guan Li
Systems 2025, 13(6), 431; https://doi.org/10.3390/systems13060431 - 3 Jun 2025
Viewed by 506
Abstract
China’s reclamation regulation policy is an important policy tool used by the government to balance land development and ecological protection in coastal areas, but few studies have focused on the impact of the implementation of this policy on ecosystem services. To fill the [...] Read more.
China’s reclamation regulation policy is an important policy tool used by the government to balance land development and ecological protection in coastal areas, but few studies have focused on the impact of the implementation of this policy on ecosystem services. To fill the gap, this study takes Ningbo City as an example, applies the InVEST model as a scenario analysis and trend indication tool, combines the market value method to quantify the ecosystem services of coastal wetlands, and explores the impact of the reclamation regulation policy on the coastal wetland ecosystem services through the regression discontinuity model. The findings are as follows: (1) from 2005 to 2020, the natural ecological landscape in the coastal zone of Ningbo City continued to shrink, but the overall value of ecosystem services showed a fluctuating upward trend. Among them, cropland and wetlands served as the primary conduits for ecosystem services in this region, highlighting the need to strengthen the protection of these two land types. (2) The implementation of reclamation regulation policy has an impact on ecosystem services. The policy implementation in 2011 appeared to suppress the downward trend of ecological habitat quality and carbon storage, while the policy implementation in 2017 had a positive impact on the enhancement of carbon storage and material production. (3) As for the effect of reclamation regulation policy on the changes in ecosystem services, although the measured positive impact of reclamation regulation policy on ecological habitat quality was less statistically pronounced compared to other services during the study period, it had significant positive effects on carbon storage and material production. On the whole, the reclamation regulation policy proves effective in contributing to the maintenance of coastal wetland ecosystem services. Although the model-based results in this study reveal more indicator trends rather than precise quantitative evidence, it helps mitigate degradation trends and enhance specific services like carbon storage and material production. Through its implementation, the policy aids in pursuing the win–win goal of balancing urban economic development and ecological environment protection. Full article
(This article belongs to the Special Issue Applying Systems Thinking to Enhance Ecosystem Services)
Show Figures

Figure 1

21 pages, 504 KiB  
Article
Biomimicry-Inspired Automated Machine Learning Fit-for-Purpose Wastewater Treatment for Sustainable Water Reuse
by Vasileios Alevizos, Zongliang Yue, Sabrina Edralin, Clark Xu, Nikitas Gerolimos and George A. Papakostas
Water 2025, 17(9), 1395; https://doi.org/10.3390/w17091395 - 6 May 2025
Cited by 1 | Viewed by 905
Abstract
The growing global freshwater scarcity urgently requires innovative wastewater treatment technologies. This study hypothesized that biomimicry-inspired automated machine learning (AML) could effectively manage wastewater variability through adaptive processing techniques. Utilizing decentralized swarm intelligence, specifically the Respected Parametric Insecta Swarm (RPIS), the system demonstrated [...] Read more.
The growing global freshwater scarcity urgently requires innovative wastewater treatment technologies. This study hypothesized that biomimicry-inspired automated machine learning (AML) could effectively manage wastewater variability through adaptive processing techniques. Utilizing decentralized swarm intelligence, specifically the Respected Parametric Insecta Swarm (RPIS), the system demonstrated robust adaptability to fluctuating influent conditions, maintaining stable effluent quality without centralized control. Bio-inspired oscillatory control algorithms maintained stability under dynamic influent scenarios, while adaptive sensor feedback enhanced real-time responsiveness. Machine learning (ML) methods inspired by biological morphological evolution accurately classified influent characteristics (F1 score of 0.91), optimizing resource allocation dynamically. Significant reductions were observed, with chemical consumption decreasing by approximately 11% and additional energy usage declining by 14%. Furthermore, bio-inspired membranes with selective permeability substantially reduced fouling, maintaining minimal fouling for up to 30 days. Polynomial chaos expansions efficiently approximated complex nonlinear interactions, reducing computational overhead by approximately 35% through parallel processing. Decentralized swarm algorithms allowed the rapid recalibration of system parameters, achieving stable pathogen removal and maintaining effluent turbidity near 3.2 NTU (Nephelometric Turbidity Units), with total suspended solids consistently below 8 mg/L. Integrating biomimicry with AML thus significantly advances sustainable wastewater reclamation practices, offering quantifiable improvements critical for resource-efficient water management. Full article
Show Figures

