Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (15,625)

Search Parameters:
Keywords = receptor targeting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 533 KiB  
Review
The Role of the Endocannabinoid System in Oncology and the Potential Use of Cannabis Derivatives for Cancer Management in Companion Animals
by Giorgia della Rocca, Alessandra Di Salvo, Erica Salucci, Michela Amadori, Giovanni Re and Cristina Vercelli
Animals 2025, 15(15), 2185; https://doi.org/10.3390/ani15152185 - 24 Jul 2025
Abstract
The last decades of research have shown that the endocannabinoid system may be a promising therapeutic target for the pharmacological treatment of cancer in human medicine and possibly in veterinary medicine as well. Compared with the original cells, the expression of gene encoding [...] Read more.
The last decades of research have shown that the endocannabinoid system may be a promising therapeutic target for the pharmacological treatment of cancer in human medicine and possibly in veterinary medicine as well. Compared with the original cells, the expression of gene encoding for receptors and enzymes belonging to the endocannabinoid system has been found to be altered in several tumor types; it has been hypothesized that this aberrant expression may be related to the course of the neoplasm as well as to the patient’s prognosis. Several studies, conducted both in vitro and in vivo, suggest that both endo- and phytocannabinoids can modulate signaling pathways, controlling cell proliferation and survival. In the complex process of carcinogenesis, cannabinoids seem to intervene at different levels by stimulating cell death, inhibiting the processes of angiogenesis and metastasis, and regulating antitumor immunity. Although the molecular mechanisms by which cannabinoids act are not always clear and defined, their synergistic activity with the most used antineoplastic drugs in clinical oncology is showing promising results, thus providing veterinary medicine with alternative therapeutic targets in disease control. This review aims to summarize current knowledge on the potential role of the endocannabinoid system and exogenous cannabinoids in oncology, with specific reference to the molecular mechanisms by which cannabinoids may exert antitumor activity. Additionally, it explores the potential synergy between cannabinoids and conventional anticancer drugs and considers their application in veterinary oncology. Full article
19 pages, 3664 KiB  
Article
Feasibility of Manufacturing and Antitumor Activity of TIL for Advanced Endometrial Cancers
by Yongliang Zhang, Kathleen N. Moore, Amir A. Jazaeri, Judy Fang, Ilabahen Patel, Andrew Yuhas, Patrick Innamarato, Nathan Gilbert, Joseph W. Dean, Behzad Damirchi, Joe Yglesias, Rongsu Qi, Michelle R. Simpson-Abelson, Erwin Cammaart, Sean R. R. Hall and Hequn Yin
Int. J. Mol. Sci. 2025, 26(15), 7151; https://doi.org/10.3390/ijms26157151 - 24 Jul 2025
Abstract
Lifileucel, a tumor-infiltrating lymphocyte (TIL) cell therapy approved for advanced melanoma, demonstrates promise for treating other solid tumors, including endometrial cancer (EC). The current study evaluates the feasibility of manufacturing TILs from EC tumors using Iovance’s proprietary 22-day Gen2 manufacturing process. Key parameters, [...] Read more.
Lifileucel, a tumor-infiltrating lymphocyte (TIL) cell therapy approved for advanced melanoma, demonstrates promise for treating other solid tumors, including endometrial cancer (EC). The current study evaluates the feasibility of manufacturing TILs from EC tumors using Iovance’s proprietary 22-day Gen2 manufacturing process. Key parameters, including TIL yield, viability, immune phenotype, T-cell receptor clonality, and cytotoxic activity, were assessed. Of the 11 EC tumor samples processed at research scale, 10 (91%) successfully generated >1 × 109 viable TIL cells, with a median yield of 1.1 × 1010 cells and a median viability of 82.8%. Of the four EC tumor samples processed at full scale, all achieved the pre-specified TVC and viability targets. Putative tumor-reactive T-cell clones were maintained throughout the manufacturing process. Functional reactivity was evidenced by the upregulation of 4-1BB in CD8+ T cells, OX40 in CD4+ T cells, and increased production of IFN-γ and TNF-α upon autologous tumor stimulation. Furthermore, antitumor activity was confirmed using an in vitro autologous tumor organoid killing assay. These findings demonstrate the feasibility of ex vivo TIL expansion from EC tumors. This study provides a rationale for the initiation of the phase II clinical trial IOV-END-201 (NCT06481592) to evaluate lifileucel in patients with advanced EC. Full article
(This article belongs to the Special Issue Endometrial Cancer: From Basic Science to Novel Therapeutics)
Show Figures

