Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (357)

Search Parameters:
Keywords = real-time state update

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1669 KiB  
Article
Predefined-Time Adaptive Neural Control with Event-Triggering for Robust Trajectory Tracking of Underactuated Marine Vessels
by Hui An, Zhanyang Yu, Jianhua Zhang, Xinxin Wang and Cheng Siong Chin
Processes 2025, 13(8), 2443; https://doi.org/10.3390/pr13082443 (registering DOI) - 1 Aug 2025
Abstract
This paper addresses the trajectory tracking control problem of underactuated ships in ocean engineering, which faces the dual challenges of tracking error time–performance regulation and robustness design due to the system’s underactuated characteristics, model uncertainties, and external disturbances. Aiming to address the issues [...] Read more.
This paper addresses the trajectory tracking control problem of underactuated ships in ocean engineering, which faces the dual challenges of tracking error time–performance regulation and robustness design due to the system’s underactuated characteristics, model uncertainties, and external disturbances. Aiming to address the issues of traditional finite-time control (convergence time dependent on initial states) and fixed-time control (control chattering and parameter conservativeness), this paper proposes a predefined-time adaptive control framework that integrates an event-triggered mechanism and neural networks. By constructing a Lyapunov function with time-varying weights and designing non-periodic dynamically updated dual triggering conditions, the convergence process of tracking errors is strictly constrained within a user-prespecified time window without relying on initial states or introducing non-smooth terms. An adaptive approximator based on radial basis function neural networks (RBF-NNs) is employed to compensate for unknown nonlinear dynamics and external disturbances in real-time. Combined with the event-triggered mechanism, it dynamically adjusts the update instances of control inputs, ensuring prespecified tracking accuracy while significantly reducing computational resource consumption. Theoretical analysis shows that all signals in the closed-loop system are uniformly ultimately bounded, tracking errors converge to a neighborhood of the origin within the predefined-time, and the update frequency of control inputs exhibits a linear relationship with the predefined-time, avoiding Zeno behavior. Simulation results verify the effectiveness of the proposed method in complex marine environments. Compared with traditional control strategies, it achieves more accurate trajectory tracking, faster response, and a substantial reduction in control input update frequency, providing an efficient solution for the engineering implementation of embedded control systems in unmanned ships. Full article
(This article belongs to the Special Issue Design and Analysis of Adaptive Identification and Control)
17 pages, 5247 KiB  
Article
An Intelligent Optimization-Based Secure Filter Design for State Estimation of Power Systems with Multiple Disturbances
by Yudong Xu, Wei Wang, Yong Liu, Xiaokai Meng, Yutong Chen and Zhixiang Liu
Electronics 2025, 14(15), 3059; https://doi.org/10.3390/electronics14153059 (registering DOI) - 31 Jul 2025
Abstract
To address multiple disturbance threats such as system anomalies and cyberattacks faced by power systems, an intelligent optimized secure filter method is developed in this paper for state estimation of power systems with the aid of the improved sparrow search algorithm–optimized unscented Kalman [...] Read more.
To address multiple disturbance threats such as system anomalies and cyberattacks faced by power systems, an intelligent optimized secure filter method is developed in this paper for state estimation of power systems with the aid of the improved sparrow search algorithm–optimized unscented Kalman filter (ISSA-UKF). Firstly, the problem of insufficient robustness in noise modeling and parameter selection of the conventional unscented Kalman filter (UKF) is analyzed. Secondly, an intelligent optimization method is adopted to adaptively update the UKF’s process and measurement noise covariances in real time, and an ISSA-UKF fusion framework is constructed to improve the estimation accuracy and system response capability. Thirdly, an adaptive weight function based on disturbance observation differences is provided to strengthen the stability of the algorithm in response to abnormal measurements at edge nodes and dynamic system changes. Finally, simulation analysis under a typical power system model shows that compared with the conventional UKF method, the developed ISSA-UKF algorithm demonstrates significant improvements in estimation accuracy, robustness, and dynamic response performance and can effectively cope with non-ideal disturbances that may occur in power systems. Full article
(This article belongs to the Section Systems & Control Engineering)
Show Figures