Figure 1

19 pages, 257 KiB  
Review
Advances in Standardised Battery Testing for Enhanced Safety and Innovation in Electric Vehicles: A Comprehensive Review
by Márton Pepó, Soma Fullér, Tibor Cseke and Zoltán Weltsch
Batteries 2025, 11(4), 157; https://doi.org/10.3390/batteries11040157 - 16 Apr 2025
Cited by 2 | Viewed by 2116
Abstract
Standardised battery tests are essential for evaluating the safety, reliability, and performance of modern battery technologies, especially with the rapid emergence of innovations such as solid-state and lithium–sulphur batteries. This review reveals critical shortcomings in current international standards (e.g., IEC, IEEE, SAE), which [...] Read more.
Standardised battery tests are essential for evaluating the safety, reliability, and performance of modern battery technologies, especially with the rapid emergence of innovations such as solid-state and lithium–sulphur batteries. This review reveals critical shortcomings in current international standards (e.g., IEC, IEEE, SAE), which often do not keep pace with technological developments and are not harmonised across regions, limiting their effectiveness in real-world applications. The paper stresses the need for the continuous review of test protocols through collaboration between researchers, manufacturers, and regulators. A detailed case study of the BYD Dolphin battery demonstrates the practical importance of comprehensive testing in real-world conditions, spanning electrical, thermal, and mechanical ranges. The review concludes that up-to-date, harmonised, and scenario-specific test methods are needed to ensure accurate battery assessment, support global comparability, and enable the safe introduction of next-generation batteries for electric mobility and energy storage. Future work should prioritise operational monitoring, open access data sharing, and the development of sustainability-focused practices such as recycling and reclamation. Full article
(This article belongs to the Section Battery Performance, Ageing, Reliability and Safety)
26 pages, 13387 KiB  
Article
Three-Dimensional Groundwater and Geochemical Reactive Transport Modeling to Assess Reclamation Techniques at the Quémont 2 Mine, Rouyn-Noranda, Canada
by Mohamed Jalal El Hamidi, Abdelkabir Maqsoud, Tikou Belem and Marie-Elise Viger
Water 2025, 17(8), 1191; https://doi.org/10.3390/w17081191 - 15 Apr 2025
Viewed by 659
Abstract
Many countries employ mining and ore processing techniques to concentrate and extract precious natural resources. However, the slow leaching of numerous dissolved elements and compounds from large quantities of waste rock and mine tailings can significantly threaten groundwater quality in the affected region. [...] Read more.
Many countries employ mining and ore processing techniques to concentrate and extract precious natural resources. However, the slow leaching of numerous dissolved elements and compounds from large quantities of waste rock and mine tailings can significantly threaten groundwater quality in the affected region. When exposed to oxygen and water, sulfide minerals in mine tailing oxidize, potentially forming acid mine drainage (AMD). Various reclamation techniques can inhibit AMD generation, including monolayer cover combined with an elevated water table (EWT), hydraulic barrier, and cover with capillary barrier effect (CCBE). Selecting the most suitable technique requires consideration of site-specific hydrogeological conditions (e.g., water table depth) and available cover materials. Numerical modeling tools such as PHT3D and MT3D can help identify optimal reclamation methods during preliminary planning stages. The 119-hectare Quémont 2 mine site near Rouyn-Noranda city will undergo reclamation following the closure of its tailings storage facilities (TSF). A three-dimensional numerical groundwater and solute-transport model were constructed and calibrated to simulate the site’s hydrogeological behavior post-closure, enabling selection of the most effective AMD control technique. Subsequently, a three-dimensional multicomponent reactive transport model incorporating various cover designs was developed, with simulations considering climate change impacts. The PHT3D model code, which integrates the PHREEQC geochemical model with the MT3D three-dimensional transport simulator, was employed to evaluate cover performance on the Quémont 2 TSF. Four reclamation configurations were tested: Cell #1 (80 cm single-layer clay cover), Cell #2 (60 cm single-layer clay-sand cover), Cell #3 (60 cm single-layer clay-silt cover), and Cell #4 (120 cm multilayer clay-sand-clay sequence). Simulations were conducted under various climate change scenarios (Representative Concentration Pathways—RCPs 2.6, 4.5, and 8.5). This paper describes the numerical model, cover materials, and modeling results both with and without covers. Results indicate that Cells #1 and #4, completely reduced sulfate in groundwater, suggesting these configurations would provide the most effective reclamation solutions for the Quémont 2 mine site. Full article
Show Figures