Figure 1

39 pages, 2934 KiB  
Review
Phytocannabinoids as Novel SGLT2 Modulators for Renal Glucose Reabsorption in Type 2 Diabetes Management
by Raymond Rubianto Tjandrawinata, Dante Saksono Harbuwono, Sidartawan Soegondo, Nurpudji Astuti Taslim and Fahrul Nurkolis
Pharmaceuticals 2025, 18(8), 1101; https://doi.org/10.3390/ph18081101 - 24 Jul 2025
Abstract
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target [...] Read more.
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target pharmacology, including interactions with cannabinoid receptors, Peroxisome Proliferator-Activated Receptors (PPARs), Transient Receptor Potential (TRP) channels, and potentially SGLT2. Objective: To evaluate the potential of phytocannabinoids as novel modulators of renal glucose reabsorption via SGLT2 and to compare their efficacy, safety, and pharmacological profiles with synthetic SGLT2 inhibitors. Methods: We performed a narrative review encompassing the following: (1) the molecular and physiological roles of SGLT2; (2) chemical classification, natural sources, and pharmacokinetics/pharmacodynamics of major phytocannabinoids (Δ9-Tetrahydrocannabinol or Δ9-THC, Cannabidiol or CBD, Cannabigerol or CBG, Cannabichromene or CBC, Tetrahydrocannabivarin or THCV, and β-caryophyllene); (3) in silico docking and drug-likeness assessments; (4) in vitro assays of receptor binding, TRP channel modulation, and glucose transport; (5) in vivo rodent models evaluating glycemic control, weight change, and organ protection; (6) pilot clinical studies of THCV and case reports of CBD/BCP; (7) comparative analysis with established synthetic inhibitors. Results: In silico studies identify high-affinity binding of several phytocannabinoids within the SGLT2 substrate pocket. In vitro, CBG and THCV modulate SGLT2-related pathways indirectly via TRP channels and CB receptors; direct IC50 values for SGLT2 remain to be determined. In vivo, THCV and CBD demonstrate glucose-lowering, insulin-sensitizing, weight-reducing, anti-inflammatory, and organ-protective effects. Pilot clinical data (n = 62) show that THCV decreases fasting glucose, enhances β-cell function, and lacks psychoactive side effects. Compared to synthetic inhibitors, phytocannabinoids offer pleiotropic benefits but face challenges of low oral bioavailability, polypharmacology, inter-individual variability, and limited large-scale trials. Discussion: While preclinical and early clinical data highlight phytocannabinoids’ potential in SGLT2 modulation and broader metabolic improvement, their translation is impeded by significant challenges. These include low oral bioavailability, inconsistent pharmacokinetic profiles, and the absence of standardized formulations, necessitating advanced delivery system development. Furthermore, the inherent polypharmacology of these compounds, while beneficial, demands comprehensive safety assessments for potential off-target effects and drug interactions. The scarcity of large-scale, well-controlled clinical trials and the need for clear regulatory frameworks remain critical hurdles. Addressing these aspects is paramount to fully realize the therapeutic utility of phytocannabinoids as a comprehensive approach to T2DM management. Conclusion: Phytocannabinoids represent promising multi-target agents for T2DM through potential SGLT2 modulation and complementary metabolic effects. Future work should focus on pharmacokinetic optimization, precise quantification of SGLT2 inhibition, and robust clinical trials to establish efficacy and safety profiles relative to synthetic inhibitors. Full article
Show Figures

