Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = reactive cathodic arc deposition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 7372 KiB  
Article
Synthesis Conditions and Properties of SiAlCN Coatings Obtained by Reactive Evaporation of Al in a Hollow Cathode Arc Discharge in Hexamethyldisilazane Vapors
by Andrey Menshakov, Yulia Bryuhanova, Ivan Zhidkov, Daniil Emlin and Polina Skorynina
Ceramics 2025, 8(2), 42; https://doi.org/10.3390/ceramics8020042 - 22 Apr 2025
Viewed by 454
Abstract
SiAlCN coatings were first obtained by the method of reactive evaporation of aluminum and plasma chemical activation of an organosilicon precursor in a hollow cathode arc discharge. The spectrum of discharge plasma was studied by optical emission spectroscopy under conditions of evaporation of [...] Read more.
SiAlCN coatings were first obtained by the method of reactive evaporation of aluminum and plasma chemical activation of an organosilicon precursor in a hollow cathode arc discharge. The spectrum of discharge plasma was studied by optical emission spectroscopy under conditions of evaporation of Al in an Ar+N2+hexamethyldisilazane vapor/gas medium, and it was shown that in the presence of a metal component in the plasma, not only did intensive activation of various components of the media occur but also an increased ionic effect on the surface of the coating was provided, with a deposition rate of up to 10.1 µm/h. The films had a dense and homogeneous structure and had a hardness of up to 31 GPa and good adhesion on stainless steel. The results of SEM, FTIR, and XRD showed that their structure was a nanocomposite consisting of an amorphous matrix based on SiCN and AlN with inclusions of AlCN nanocrystals. Full article
(This article belongs to the Special Issue Research Progress in Ceramic Coatings)
Show Figures

Figure 1

16 pages, 3940 KiB  
Article
Plasma Enhanced High-Rate Deposition of Advanced Film Materials by Metal Reactive Evaporation in Organosilicon Vapors
by Andrey Menshakov, Yulia Bruhanova, Polina Skorynina and Anatoliy Medvedev
Membranes 2023, 13(4), 374; https://doi.org/10.3390/membranes13040374 - 24 Mar 2023
Cited by 5 | Viewed by 1598
Abstract
Dense homogeneous nanocomposite TiSiCN coatings with a thickness of up to 15 microns and a hardness of up to 42 GPa were obtained by the method of reactive titanium evaporation in a hollow cathode arc discharge in an Ar + C2H [...] Read more.
Dense homogeneous nanocomposite TiSiCN coatings with a thickness of up to 15 microns and a hardness of up to 42 GPa were obtained by the method of reactive titanium evaporation in a hollow cathode arc discharge in an Ar + C2H2 + N2-gas mixture with the addition of hexamethyldisilazane (HMDS). An analysis of the plasma composition showed that this method allowed for a wide range of changes in the activation degree of all components of the gas mixture, providing a high (up to 20 mA/cm2) ion current density. It is possible to widely change the chemical composition, microstructure, deposition rate, and properties of coatings obtained by this method, by changing the pressure, composition, and activation degree of the vapor–gas mixture. An increase in the fluxes of C2H2, N2, HMDS, and discharge current leads to an increase in the rate of coating formation. However, the optimal coatings from the point of view of microhardness were obtained at a low discharge current of 10 A and relatively low contents of C2H2 (1 sccm) and HMDS (0.3 g/h), exceeding which leads to a decrease in the hardness of the films and the deterioration of their quality, which can be explained by the excessive ionic exposure and the non-optimal chemical composition of the coatings. Full article
Show Figures

Figure 1

19 pages, 6116 KiB  
Article
HIPIMS/UBM PVD Coating Equipment Designed to Coat Universal Sized Broaches
by Wolf-Dieter Münz, Roman Klink, Dejan Aleksic and Mansour Mazaheri
Coatings 2022, 12(3), 300; https://doi.org/10.3390/coatings12030300 - 23 Feb 2022
Cited by 5 | Viewed by 3772
Abstract
This paper describes a physical vapor deposition (PVD) coating equipment, as well as the according deposition parameters suitable to provide hard nitride coatings on broaches up to a length of 2.2 m. The octagonal-shaped vacuum chamber reached a height of 4.5 m and [...] Read more.
This paper describes a physical vapor deposition (PVD) coating equipment, as well as the according deposition parameters suitable to provide hard nitride coatings on broaches up to a length of 2.2 m. The octagonal-shaped vacuum chamber reached a height of 4.5 m and a diameter of 1.2 m. To explore a sufficient and reproducible film, an adhesion test sample and tools were subjected to a pretreatment in a Cr2+ Ar+ high-power impulse magnetron sputtering (HIPIMS) plasma prior to the actual film deposition. Two deposition methods were applied: reactive unbalanced magnetron (UBM) sputtering was introduced to deposit TiAlN-based coatings from Ti50Al50 2.5 m long targets. Alternatively, multilayer coatings were generated by reactive simultaneous UBM sputtering from Ti50Al50 and TiAl6V4 targets, respectively, and chromium targets utilizing high-power impulse magnetron sputtering (HIPIMS) technology. In the latter case, three cathodes were furnished with 0.9 m long targets lined up upon each other. A segmented UBM cathode design was described to meet economic deposition if varying tool sample lots in the deferring workpiece lengths have to be handled in industrial practice. The resulting (TiAl/Cr)N multilayer coatings attained typical hardness values of HV 2800 and an adhesion measured by critical load up to 50 N. The cutting performance of this coating was evaluated by simulated shaping tests over a test length of 210 m on C 45 steel. The (TiAlV/Cr)N showed an improved wear behavior by factor of 2 to 3 compared to TiN deposited by cathodic arc operated in an industrial PVD coater. A real comparison was undertaken, applied to a 1.3 m long model broach. (TiAl/Cr)N showed a prolongation in industrial lifetime by 150% compared to TiN. Full article
(This article belongs to the Special Issue Magnetron Sputtering Deposition of Thin Films)
Show Figures