Figure 1

18 pages, 7757 KiB  
Article
Dynamic Prediction Method for Ground Settlement of Reclaimed Airports Based on Grey System Theory
by Ke Ma, He Weng, Zhaojun Luo, Saeed Sarajpoor and Yumin Chen
Buildings 2025, 15(7), 1034; https://doi.org/10.3390/buildings15071034 - 24 Mar 2025
Viewed by 348
Abstract
Settlement issues at airports pose a significant threat to operational safety, particularly in coastal regions, where land reclamation introduces unique challenges. The complexities of marine foundations, the difficulties in investigating reclaimed land, and the heightened risks of excessive settlement require timely and accurate [...] Read more.
Settlement issues at airports pose a significant threat to operational safety, particularly in coastal regions, where land reclamation introduces unique challenges. The complexities of marine foundations, the difficulties in investigating reclaimed land, and the heightened risks of excessive settlement require timely and accurate monitoring and prediction to effectively identify risks and minimize unnecessary maintenance costs. To address these challenges, this study introduces a dynamic prediction model based on grey system theory, enhanced by a variable-size sliding window mechanism that continuously integrates the latest monitoring data. Validation using datasets from Kansai International Airport and Xiamen Xiang’an International Airport demonstrates that the model improves prediction accuracy by over 20% compared to existing models. Additionally, an exponential forecasting mechanism for long-term settlement prediction is developed and verified with data from Pudong International Airport. The proposed model demonstrates robust predictive capabilities across both long-term and short-term forecasting scenarios. Full article
Show Figures

Figure 1

21 pages, 8848 KiB  
Article
Monitoring and Analysis of Relocation and Reclamation of Residential Areas Based on Multiple Remote Sensing Indices
by Huiping Huang, Yingqi Wang, Chao Yuan, Wenlu Zhu and Yichen Tian
Land 2025, 14(2), 401; https://doi.org/10.3390/land14020401 - 14 Feb 2025
Viewed by 595
Abstract
The relocation of residents from high-risk areas is a critical measure to address safety and development issues in the floodplain regions of Henan Province in China. Whether the old villages can be reclaimed as farmland after demolition concerns Henan Province’s ability to maintain [...] Read more.
The relocation of residents from high-risk areas is a critical measure to address safety and development issues in the floodplain regions of Henan Province in China. Whether the old villages can be reclaimed as farmland after demolition concerns Henan Province’s ability to maintain its farmland red line. This paper integrated multiple remote sensing indices and proposed a remote sensing identification method for monitoring the progress status of village relocation and reclamation that adapted to data characteristics and application scenarios. Firstly, it addressed the issue of missing target bands in GF-2 (GaoFen-2) by employing a band downscaling method; secondly, it combined building and vegetation indices to identify changes in land cover in the old villages within the floodplain, analyzing the implementation effects of the relocation and reclamation policies. Results showed that using a Random Forest regression model to generate a 4 m resolution shortwave infrared band not only retains the original target band information of Landsat-8 but also enhances the spatial detail of the images. Based on the optimal thresholds of multiple remote sensing indices, combined with human footprint data and POI (Points of Interest) identified village boundaries, the overall accuracy of identifying the progress status of resident relocation and reclamation reached 93.5%. In the floodplain region of Henan, the implementation effect of resident relocation was relatively good, with an old village demolition rate of 77%, yet the farmland reclamation rate was only 23%, indicating significant challenges in land conversion, lagging well behind the pilot program schedule requirements. Overall, this study made two primary contributions. First, to distinguish between rural construction and bare soil, thereby improving the accuracy of construction land extraction, an Enhanced Artifical Surface Index (EASI) was proposed. Second, the monitoring results of land use changes were transformed from pixel-level to village-level, and this framework can be extended to other specific land use change monitoring scenarios, demonstrating broad application potential. Full article
Show Figures