Figure 1

20 pages, 5568 KiB  
Article
Dynamic Wear Modeling and Experimental Verification of Guide Cone in Passive Compliant Connectors Based on the Archard Model
by Yuanping He, Bowen Wang, Feifei Zhao, Xingfu Hong, Liang Fang, Weihao Xu, Ming Liao and Fujing Tian
Polymers 2025, 17(15), 2091; https://doi.org/10.3390/polym17152091 - 30 Jul 2025
Abstract
To address the wear life prediction challenge of Guide Cones in passive compliant connectors under dynamic loads within specialized equipment, this study proposes a dynamic wear modeling and life assessment method based on the improved Archard model. Through integrated theoretical modeling, finite element [...] Read more.
To address the wear life prediction challenge of Guide Cones in passive compliant connectors under dynamic loads within specialized equipment, this study proposes a dynamic wear modeling and life assessment method based on the improved Archard model. Through integrated theoretical modeling, finite element simulation, and experimental validation, we establish a bidirectional coupling framework analyzing dynamic contact mechanics and wear evolution. By developing phased contact state identification criteria and geometric constraints, a transient load calculation model is established, revealing dynamic load characteristics with peak contact forces reaching 206.34 N. A dynamic contact stress integration algorithm is proposed by combining Archard’s theory with ABAQUS finite element simulation and ALE adaptive meshing technology, enabling real-time iterative updates of wear morphology and contact stress. This approach constructs an exponential model correlating cumulative wear depth with docking cycles (R2 = 0.997). Prototype experiments demonstrate a mean absolute percentage error (MAPE) of 14.6% between simulated and measured wear depths, confirming model validity. With a critical wear threshold of 0.8 mm, the predicted service life reaches 45,270 cycles, meeting 50-year operational requirements (safety margin: 50.9%). This research provides theoretical frameworks and engineering guidelines for wear-resistant design, material selection, and life evaluation in high-reliability automatic docking systems. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

29 pages, 1020 KiB  
Article
Energy Management of Industrial Energy Systems via Rolling Horizon and Hybrid Optimization: A Real-Plant Application in Germany
by Loukas Kyriakidis, Rushit Kansara and Maria Isabel Roldán Serrano
Energies 2025, 18(15), 3977; https://doi.org/10.3390/en18153977 - 25 Jul 2025
Viewed by 246
Abstract
Industrial energy systems are increasingly required to reduce operating costs and CO2 emissions while integrating variable renewable energy sources. Managing these objectives under uncertainty requires advanced optimization strategies capable of delivering reliable and real-time decisions. To address these challenges, this study focuses [...] Read more.
Industrial energy systems are increasingly required to reduce operating costs and CO2 emissions while integrating variable renewable energy sources. Managing these objectives under uncertainty requires advanced optimization strategies capable of delivering reliable and real-time decisions. To address these challenges, this study focuses on the short-term operational planning of an industrial energy supply system using the rolling horizon approach (RHA). The RHA offers an effective framework to handle uncertainties by repeatedly updating forecasts and re-optimizing over a moving time window, thereby enabling adaptive and responsive energy management. To solve the resulting nonlinear and constrained optimization problem at each RHA iteration, we propose a novel hybrid algorithm that combines Bayesian optimization (BO) with the Interior Point OPTimizer (IPOPT). While global deterministic and stochastic optimization methods are frequently used in practice, they often suffer from high computational costs and slow convergence, particularly when applied to large-scale, nonlinear problems with complex constraints. To overcome these limitations, we employ the BO–IPOPT, integrating the global search capabilities of BO with the efficient local convergence and constraint fulfillment of the IPOPT. Applied to a large-scale real-world case study of a food and cosmetic industry in Germany, the proposed BO–IPOPT method outperformed state-of-the-art solvers in both solution quality and robustness, achieving up to 97.25%-better objective function values at the same CPU time. Additionally, the influence of key parameters, such as forecast uncertainty, optimization horizon length, and computational effort per RHA iteration, was analyzed to assess their impact on system performance and decision quality. Full article
Show Figures