Graphical abstract

17 pages, 1173 KiB  
Review
The Potential Therapeutic Role of Bruton Tyrosine Kinase Inhibition in Neurodegenerative Diseases
by Francesco D’Egidio, Housem Kacem, Giorgia Lombardozzi, Michele d’Angelo, Annamaria Cimini and Vanessa Castelli
Appl. Sci. 2025, 15(15), 8239; https://doi.org/10.3390/app15158239 - 24 Jul 2025
Abstract
Bruton Tyrosine Kinase (BTK) has emerged as a critical mediator in the pathophysiology of neuroinflammation associated with neurodegenerative diseases. BTK, a non-receptor tyrosine kinase predominantly expressed in cells of the hematopoietic lineage, modulates B-cell receptor signaling and innate immune responses, including microglial activation. [...] Read more.
Bruton Tyrosine Kinase (BTK) has emerged as a critical mediator in the pathophysiology of neuroinflammation associated with neurodegenerative diseases. BTK, a non-receptor tyrosine kinase predominantly expressed in cells of the hematopoietic lineage, modulates B-cell receptor signaling and innate immune responses, including microglial activation. Recent evidence implicates aberrant BTK signaling in the exacerbation of neuroinflammatory cascades contributing to neuronal damage in disorders such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, ischemic stroke, and Huntington’s disease. Pharmacological inhibition of BTK has shown promise in attenuating microglial-mediated neurotoxicity, reducing pro-inflammatory cytokine release, and promoting neuroprotection in preclinical models. BTK inhibitors, originally developed for hematological malignancies, demonstrate favorable blood–brain barrier penetration and immunomodulatory effects relevant to central nervous system pathology. This therapeutic approach may counteract detrimental neuroimmune interactions without broadly suppressing systemic immunity, thus preserving host defense. Ongoing clinical trials are evaluating the safety and efficacy of BTK inhibitors in patients with neurodegenerative conditions, with preliminary results indicating potential benefits in slowing disease progression and improving neurological outcomes. This review consolidates current knowledge on BTK signaling in neurodegeneration and highlights the rationale for BTK inhibition as a novel, targeted therapeutic strategy to modulate neuroinflammation and mitigate neurodegenerative processes. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
17 pages, 720 KiB  
Article
Involvement of Hormone Receptors, Membrane Receptors and Signaling Pathways in European Gastric Cancers Regarding Subtypes and Epigenetic Alterations: A Pilot Study
by Cynthia Pimpie, Anne Schninzler, Marc Pocard, Véronique Baud and Martine Perrot-Applanat
Biomedicines 2025, 13(8), 1815; https://doi.org/10.3390/biomedicines13081815 - 24 Jul 2025
Abstract
Background: Gastric cancer (GC) is a highly heterogeneous disease and remains one of the major causes of cancer-related mortality worldwide. The vast majority of GC cases are adenocarcinomas including diffuse and intestinal GC that may differ in their incidence between Asian and [...] Read more.
Background: Gastric cancer (GC) is a highly heterogeneous disease and remains one of the major causes of cancer-related mortality worldwide. The vast majority of GC cases are adenocarcinomas including diffuse and intestinal GC that may differ in their incidence between Asian and non-Asian cohorts. The intestinal-subtype GC has declined over the past 50 years. In contrast to the intestinal-subtype adenocarcinoma, the incidence of diffuse-subtype GC, often associated with poor overall survival, has constantly increased in the USA and Europe. The aim of this study was to analyze the expression and clinical significance of steroid hormone receptors, two membrane-bound receptors (ERRγ and GPER), and several genes involved in epigenetic alterations. The findings may contribute to revealing events driving tumorigenesis and may aid prognosis. Methods: Using mRNA from diffuse and intestinal GC tumor samples, the expression level of 11 genes, including those coding for sex hormone receptors (estrogen receptors ERα and ERβ), progesterone receptor (PR) and androgen receptor (AR), and the putative relevant ERRγ and GPER receptor were determined by RT-qPCR. Results: In diffuse GC, the expression of ERα, ERβ, PR and AR differed from their expression in the intestinal subtype. The expression of ERα and ERβ was strongly increased in the diffuse subtype compared to the intestinal subtype (×1.90, p = 0.001 and ×2.68, p = 0.002, respectively). Overexpression of ERα and ERβ was observed in diffuse GC (15 and 42%, respectively). The expression levels of PR and AR were strongly decreased in the intestinal subtype as compared to diffuse GC (×0.48, p = 0.005 and ×0.25, p = 0.003, respectively; 37.5% and 56% underexpression). ERα, ERβ, PR and AR showed notable differences for clinicopathological correlation in the diffuse and intestinal GC. A significant decrease of ERα, ERβ, PR and AR in intestinal GC correlated with the absence of lymphatic invasion and lower TNM (I-II). In diffuse GC, among the hormone receptors, increases of ERs and PR mainly correlated with expression of growth factors and receptors (IGF1, FGF7 and FGFR1), and with genes involved in epithelial-mesenchymal transition (VIM and ZEB2) or cell migration (MMP2). Our results also report the strong decreased expression of ERRγ and GPER (two receptors that bind estrogen or xenoestrogens) in diffuse and intestinal subtypes. Conclusions: Our study identified new target genes, namely hormone receptors and membrane receptors (ERRγ and GPER), whose expression is associated with an aggressive phenotype of diffuse GC, and revealed the importance of epigenetic factors (EZH2, HOTAIR, H19 and DNMT1) in gastric cancers. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