Figure 1

25 pages, 8515 KiB  
Article
A Muti-Scenario Prediction and Spatiotemporal Analysis of the LUCC and Carbon Storage Response: A Case Study of the Central Shanxi Urban Agglomeration
by Yasi Zhu and Bin Quan
Sustainability 2025, 17(4), 1532; https://doi.org/10.3390/su17041532 - 12 Feb 2025
Cited by 1 | Viewed by 747
Abstract
Land use and cover change (LUCC) profoundly impacts the carbon cycle and carbon storage. Under the goal of “carbon neutrality”, studying the mechanisms linking LUCC with terrestrial ecosystem carbon storage is of significant importance for ecological protection and regional development. Using the central [...] Read more.
Land use and cover change (LUCC) profoundly impacts the carbon cycle and carbon storage. Under the goal of “carbon neutrality”, studying the mechanisms linking LUCC with terrestrial ecosystem carbon storage is of significant importance for ecological protection and regional development. Using the central Shanxi urban agglomeration as a case study, this research employs various quantitative models based on land cover data to analyze changes in LUCC and carbon storage from 2000 to 2035. The study scientifically explores the impact of the spatial and temporal distribution characteristics of LUCC on carbon storage. The study indicates the following: (1) Over the past 20 years, the land types in the central Shanxi urban agglomeration are primarily grassland, cropland, and forest land. The two primary land transformations are the conversion of cropland to grassland and the conversion of grassland to cropland and forest land; (2) The carbon storage in the study area has shown a declining trend over the past two decades. Spatially, this decline exhibits a “two mountains and one valley” distribution pattern influenced by land use types. The reduction of grassland and cropland is the primary reason for the decline in carbon storage; (3) By 2035, under three different scenarios, carbon storage is projected to decrease compared to 2020. Among these, the scenario focused on cropland protection (CP) shows the least decline, while the naturally developing scenario (ND) shows the most significant decline. The research demonstrates that under scenarios of cropland protection and ecological conservation, strategies such as environmental restoration, development of unused land, and reclamation of built-up land for greening significantly enhance regional carbon storage and improve carbon sequestration capacity. Full article
Show Figures

Figure 1

31 pages, 45035 KiB  
Article
Modelling Impacts of Climate Change and Anthropogenic Activities on Ecosystem State Variables of Water Quality in the Cat Ba–Ha Long Coastal Area (Vietnam)
by Nguyen Minh Hai, Vu Duy Vinh, Sylvain Ouillon, Tran Dinh Lan and Nguyen Thanh Duong
Water 2025, 17(3), 319; https://doi.org/10.3390/w17030319 - 23 Jan 2025
Viewed by 1042
Abstract
Different scenarios have been established and simulated based on the Delft3D model to compare and assess the impact of human activities (increased pollutants as oxygen demand, BOD, COD, nutrients, and land reclamation), climate change (rising temperatures, sea level rise), and a combined scenario [...] Read more.
Different scenarios have been established and simulated based on the Delft3D model to compare and assess the impact of human activities (increased pollutants as oxygen demand, BOD, COD, nutrients, and land reclamation), climate change (rising temperatures, sea level rise), and a combined scenario of human activities and climate change on water quality in the Cat Ba–Ha Long coastal area. The findings quantify the impacts of anthropogenic activities and climate change on the water quality in the study area in 2030 and 2050. During the northeast monsoon and the two transitional seasons, the impact of humans and climate change adversely affects water quality. The impact of climate change is less significant than that of human activities and their combination, which result in a reduction in DO levels of 0.02–0.13 mg/L, 0.07–0.44 mg/L, and 0.09–0.48 mg/L, respectively. Meanwhile, during the southwest monsoon, climate change significantly reduces water quality (0.25–0.31 mg/L), more so than human activities (0.14–0.16 mg/L) and their combined effects (0.13–0.17 mg/L). This may elucidate the fact that the increase in nutrient supply from the river during the southwest monsoon in this region can result in an increase in nutrient levels and biological activity, which, in turn, causes an increase in DO. Additionally, the augmented quantity of DO may partially offset the decrease in DO resulting from climate change. Under the influence of human activities and climate change, the nutrient levels in the area increase, with average values of 0.002–0.033 g/m3 (NO3), 0.0003–0.034 g/m3 (NH4+), and 0.0005–0.014 g/m3 (PO43−). Full article
Show Figures