Figure 1

20 pages, 6273 KiB  
Article
Seeding Status Monitoring System for Toothed-Disk Cotton Seeders Based on Modular Optoelectronic Sensors
by Tao Jiang, Xuejun Zhang, Zenglu Shi, Jingyi Liu, Wei Jin, Jinshan Yan, Duijin Wang and Jian Chen
Agriculture 2025, 15(15), 1594; https://doi.org/10.3390/agriculture15151594 - 24 Jul 2025
Viewed by 155
Abstract
In precision cotton seeding, the toothed-disk precision seeder often experiences issues with missed seeding and multiple seeding. To promptly detect and address these abnormal seeding conditions, this study develops a modular photoelectric sensing monitoring system. Initially, the monitoring time window is divided using [...] Read more.
In precision cotton seeding, the toothed-disk precision seeder often experiences issues with missed seeding and multiple seeding. To promptly detect and address these abnormal seeding conditions, this study develops a modular photoelectric sensing monitoring system. Initially, the monitoring time window is divided using the capacitance sensing signal between two seed drop ports. Concurrently, a photoelectric monitoring circuit is designed to convert the time when seeds block the sensor into a level signal. Subsequently, threshold segmentation is performed on the time when seeds block the photoelectric path under different seeding states. The proposed spatiotemporal joint counting algorithm identifies, in real time, the threshold type of the photoelectric sensor’s output signal within the current monitoring time window, enabling the differentiation of seeding states and the recording of data. Additionally, an STM32 micro-controller serves as the core of the signal acquisition circuit, sending collected data to the PC terminal via serial port communication. The graphical display interface, designed with LVGL (Light and Versatile Graphics Library), updates the seeding monitoring information in real time. Compared to photoelectric monitoring algorithms that detect seed pickup at the seed metering disc, the monitoring node in this study is positioned posteriorly within the seed guide chamber. Consequently, the differentiation between single seeding and multiple seeding is achieved with greater accuracy by the spatiotemporal joint counting algorithm, thereby enhancing the monitoring precision of the system. Field test results indicate that the system’s average accuracy for single-seeding monitoring is 97.30%, for missed-seeding monitoring is 96.48%, and for multiple-seeding monitoring is 96.47%. The average probability of system misjudgment is 3.25%. These outcomes suggest that the proposed modular photoelectric sensing monitoring system can meet the monitoring requirements of precision cotton seeding at various seeding speeds. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

22 pages, 2538 KiB  
Article
Enhancing Supervisory Control with GPenSIM
by Reggie Davidrajuh, Shuanglin Tang and Yuming Feng
Machines 2025, 13(8), 641; https://doi.org/10.3390/machines13080641 - 23 Jul 2025
Viewed by 203
Abstract
Supervisory control theory (SCT), based on Petri nets, offers a robust framework for modeling and controlling discrete-event systems but faces significant challenges in scalability, expressiveness, and practical implementation. This paper introduces General-purpose Petri Net Simulator and Real-Time Controller (GPenSIM), a MATLAB version 24.1.0.2689473 [...] Read more.
Supervisory control theory (SCT), based on Petri nets, offers a robust framework for modeling and controlling discrete-event systems but faces significant challenges in scalability, expressiveness, and practical implementation. This paper introduces General-purpose Petri Net Simulator and Real-Time Controller (GPenSIM), a MATLAB version 24.1.0.2689473 (R2024a) Update 6-based modular Petri net framework, as a novel solution to these limitations. GPenSIM leverages modular decomposition to mitigate state-space explosion, enabling parallel execution of weakly coupled Petri modules on multi-core systems. Its programmable interfaces (pre-processors and post-processors) extend classical Petri nets’ expressiveness by enforcing nonlinear, temporal, and conditional constraints through custom MATLAB scripts, addressing the rigidity of traditional linear constraints. Furthermore, the integration of GPenSIM with MATLAB facilitates real-time control synthesis, performance optimization, and seamless interaction with external hardware and software, bridging the gap between theoretical models and industrial applications. Empirical studies demonstrate the efficacy of GPenSIM in reconfigurable manufacturing systems, where it reduced downtime by 30%, and in distributed control scenarios, where decentralized modules minimized synchronization delays. Grounded in systems theory principles of interconnectedness, GPenSIM emphasizes dynamic relationships between components, offering a scalable, adaptable, and practical tool for supervisory control. This work highlights the potential of GPenSIM to overcome longstanding limitations in SCT, providing a versatile platform for both academic research and industrial deployment. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