51 pages, 6544 KiB  
Review
Variations in “Functional Site” Residues and Classification of Three-Finger Neurotoxins in Snake Venoms
by R. Manjunatha Kini and Cho Yeow Koh
Toxins 2025, 17(8), 364; https://doi.org/10.3390/toxins17080364 - 24 Jul 2025
Abstract
Three-finger toxins (3FTxs) are the largest group of nonenzymatic toxins found in snake venoms. Among them, neurotoxins that target nicotinic acetylcholine receptors are the most well-studied ligands. In addition to the classical neurotoxins, several other new classes have been characterized for their structure, [...] Read more.
Three-finger toxins (3FTxs) are the largest group of nonenzymatic toxins found in snake venoms. Among them, neurotoxins that target nicotinic acetylcholine receptors are the most well-studied ligands. In addition to the classical neurotoxins, several other new classes have been characterized for their structure, receptor subtype, and species selectivity. Here, we systematically analyzed over 700 amino acid sequences of three-finger neurotoxins that interact with nicotinic acetylcholine receptors. Based on the amino acid residue substitutions in the functional sites and structural features of various classes of neurotoxins, we have classified them into over 150 distinct subgroups. Currently, only a small number of typical examples representing these subgroups have been studied for their structure, function, and subtype selectivity. The functional site residues responsible for their interaction with specific receptor subtypes of several toxins are yet to be identified. The molecular details of each subgroup representative toxin with its target receptor will contribute towards the understanding of subtype- and/or interface-selectivity. Thus, this review will provide new impetus in the toxin research and pave the way for the design of potent, selective ligands for nicotinic acetylcholine receptors. Full article
(This article belongs to the Special Issue Venom Genes and Genomes of Venomous Animals: Evolution and Variation)
30 pages, 782 KiB  
Review
Immune Responses of Dendritic Cells to Zoonotic DNA and RNA Viruses
by Xinyu Miao, Yixuan Han, Yinyan Yin, Yang Yang, Sujuan Chen, Xinan Jiao, Tao Qin and Daxin Peng
Vet. Sci. 2025, 12(8), 692; https://doi.org/10.3390/vetsci12080692 - 24 Jul 2025
Abstract
Viral infections persistently challenge global health through immune evasion and zoonotic transmission. Dendritic cells (DCs) play a central role in antiviral immunity by detecting viral nucleic acids via conserved pattern recognition receptors, triggering interferon-driven innate responses and cross-presentation-mediated activation of cytotoxic CD8+ [...] Read more.
Viral infections persistently challenge global health through immune evasion and zoonotic transmission. Dendritic cells (DCs) play a central role in antiviral immunity by detecting viral nucleic acids via conserved pattern recognition receptors, triggering interferon-driven innate responses and cross-presentation-mediated activation of cytotoxic CD8+ T cells. This study synthesizes DC-centric defense mechanisms against viral subversion, encompassing divergent nucleic acid sensing pathways for zoonotic DNA and RNA viruses, viral counterstrategies targeting DC maturation and interferon signaling, and functional specialization of DC subsets in immune coordination. Despite advances in DC-based vaccine platforms, clinical translation is hindered by cellular heterogeneity, immunosuppressive microenvironments, and limitations in antigen delivery. Future research should aim to enhance the efficiency of DC-mediated immunity, thereby establishing a robust scientific foundation for the development of next-generation vaccines and antiviral therapies. A more in-depth exploration of DC functions and regulatory mechanisms may unlock novel strategies for antiviral intervention, ultimately paving the way for improved prevention and treatment of viral infections. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