Figure 1

17 pages, 3460 KiB  
Article
Research on Flood Storage and Disaster Mitigation Countermeasures for Floods in China’s Dongting Lake Area Based on Hydrological Model of Jingjiang–Dongting Lake
by Wengang Zhao, Weizhi Ji, Jiahu Wang, Jieyu Jiang, Wen Song, Zaiai Wang, Huizhu Lv, Hanyou Lu and Xiaoqun Liu
Water 2025, 17(1), 1; https://doi.org/10.3390/w17010001 - 24 Dec 2024
Cited by 2 | Viewed by 869
Abstract
China’s Dongting Lake area is intertwined with rivers and lakes and possesses many water systems. As such, it is one of the most complicated areas in the Yangtze River Basin, in terms of the complexity of its flood control. Over time, siltation and [...] Read more.
China’s Dongting Lake area is intertwined with rivers and lakes and possesses many water systems. As such, it is one of the most complicated areas in the Yangtze River Basin, in terms of the complexity of its flood control. Over time, siltation and reclamation in the lake area have greatly weakened the river discharge capacity of the lake area, and whether it can endure extreme floods remains an open question. As there is no effective scenario simulation model for the lake area, this study constructs a hydrological model for the Jingjiang–Dongting Lake system and verifies the model using data from 11 typical floods occurring from 1954 to 2020. The parameters derived from 2020 data reflect the latest hydrological relationship between the lake and the river, while meteorological data from 1954 and 1998 are used as inputs for various scenarios with the aim of evaluating the flood pressure of the lake area, using the water levels at the Chengglingji and Luoshan stations as indicators. The preliminary results demonstrate that the operation of the upstream Three Gorges Dam and flood storage areas cannot completely offset the flood pressure faced by the lake area. Therefore, the reinforcement and raising of embankments should be carried out, in order to cope with potential extreme flood events. The methodology and results of this study have reference value for policy formation, flood control, and assessment and dispatching in similar areas. Full article
(This article belongs to the Special Issue Advances in Ecohydrology in Arid Inland River Basins)
Show Figures

Figure 1

18 pages, 8024 KiB  
Article
Evaluating a Nickel–Metal Hydride (NiMH) Battery Regeneration Patent Based on a Non-Intrusive and Unsupervised Prototype
by Rafael Martínez-Sánchez, Angel Molina-García, Antonio Mateo-Aroca and Alfonso P. Ramallo-González
Batteries 2024, 10(11), 402; https://doi.org/10.3390/batteries10110402 - 14 Nov 2024
Viewed by 2205
Abstract
In the ongoing shift toward electric vehicles (EVs) primarily utilizing lithium-ion battery technology, a significant population of hybrid electric vehicles (HEVs) remains operational, which are reliant on established NiMH battery systems. Over the last twenty years, these HEVs have generated a substantial number [...] Read more.
In the ongoing shift toward electric vehicles (EVs) primarily utilizing lithium-ion battery technology, a significant population of hybrid electric vehicles (HEVs) remains operational, which are reliant on established NiMH battery systems. Over the last twenty years, these HEVs have generated a substantial number of NiMH batteries that are either inoperable, experiencing performance degradation, or approaching the end of their service life. This situation results in a twofold challenge: (i) a growing volume of environmentally hazardous waste due to the difficulty of NiMH battery reclamation and (ii) escalating maintenance costs for HEV owners necessitated by replacement battery purchases. To overcome this scenario, patent WO2015092107A1, published in 2015, proposed a ‘Method for regenerating NiMH batteries.’ This method claimed the ability to restore NiMH batteries to their original functionality based on a non-intrusive approach. However, a comprehensive review of the relevant scientific literature fails to identify any empirical evidence supporting the efficacy of this regeneration technique. Within this context, this study provides a detailed analysis and evaluation of the regeneration process based on an unsupervised and non-intrusive prototype. The proposed prototype can be used not only to implement and evaluate the previous patent, but also to test any other process or methodology based on controlled charging/discharging periods under certain current conditions. NiMH battery cells from a Toyota Prius were included in this work as a real case study. The experimental results from this prototype demonstrate the reduced potential for battery regeneration using the proposed method. Future contributions should offer a promising solution for mitigating the challenges associated with NiMH battery disposal, maintenance within the HEV domain, and other second-life alternative options. Full article
Show Figures