27 pages, 5938 KiB  
Article
Noise-Adaptive GNSS/INS Fusion Positioning for Autonomous Driving in Complex Environments
by Xingyang Feng, Mianhao Qiu, Tao Wang, Xinmin Yao, Hua Cong and Yu Zhang
Vehicles 2025, 7(3), 77; https://doi.org/10.3390/vehicles7030077 - 22 Jul 2025
Viewed by 366
Abstract
Accurate and reliable multi-scene positioning remains a critical challenge in autonomous driving systems, as conventional fixed-noise fusion strategies struggle to handle the dynamic error characteristics of heterogeneous sensors in complex operational environments. This paper proposes a novel noise-adaptive fusion framework integrating Global Navigation [...] Read more.
Accurate and reliable multi-scene positioning remains a critical challenge in autonomous driving systems, as conventional fixed-noise fusion strategies struggle to handle the dynamic error characteristics of heterogeneous sensors in complex operational environments. This paper proposes a novel noise-adaptive fusion framework integrating Global Navigation Satellite System (GNSS) and Inertial Navigation System (INS) measurements. Our key innovation lies in developing a dual noise estimation model that synergizes priori weighting with posterior variance compensation. Specifically, we establish an a priori weighting model for satellite pseudorange errors based on elevation angles and signal-to-noise ratios (SNRs), complemented by a Helmert variance component estimation for posterior refinement. For INS error modeling, we derive a bias instability noise accumulation model through Allan variance analysis. These adaptive noise estimates dynamically update both process and observation noise covariance matrices in our Error-State Kalman Filter (ESKF) implementation, enabling real-time calibration of GNSS and INS contributions. Comprehensive field experiments demonstrate two key advantages: (1) The proposed noise estimation model achieves 37.7% higher accuracy in quantifying GNSS single-point positioning uncertainties compared to conventional elevation-based weighting; (2) in unstructured environments with intermittent signal outages, the fusion system maintains an average absolute trajectory error (ATE) of less than 0.6 m, outperforming state-of-the-art fixed-weight fusion methods by 36.71% in positioning consistency. These results validate the framework’s capability to autonomously balance sensor reliability under dynamic environmental conditions, significantly enhancing positioning robustness for autonomous vehicles. Full article
Show Figures

Figure 1

20 pages, 1848 KiB  
Article
Integrated Intelligent Control for Trajectory Tracking of Nonlinear Hydraulic Servo Systems Under Model Uncertainty
by Haoren Zhou, Jinsheng Zhang and Heng Zhang
Actuators 2025, 14(8), 359; https://doi.org/10.3390/act14080359 - 22 Jul 2025
Viewed by 302
Abstract
To address the challenges of model uncertainty, strong nonlinearities, and controller tuning in high-precision trajectory tracking for hydraulic servo systems, this paper proposes a hierarchical GA-PID-MPC fusion strategy. The architecture integrates three functional layers: a Genetic Algorithm (GA) for online parameter optimization, a [...] Read more.
To address the challenges of model uncertainty, strong nonlinearities, and controller tuning in high-precision trajectory tracking for hydraulic servo systems, this paper proposes a hierarchical GA-PID-MPC fusion strategy. The architecture integrates three functional layers: a Genetic Algorithm (GA) for online parameter optimization, a Model Predictive Controller (MPC) for future-oriented planning, and a Proportional–Integral–Derivative (PID) controller for fast feedback correction. These modules are dynamically coordinated through an adaptive cost-aware blending mechanism based on real-time performance evaluation. The MPC module operates on a linearized state–space model and performs receding-horizon control with weights and horizon length θ=[q,r,Tp] tuned by GA. In parallel, the PID controller is enhanced with online gain projection to mitigate nonlinear effects. The blending coefficient σ(t) is adaptively updated to balance predictive accuracy and real-time responsiveness, forming a robust single-loop controller. Rigorous theoretical analysis establishes global input-to-state stability and H performance under average dwell-time constraints. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