29 pages, 7357 KiB  
Article
Pan-Cancer Computational Analysis of RKIP (PEBP1) and LKB1 (STK11) Co-Expression Highlights Distinct Immunometabolic Dynamics and Therapeutic Responses Within the Tumor Microenvironment
by Evangelia Skouradaki, Apostolos Zaravinos, Maria Panagopoulou, Ekaterini Chatzaki, Nikolas Dovrolis and Stavroula Baritaki
Int. J. Mol. Sci. 2025, 26(15), 7145; https://doi.org/10.3390/ijms26157145 - 24 Jul 2025
Abstract
RKIP and LKB1, encoded by PEBP1 and STK11, respectively, have emerged as key regulators of cancer pathophysiology. However, their role in shaping tumor progression through modulation of the tumor microenvironment (TME) is not yet fully understood. To address this, we performed a [...] Read more.
RKIP and LKB1, encoded by PEBP1 and STK11, respectively, have emerged as key regulators of cancer pathophysiology. However, their role in shaping tumor progression through modulation of the tumor microenvironment (TME) is not yet fully understood. To address this, we performed a comprehensive pan-cancer analysis using TCGA transcriptomic data across 33 cancer types, grouped by their tissue of origin. We investigated PEBP1/STK11 co-expression and its association with transcriptomic reprogramming in major TME components, including immune, mechanical, metabolic, and hypoxic subtypes. Our results revealed both positive and inverse correlations between PEBP1/STK11 co-expression and TME-related molecular signatures, which did not align with classical cancer categorizations. In a subset of tumors, PEBP1/STK11 co-expression was significantly associated with improved overall survival and reduced mortality (HR < 1). Notably, we predominantly observed inverse correlations with pro-inflammatory and immunosuppressive chemokines, immune checkpoints, extracellular matrix components, and key regulators of epithelial-to-mesenchymal transition. In contrast, we found positive associations with anti-inflammatory chemokines and their receptors. Importantly, PEBP1/STK11 co-expression was consistently linked to reduced expression of drug resistance genes and greater chemosensitivity across multiple tumor types. Our findings underscore the co-expression of PEBP1 and STK11 as a promising target for future studies aimed at elucidating its potential as a biomarker for prognosis and therapeutic response in precision oncology. Full article
(This article belongs to the Special Issue Cancer Immunotherapy Biomarkers)
Show Figures

Figure 1

20 pages, 1165 KiB  
Review
Limited Proteolysis as a Regulator of Lymphatic Vessel Function and Architecture
by Takuro Miyazaki
Int. J. Mol. Sci. 2025, 26(15), 7144; https://doi.org/10.3390/ijms26157144 - 24 Jul 2025
Abstract
Recent advances have highlighted the multifaceted roles of the lymphatic vasculature in immune cell trafficking, immunomodulation, nutrient transport, and fluid homeostasis. Beyond these physiological functions, lymphatic vessels are critically involved in pathologies such as cancer metastasis and lymphedema, rendering their structural and functional [...] Read more.
Recent advances have highlighted the multifaceted roles of the lymphatic vasculature in immune cell trafficking, immunomodulation, nutrient transport, and fluid homeostasis. Beyond these physiological functions, lymphatic vessels are critically involved in pathologies such as cancer metastasis and lymphedema, rendering their structural and functional regulation of major interest. Emerging evidence suggests that limited proteolysis is a key regulatory mechanism for lymphatic vascular function. In dyslipidemic conditions, dysregulated calpain activity impairs lymphatic trafficking and destabilizes regulatory T cells, partly via the limited proteolysis of mitogen-activated kinase kinase kinase 1 and inhibitor of κBα. In addition, a disintegrin and metalloprotease with thrombospondin motifs-3-mediated proteolytic activation of vascular endothelial growth factor-C has been implicated in both developmental and tumor-associated lymphangiogenesis. Proteolytic shedding of lymphatic vessel endothelial hyaluronan receptor-1 by a disintegrin and metalloprotease 17 promotes lymphangiogenesis, whereas cleavage by membrane-type 1 matrix metalloproteinase inhibits it. This review is structured around two core aspects—lymphatic inflammation and lymphangiogenesis—and highlights recent findings on how limited proteolysis regulates each of these processes. It also discusses the therapeutic potential of targeting these proteolytic machineries and currently unexplored research questions, such as how intercellular junctions of lymphatic endothelial cells are controlled. Full article
11 pages, 3393 KiB  
Article
Aryl Hydrocarbon Receptor Is Required for Fasting-Induced Improvement of Gut Barrier Integrity in Caenorhabditis elegans
by Junjie Sun and Yuseok Moon
Antioxidants 2025, 14(8), 905; https://doi.org/10.3390/antiox14080905 - 24 Jul 2025
Abstract
The intestinal barrier governs organismal health through nutrient absorption, microbial homeostasis, and immune surveillance. While calorie restriction (CR) enhances metabolic health, the molecular mechanisms underlying its beneficial effects on gut integrity remain unclear. Here, we demonstrate that the aryl hydrocarbon receptor (AHR), a [...] Read more.
The intestinal barrier governs organismal health through nutrient absorption, microbial homeostasis, and immune surveillance. While calorie restriction (CR) enhances metabolic health, the molecular mechanisms underlying its beneficial effects on gut integrity remain unclear. Here, we demonstrate that the aryl hydrocarbon receptor (AHR), a conserved xenobiotic sensor and metabolic regulator, is essential for CR-mediated improvements in intestinal function. Using Caenorhabditis elegans (C. elegans), we subjected wild-type (N2) and AHR-deficient strains (CZ2485 and ZG24) to ad libitum feeding (AL), intermittent fasting (IF), or complete food deprivation (FD). In wild-type animals, intermittent fasting markedly reduced intestinal permeability and bacterial burden while enhancing mitochondrial function and reducing reactive oxygen species. Complete food deprivation conferred modest benefits. Remarkably, these protective effects were severely compromised in AHR mutants, which exhibited increased gut leakage, bacterial colonization, and mitochondrial oxidative stress under fasting conditions. These findings establish AHR as a critical mediator of fasting-induced intestinal resilience, revealing a previously unrecognized regulatory axis linking metabolic sensing to gut barrier homeostasis. Our work illuminates fundamental mechanisms through which calorie restriction promotes gastrointestinal health and identifies AHR-dependent pathways as promising therapeutic targets for metabolic and inflammatory distress affecting the gut–systemic interface. Full article
Show Figures