Graphical abstract

22 pages, 62132 KiB  
Article
Assessment of the Impact of Land Use on Biodiversity Based on Multiple Scenarios—A Case Study of Southwest China
by Yingzhi Kuang, Hao Zhou and Lun Yin
Diversity 2024, 16(10), 630; https://doi.org/10.3390/d16100630 - 10 Oct 2024
Cited by 4 | Viewed by 2398
Abstract
The main causes of habitat conversion, degradation, and fragmentation—all of which add to the loss in biodiversity—are human activities, such as urbanization and farmland reclamation. In order to inform scientific land management and biodiversity conservation strategies and, therefore, advance sustainable development, it is [...] Read more.
The main causes of habitat conversion, degradation, and fragmentation—all of which add to the loss in biodiversity—are human activities, such as urbanization and farmland reclamation. In order to inform scientific land management and biodiversity conservation strategies and, therefore, advance sustainable development, it is imperative to evaluate the effects of land-use changes on biodiversity, especially in areas with high biodiversity. Using data from five future land-use scenarios under various Shared Socioeconomic Pathways (SSPs) and Representative Concentration Pathways (RCPs), this study systematically assesses the characteristics of land-use and landscape pattern changes in southwest China by 2050. This study builds a comprehensive biodiversity index and forecasts trends in species richness and habitat quality using models like Fragstats and InVEST to evaluate the overall effects of future land-use changes on biodiversity. The research yielded the subsequent conclusions: (1) Grasslands and woods will continue to be the primary land uses in southwest China in the future. But the amount of grassland is expected to decrease by 11,521 to 102,832 km2, and the amounts of wasteland and urban area are expected to increase by 8130 to 16,293 km2 and 4028 to 19,677 km2, respectively. Furthermore, it is anticipated that metropolitan areas will see an increase in landscape fragmentation and shape complexity, whereas forests and wastelands will see a decrease in these aspects. (2) In southwest China, there is a synergistic relationship between species richness and habitat quality, and both are still at relatively high levels. In terms of species richness and habitat quality, the percentage of regions categorized as outstanding and good range from 71.63% to 74.33% and 70.13% to 75.83%, respectively. The environmental circumstances for species survival and habitat quality are expected to worsen in comparison to 2020, notwithstanding these high levels. Western Sichuan, southern Guizhou, and western Yunnan are home to most of the high-habitat-quality and species-richness areas, while the western plateau is home to the majority of the lower scoring areas. (3) The majority of areas (89.84% to 94.29%) are forecast to undergo little change in the spatial distribution of biodiversity in southwest China, and the general quality of the ecological environment is predicted to stay favorable. Except in the SSP1-RCP2.6 scenario, however, it is expected that the region with declining biodiversity will exceed those with increasing biodiversity. In comparison to 2020, there is a projected decline of 1.0562% to 5.2491% in the comprehensive biodiversity index. These results underscore the major obstacles to the conservation of biodiversity in the area, highlighting the need to fortify macro-level land-use management, put into practice efficient regional conservation plans, and incorporate traditional knowledge in order to save biodiversity. Full article
(This article belongs to the Special Issue Biodiversity Conservation Planning and Assessment)
Show Figures

Figure 1

Back to TopTop