18 pages, 3585 KiB  
Article
Dynamic Event-Triggered Switching of LFC Scheme Under DoS Attacks Based on a Predictive Model
by De-Tao Guo, Yong-Xin Zhao, Kai-Bo Shi and Ming Zhu
Electronics 2025, 14(14), 2838; https://doi.org/10.3390/electronics14142838 - 15 Jul 2025
Viewed by 198
Abstract
In this paper, a dynamic event-triggering mechanism (DETM) for load frequency control (LFC) of Denial-of-Service (DoS) attacks based on a predictive model is studied, which has important applications in discrete power systems. Firstly, the prediction model predicts subsequent signals based on observed system [...] Read more.
In this paper, a dynamic event-triggering mechanism (DETM) for load frequency control (LFC) of Denial-of-Service (DoS) attacks based on a predictive model is studied, which has important applications in discrete power systems. Firstly, the prediction model predicts subsequent signals based on observed system states. Secondly, by constructing an improved discrete signal event-triggering scheme, the influence of DoS attacks on the system is weakened. The dynamic trigger condition depends on the past few changes in the system state, rather than real-time sampling values. At the same time, the waiting time of DETM is set to avoid the Zeno phenomenon. Additionally, based on the update period and timestamp technology of the actuator, a control mechanism to resist DoS attacks is implemented in the actuator component. Furthermore, the method uses a double-loop open communication platform to improve reliability and flexibility. Full article
Show Figures

Figure 1

26 pages, 5344 KiB  
Article
Real-Time Progress Monitoring of Bricklaying
by Ramez Magdy, Khaled A. Hamdy and Yasmeen A. S. Essawy
Buildings 2025, 15(14), 2456; https://doi.org/10.3390/buildings15142456 - 13 Jul 2025
Viewed by 383
Abstract
The construction industry is one of the largest contributors to the world economy. However, the level of automation and digitalization in the construction industry is still at its infancy in comparison with other industries due to the complex nature and the large size [...] Read more.
The construction industry is one of the largest contributors to the world economy. However, the level of automation and digitalization in the construction industry is still at its infancy in comparison with other industries due to the complex nature and the large size of construction projects. Meanwhile, construction projects are prone to cost overruns and schedule delays due to the adoption of traditional progress monitoring techniques to retrieve progress on-site, having indoor activities participating with an accountable ratio of these works. Improvements in deep learning and Computer Vision (CV) algorithms provide promising results in detecting objects in real time. Also, researchers have investigated the probability of using CV as a tool to create a Digital Twin (DT) for construction sites. This paper proposes a model utilizing the state-of-the-art YOLOv8 algorithm to monitor the progress of bricklaying activities, automatically extracting and analyzing real-time data from construction sites. The detected data is then integrated into a 3D Building Information Model (BIM), which serves as a DT, allowing project managers to visualize, track, and compare the actual progress of bricklaying with the planned schedule. By incorporating this technology, the model aims to enhance accuracy in progress monitoring, reduce human error, and enable real-time updates to project timelines, contributing to more efficient project management and timely completion. Full article
(This article belongs to the Special Issue AI in Construction: Automation, Optimization, and Safety)
Show Figures

Figure 1

26 pages, 2643 KiB  
Article
Systematic Comparison of Different Compartmental Models for Predicting COVID-19 Progression
by Marwan Shams Eddin, Hussein El Hajj, Ramez Zayyat and Gayeon Lee
Epidemiologia 2025, 6(3), 33; https://doi.org/10.3390/epidemiologia6030033 - 8 Jul 2025
Viewed by 437
Abstract
Background/Objectives: The COVID-19 pandemic highlighted the critical need for accurate predictive models to guide public health interventions and optimize healthcare resource allocation. This study evaluates how the complexity of compartmental infectious disease models influences their forecasting accuracy and utility for pandemic resource [...] Read more.
Background/Objectives: The COVID-19 pandemic highlighted the critical need for accurate predictive models to guide public health interventions and optimize healthcare resource allocation. This study evaluates how the complexity of compartmental infectious disease models influences their forecasting accuracy and utility for pandemic resource planning. Methods: We analyzed a range of compartmental models, including simple susceptible-infected-recovered (SIR) models and more complex frameworks incorporating asymptomatic carriers and deaths. These models were calibrated and tested using real-world COVID-19 data from the United States to assess their performance in predicting symptomatic and asymptomatic infection counts, peak infection timing, and resource demands. Both adaptive models (updating parameters with real-time data) and non-adaptive models were evaluated. Results: Numerical results show that while more complex models capture detailed disease dynamics, simpler models often yield better forecast accuracy, especially during early pandemic stages or when predicting peak infection periods. Adaptive models provided the most accurate short-term forecasts but required substantial computational resources, making them less practical for long-term planning. Non-adaptive models produced stable long-term forecasts useful for strategic resource allocation, such as hospital bed and ICU planning. Conclusions: Model selection should align with the pandemic stage and decision-making horizon. Simpler models are effective for rapid early-stage interventions, adaptive models excel in short-term operational forecasting, and non-adaptive models remain valuable for long-term resource planning. These findings can inform policymakers on selecting appropriate modeling approaches to improve pandemic response effectiveness. Full article
Show Figures