Figure 1

15 pages, 1064 KiB  
Article
Targeting RARγ Decreases Immunosuppressive Macrophage Polarization and Reduces Tumor Growth
by Jihyeon Park, Jisun Oh, Sang-Hyun Min, Ji Hoon Yu, Jong-Sup Bae and Hui-Jeon Jeon
Molecules 2025, 30(15), 3099; https://doi.org/10.3390/molecules30153099 - 24 Jul 2025
Abstract
Tumor-associated macrophages (TAMs) play a critical role in the tumor microenvironment (TME), interacting with cancer cells and other components to promote tumor growth. Given the influence of TAMs on tumor progression and resistance to therapy, regulating the activity of these macrophages is crucial [...] Read more.
Tumor-associated macrophages (TAMs) play a critical role in the tumor microenvironment (TME), interacting with cancer cells and other components to promote tumor growth. Given the influence of TAMs on tumor progression and resistance to therapy, regulating the activity of these macrophages is crucial for improving cancer treatment outcomes. TAMs often exhibit immunosuppressive phenotypes (commonly referred to as M2-like macrophages), which suppress immune responses and contribute to drug resistance. Therefore, inhibiting immunosuppressive polarization offers a promising strategy to impede tumor growth. This study revealed retinoic acid receptor gamma (RARγ), a nuclear receptor, as a key regulator of immunosuppressive polarization in THP-1 macrophages. Indeed, the inhibition of RARγ, either by a small molecule or gene silencing, significantly reduced the expression of immunosuppressive macrophage markers. In a three-dimensional tumor spheroid model, immunosuppressive macrophages enhanced the proliferation of HCT116 colorectal cancer cells, which was significantly hindered by RARγ inhibition. These findings suggest that targeting RARγ reprograms immunosuppressive macrophages and mitigates the tumor-promoting effects of TAMs, highlighting RARγ as a promising therapeutic target for developing novel anti-cancer strategies. Full article
Show Figures

Figure 1

14 pages, 7293 KiB  
Article
Components of Mineralocorticoid Receptor System in Human DRG Neurons Co-Expressing Pain-Signaling Molecules: Implications for Nociception
by Shaaban A. Mousa, Xueqi Hong, Elsayed Y. Metwally, Sascha Tafelski, Jan David Wandrey, Jörg Piontek, Sascha Treskatsch, Michael Schäfer and Mohammed Shaqura
Cells 2025, 14(15), 1142; https://doi.org/10.3390/cells14151142 - 24 Jul 2025
Abstract
The mineralocorticoid receptor (MR), traditionally associated with renal function, has also been identified in various extrarenal tissues, including the heart, brain, and dorsal root ganglion (DRG) neurons in rodents. Previous studies suggest a role for the MR in modulating peripheral nociception, with MR [...] Read more.
The mineralocorticoid receptor (MR), traditionally associated with renal function, has also been identified in various extrarenal tissues, including the heart, brain, and dorsal root ganglion (DRG) neurons in rodents. Previous studies suggest a role for the MR in modulating peripheral nociception, with MR activation in rat DRG neurons by its endogenous ligand, aldosterone. This study aimed to determine whether MR, its protective enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), its endogenous ligand aldosterone, and the aldosterone-synthesizing enzyme CYP11B2 are expressed in human DRG neurons and whether they colocalize with key pain-associated signaling molecules as potential targets for genomic regulation. To this end, we performed mRNA transcript profiling and immunofluorescence confocal microscopy on human and rat DRG tissues. We detected mRNA transcripts for MR, 11β-HSD2, and CYP11B2 in human DRG, alongside transcripts for key thermosensitive and nociceptive markers such as TRPV1, the TTX-resistant sodium channel Nav1.8, and the neuropeptides CGRP and substance P (Tac1). Immunofluorescence analysis revealed substantial colocalization of MR with 11β-HSD2 and CGRP, a marker of unmyelinated C-fibers and thinly myelinated Aδ-fibers, in human DRG. MR immunoreactivity was primarily restricted to small- and medium-diameter neurons, with lower expression in large neurons (>70 µm). Similarly, aldosterone colocalized with CYP11B2 and MR with nociceptive markers including TRPV1, Nav1.8, and TrkA in human DRG. Importantly, functional studies demonstrated that prolonged intrathecal inhibition of aldosterone synthesis within rat DRG neurons, using an aldosterone synthase inhibitor significantly downregulated pain-associated molecules and led to sustained attenuation of inflammation-induced hyperalgesia. Together, these findings identify a conserved peripheral MR signaling axis in humans and highlight its potential as a novel target for pain modulation therapies. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

21 pages, 1397 KiB  
Review
Advancements in Beta-Adrenergic Therapy and Novel Personalised Approach for Portal Hypertension: A Narrative Review
by Raluca-Ioana Avram, Horia Octav Minea, Laura Huiban, Ioana-Roxana Damian, Mihaela-Cornelia Muset, Simona Juncu, Cristina Maria Muzica, Sebastian Zenovia, Ana Maria Singeap, Irina Girleanu, Carol Stanciu and Anca Trifan
Life 2025, 15(8), 1173; https://doi.org/10.3390/life15081173 - 24 Jul 2025
Abstract
Liver cirrhosis is a chronic progressive disease marked by the transition from a compensated to a decompensated stage, associated with severe complications. Central to this progression is portal hypertension, which results from increased intrahepatic vascular resistance and endothelial dysfunction, as well as splanchnic [...] Read more.
Liver cirrhosis is a chronic progressive disease marked by the transition from a compensated to a decompensated stage, associated with severe complications. Central to this progression is portal hypertension, which results from increased intrahepatic vascular resistance and endothelial dysfunction, as well as splanchnic vasodilation and an augmented circulatory state. Non-selective beta-blockers (NSBBs) remain the standard of care for portal hypertension, reducing portal pressure by lowering cardiac output via beta-1 receptor blockade and decreasing splanchnic blood flow through beta-2 receptor antagonism. However, clinical application of NSBBs is often hindered by adverse effects such as bradycardia, hypotension, and fatigue, alongside inconsistent efficacy in certain patient populations. Such limitations have driven the search for alternative therapeutic strategies and effective biomarkers for identifying non-responders. Beta-3 adrenergic receptor agonists have emerged as promising candidates, acting through distinct mechanisms, different from NSBBs. By stimulating nitric oxide release from endothelial cells, beta-3 agonists induce selective vasodilation without negatively impacting cardiac function, potentially overcoming the limitations of traditional therapies. This review discusses the molecular pathways of NSBBs, their clinical role and limitations, introduces potential novel biomarkers, and highlights the growing evidence supporting beta-3 receptor agonists as novel and targeted treatments for portal hypertension. Full article
(This article belongs to the Special Issue Feature Paper in Physiology and Pathology: 2nd Edition)
Show Figures