Figure 1

23 pages, 8766 KiB  
Article
Robust Tracking Control of Underactuated UAVs Based on Zero-Sum Differential Games
by Yaning Guo, Qi Sun and Quan Pan
Drones 2025, 9(7), 477; https://doi.org/10.3390/drones9070477 - 5 Jul 2025
Viewed by 287
Abstract
This paper investigates the robust tracking control of unmanned aerial vehicles (UAVs) against external time-varying disturbances. First, by introducing a virtual position controller, we innovatively decouple the UAV dynamics into independent position and attitude error subsystems, transforming the robust tracking problem into two [...] Read more.
This paper investigates the robust tracking control of unmanned aerial vehicles (UAVs) against external time-varying disturbances. First, by introducing a virtual position controller, we innovatively decouple the UAV dynamics into independent position and attitude error subsystems, transforming the robust tracking problem into two zero-sum differential games. This approach contrasts with conventional methods by treating disturbances as strategic “players”, enabling a systematic framework to address both external disturbances and model uncertainties. Second, we develop an integral reinforcement learning (IRL) framework that approximates the optimal solution to the Hamilton–Jacobi–Isaacs (HJI) equations without relying on precise system models. This model-free strategy overcomes the limitation of traditional robust control methods that require known disturbance bounds or accurate dynamics, offering superior adaptability to complex environments. Third, the proposed recursive Ridge regression with a forgetting factor (R3F2 ) algorithm updates actor-critic-disturbance neural network (NN) weights in real time, ensuring both computational efficiency and convergence stability. Theoretical analyses rigorously prove the closed-loop system stability and algorithm convergence, which fills a gap in existing data-driven control studies lacking rigorous stability guarantees. Finally, numerical results validate that the method outperforms state-of-the-art model-based and model-free approaches in tracking accuracy and disturbance rejection, demonstrating its practical utility for engineering applications. Full article
Show Figures

Figure 1

19 pages, 4219 KiB  
Article
Schur Complement Optimized Iterative EKF for Visual–Inertial Odometry in Autonomous Vehicles
by Guo Ma, Cong Li, Hui Jing, Bing Kuang, Ming Li, Xiang Wang and Guangyu Jia
Machines 2025, 13(7), 582; https://doi.org/10.3390/machines13070582 - 4 Jul 2025
Viewed by 232
Abstract
Accuracy and nonlinear processing capabilities are critical to the positioning and navigation of autonomous vehicles in visual–inertial odometry (VIO). Existing filtering-based VIO methods struggle to deal with strongly nonlinear systems and often exhibit low precision. To this end, this paper proposes a VIO [...] Read more.
Accuracy and nonlinear processing capabilities are critical to the positioning and navigation of autonomous vehicles in visual–inertial odometry (VIO). Existing filtering-based VIO methods struggle to deal with strongly nonlinear systems and often exhibit low precision. To this end, this paper proposes a VIO method based on the Schur complement and Iterated Extended Kalman Filtering (IEKF). The algorithm first enhances ORB (Oriented FAST and Rotated BRIEF) features using Multi-Layer Perceptron (MLP) and Transformer architectures to improve feature robustness. It then integrates visual information and Inertial Measurement Unit (IMU) data through IEKF, constructing a complete residual model. The Schur complement is applied during covariance updates to compress the state dimension, improving computational efficiency and significantly enhancing the system’s ability to handle nonlinearities while maintaining real-time performance. Compared to traditional Extended Kalman Filtering (EKF), the proposed method demonstrates stronger stability and accuracy in high-dynamic scenarios. The experimental results show that the algorithm achieves superior state estimation performance on several typical visual–inertial datasets, demonstrating excellent accuracy and robustness. Full article
(This article belongs to the Topic Advances in Mobile Robotics Navigation, 2nd Volume)
Show Figures

Figure 1

26 pages, 15354 KiB  
Article
Adaptive Neuro-Affective Engagement via Bayesian Feedback Learning in Serious Games for Neurodivergent Children
by Diego Resende Faria and Pedro Paulo da Silva Ayrosa
Appl. Sci. 2025, 15(13), 7532; https://doi.org/10.3390/app15137532 - 4 Jul 2025
Viewed by 396
Abstract
Neuro-Affective Intelligence (NAI) integrates neuroscience, psychology, and artificial intelligence to support neurodivergent children through personalized Child–Machine Interaction (CMI). This paper presents an adaptive neuro-affective system designed to enhance engagement in children with neurodevelopmental disorders through serious games. The proposed framework incorporates real-time biophysical [...] Read more.
Neuro-Affective Intelligence (NAI) integrates neuroscience, psychology, and artificial intelligence to support neurodivergent children through personalized Child–Machine Interaction (CMI). This paper presents an adaptive neuro-affective system designed to enhance engagement in children with neurodevelopmental disorders through serious games. The proposed framework incorporates real-time biophysical signals—including EEG-based concentration, facial expressions, and in-game performance—to compute a personalized engagement score. We introduce a novel mechanism, Bayesian Immediate Feedback Learning (BIFL), which dynamically selects visual, auditory, or textual stimuli based on real-time neuro-affective feedback. A multimodal CNN-based classifier detects mental states, while a probabilistic ensemble merges affective state classifications derived from facial expressions. A multimodal weighted engagement function continuously updates stimulus–response expectations. The system adapts in real time by selecting the most appropriate cue to support the child’s cognitive and emotional state. Experimental validation with 40 children (ages 6–10) diagnosed with Autism Spectrum Disorder (ASD) and Attention Deficit Hyperactivity Disorder (ADHD) demonstrates the system’s effectiveness in sustaining attention, improving emotional regulation, and increasing overall game engagement. The proposed framework—combining neuro-affective state recognition, multimodal engagement scoring, and BIFL—significantly improved cognitive and emotional outcomes: concentration increased by 22.4%, emotional engagement by 24.8%, and game performance by 32.1%. Statistical analysis confirmed the significance of these improvements (p<0.001, Cohen’s d>1.4). These findings demonstrate the feasibility and impact of probabilistic, multimodal, and neuro-adaptive AI systems in therapeutic and educational applications. Full article
Show Figures

Figure 1

16 pages, 27206 KiB  
Article
RecurrentOcc: An Efficient Real-Time Occupancy Prediction Model with Memory Mechanism
by Zimo Chen, Yuxiang Xie and Yingmei Wei
Big Data Cogn. Comput. 2025, 9(7), 176; https://doi.org/10.3390/bdcc9070176 - 2 Jul 2025
Viewed by 450
Abstract
Three-dimensional Occupancy Prediction provides a detailed representation of the surrounding environment, essential for autonomous driving. Long temporal image sequence fusion is a common technique used to improve the occupancy prediction performance. However, existing temporal fusion methods are inefficient due to three issues: repetitive [...] Read more.
Three-dimensional Occupancy Prediction provides a detailed representation of the surrounding environment, essential for autonomous driving. Long temporal image sequence fusion is a common technique used to improve the occupancy prediction performance. However, existing temporal fusion methods are inefficient due to three issues: repetitive feature extraction from temporal images, redundant fusion of temporal features, and suboptimal fusion of long-term historical features. To address these challenges, we propose the Recurrent Occupancy Prediction Network (RecurrentOcc). We introduce the Scene Memory Gate, a new temporal fusion module that condenses temporal scene features into a single historical feature map. This eliminates the need for repeated extraction and aggregation of multiple temporal images, reducing computational overhead. The Scene Memory Gate selectively retains valuable information from historical features and recurrently updates the historical feature map, enhancing temporal fusion performance. Additionally, we design a simple yet efficient encoder, significantly reducing the number of model parameters. Compared with other real-time methods, RecurrentOcc achieves state-of-the-art performance of 39.9 mIoU on the Occ3D-NuScenes dataset with the fewest parameters of 59.1 M and an inference speed of 23.4 FPS. Full article
(This article belongs to the Special Issue Perception and Detection of Intelligent Vision)
Show Figures

Figure 1

Back to TopTop