Figure 1

21 pages, 1563 KiB  
Systematic Review
Anhedonia and Negative Symptoms in First-Episode Psychosis: A Systematic Review and Meta-Analysis of Prevalence, Mechanisms, and Clinical Implications
by Valerio Ricci, Alessandro Sarni, Marialuigia Barresi, Lorenzo Remondino and Giuseppe Maina
Healthcare 2025, 13(15), 1796; https://doi.org/10.3390/healthcare13151796 - 24 Jul 2025
Abstract
Background: Anhedonia, defined as the diminished capacity to experience pleasure, represents a core negative symptom in first-episode psychosis (FEP) with profound implications for functional outcomes and long-term prognosis. Despite its clinical significance, comprehensive understanding of anhedonia prevalence, underlying mechanisms, and optimal intervention [...] Read more.
Background: Anhedonia, defined as the diminished capacity to experience pleasure, represents a core negative symptom in first-episode psychosis (FEP) with profound implications for functional outcomes and long-term prognosis. Despite its clinical significance, comprehensive understanding of anhedonia prevalence, underlying mechanisms, and optimal intervention strategies in early psychosis remains limited. Objectives: To systematically examine the prevalence and characteristics of anhedonia in FEP patients, explore neurobiological mechanisms, identify clinical correlates and predictive factors, and evaluate intervention efficacy. Methods: Following PRISMA 2020 guidelines, we conducted comprehensive searches across PubMed, Embase, PsycINFO, and Web of Science databases from January 1990 to June 2025. Studies examining anhedonia and negative symptoms in FEP patients (≤24 months from onset) using validated assessment instruments were included. Quality assessment was performed using appropriate tools for study design. Results: Twenty-one studies comprising 3847 FEP patients met inclusion criteria. Anhedonia prevalence ranged from 30% at 10-year follow-up to 53% during acute phases, demonstrating persistent motivational deficits across illness trajectory. Factor analytic studies consistently supported five-factor negative symptom models with anhedonia as a discrete dimension. Neuroimaging investigations revealed consistent alterations in reward processing circuits, including ventral striatum hypofunction and altered network connectivity patterns. Social anhedonia demonstrated stronger associations with functional outcomes compared to other domains. Epigenetic mechanisms involving oxytocin receptor methylation showed gender-specific associations with anhedonia severity. Conventional antipsychotic treatments showed limited efficacy for anhedonia improvement, while targeted psychosocial interventions demonstrated preliminary promise. Conclusions: Anhedonia showed high prevalence (30–53%) across FEP populations with substantial clinical burden (13-fold increased odds vs. general population). Meta-analysis revealed large effect sizes for anhedonia severity in FEP vs. controls (d = 0.83) and strong negative correlations with functional outcomes (r =·−0.82). Neuroimaging demonstrated consistent ventral striatum dysfunction and altered network connectivity. Social anhedonia emerged as the strongest predictor of functional outcomes, with independent suicide risk associations. Conventional antipsychotics showed limited efficacy, while behavioral activation approaches demonstrated preliminary promise. These findings support anhedonia as a distinct treatment target requiring specialized assessment and intervention protocols in early psychosis care. Full article
(This article belongs to the Section Medication Management)
Show Figures

Figure 1

11 pages, 222 KiB  
Review
The Role of Serotoninomics in Neuropsychiatric Disorders: Anthranilic Acid in Schizophrenia
by Katia L. Jiménez-García, José L. Cervantes-Escárcega, Gustavo Canul-Medina, Telma Lisboa-Nascimento and Francisco Jiménez-Trejo
Int. J. Mol. Sci. 2025, 26(15), 7124; https://doi.org/10.3390/ijms26157124 - 24 Jul 2025
Abstract
Serotoninomics is an expanding field that focuses on the comprehensive study of the serotoninergic system, including serotonin’s biosynthesis, metabolism, and regulation, as well as related scientific methodologies 5-hydroxytryptamine (5-HT). This field explores serotonin’s complex roles in various physiological and pathological contexts. The essential [...] Read more.
Serotoninomics is an expanding field that focuses on the comprehensive study of the serotoninergic system, including serotonin’s biosynthesis, metabolism, and regulation, as well as related scientific methodologies 5-hydroxytryptamine (5-HT). This field explores serotonin’s complex roles in various physiological and pathological contexts. The essential amino acid tryptophan (Trp) is a precursor for several metabolic and catabolic pathways, with the kynurenine (KYN) pathway being particularly significant, representing about 95% of Trp metabolism. In contrast, only a small portion (1–2%) of dietary Trp enters the serotonin pathway. Anthranilic acid (AA), a metabolite in the KYN pathway, has emerged as a potential biomarker and therapeutic target for schizophrenia. Elevated serum AA levels in patients with schizophrenia have been associated with neurotoxic effects and disruptions in neurotransmission, suggesting AA’s critical role in the disorder’s pathophysiology. Furthermore, the 5-HT2A receptor’s involvement is particularly noteworthy, especially in relation to schizophrenia’s positive symptoms. Recent findings indicate that 5-HT2A receptor hyperactivity is linked to positive symptoms of schizophrenia, such as hallucinations and delusions. This study investigates serotoninomics’ implications for neuropsychiatric disorders, focusing on AA in schizophrenia and analysing recent research on serotonin signalling pathways and AA’s neurochemical effects. Understanding the roles of the 5-HT2A receptor and AA in neuropsychiatric disorders could lead to the development of more precise and less invasive diagnostic tools, specific therapeutic strategies, and improved clinical outcomes. Ongoing research is essential to uncover these pathways’ exact mechanisms and therapeutic potential, thereby advancing personalised medicine and innovative treatments in neuropsychiatry. Full article
Back to TopTop