Figure 1

19 pages, 5552 KiB  
Article
Corrosion Improvement of 304L Stainless Steel by ZrSiN and ZrSi(N,O) Mono- and Double-Layers Prepared by Reactive Cathodic Arc Evaporation
by Mihaela Dinu, Anca Constantina Parau, Alina Vladescu, Adrian Emil Kiss, Iulian Pana, Emile S. Massima Mouele, Leslie Felicia Petrik and Viorel Braic
Coatings 2021, 11(10), 1257; https://doi.org/10.3390/coatings11101257 - 15 Oct 2021
Cited by 11 | Viewed by 3115
Abstract
Zr-based nitrides and oxynitrides were deposited by reactive cathodic arc evaporation in monolayer and double-layer structures with the aim of increasing the corrosion protection of 304L stainless steel (SS) in a biomedical aggressive environment. All coatings had a total thickness of 1.2 µm. [...] Read more.
Zr-based nitrides and oxynitrides were deposited by reactive cathodic arc evaporation in monolayer and double-layer structures with the aim of increasing the corrosion protection of 304L stainless steel (SS) in a biomedical aggressive environment. All coatings had a total thickness of 1.2 µm. Compared to the bare substrate, the surface roughness of the coated samples was higher, the presence of microdroplets being revealed by scanning electron micrography (SEM). The X-ray diffraction investigation of the ZrN phases revealed that the peaks shifted towards lower Bragg angles and the lattice constants increased as a result of Si and O2 inclusion in ZrN lattice, and of the ion bombardment characteristic of the cathodic arc method, augmented by the applied bias substrate. SS/ZrSiN/ZrSi(N,O) showed the best corrosion performance in an acidic environment (0.9% NaCl and 6% H2O2; pH = 4), which was ascribed to the blocking effect of the interfaces, which acted as a corrosion barrier for the electrolyte ingress. Moreover, the aforementioned bilayer had the highest amount of Si and O in the composition of the top layer, forming a stable passive layer with beneficial effects on corrosion protection. Full article
(This article belongs to the Special Issue State-of-the-Art on Coatings Research in Romania 2021-2022)
Show Figures

Graphical abstract

13 pages, 3987 KiB  
Article
Low-Temperature Deposition of Transparent Conducting Films Applied to Flexible Electrochromic Devices
by Ke-Ding Li, Po-Wen Chen and Kao-Shuo Chang
Materials 2021, 14(17), 4959; https://doi.org/10.3390/ma14174959 - 31 Aug 2021
Cited by 7 | Viewed by 2682
Abstract
Here, we compare two different transparent conducting oxides (TCOs), namely indium tin oxide (ITO) and indium zinc tin oxide (IZTO), fabricated as transparent conducting films using processes that require different temperatures. ITO and IZTO films were prepared at 230 °C and at room [...] Read more.
Here, we compare two different transparent conducting oxides (TCOs), namely indium tin oxide (ITO) and indium zinc tin oxide (IZTO), fabricated as transparent conducting films using processes that require different temperatures. ITO and IZTO films were prepared at 230 °C and at room temperature, respectively, on glass and polyethylene terephthalate (PET) substrates using reactive magnetron sputtering. Electrochromic WO3 films deposited on ITO-based and IZTO-based ECDs using vacuum cathodic arc plasma (CAP) were investigated. IZTO-based ECDs have higher optical transmittance modulation, ΔT = 63% [from Tbleaching (90.01%) to Tcoloration (28.51%)], than ITO-based ECDs, ΔT = 59%. ECDs consisted of a working electrochromic electrode (WO3/IZTO/PET) and a counter-electrode (Pt mesh) in a 0.2 M LiClO4/perchlorate (LiClO4/PC) liquid electrolyte solution with an active area of 3 cm × 4 cm a calculated bleaching time tc of 21.01 s and a coloration time tb of 4.7 s with varying potential from −1.3 V (coloration potential, Vc) to 0.3 V (bleaching potential, Vb). Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

20 pages, 4951 KiB  
Article
Preparation of High-Performance Metal-Free UV/Near Infrared-Shielding Films for Human Skin Protection
by Chih-Hao Liang and Ying-Jung Chen
Nanomaterials 2021, 11(8), 1954; https://doi.org/10.3390/nano11081954 - 29 Jul 2021
Cited by 9 | Viewed by 4320
Abstract
A series of metal-free UV/near infrared (NIR)-shielding coatings are successfully fabricated by shielded cathodic arc plasma evaporation (CAPE) and substrate-biased RF magnetron sputtering processes. The UV/NIR-shielding coatings comprising quarter-wave stacks of TiO2/SiO2 multilayers and high-conductivity sputter-deposited ITO films with a [...] Read more.
A series of metal-free UV/near infrared (NIR)-shielding coatings are successfully fabricated by shielded cathodic arc plasma evaporation (CAPE) and substrate-biased RF magnetron sputtering processes. The UV/NIR-shielding coatings comprising quarter-wave stacks of TiO2/SiO2 multilayers and high-conductivity sputter-deposited ITO films with a thickness in the range of 200–600 nm could block IRA and IRB radiations, respectively. The total thicknesses of UV/near infrared-shielding films are in the range from 375 nm to 1513.8 nm. The anatase-phase TiO2 films with absorption edge located at ∼375 nm were deposited by shielded CAPE at ∼100 °C. Further, the well-crystallized ITO films were found to have high free-electron concentrations (1.12 × 1021 cm−3), resulting in strong absorption of IRB due to the plasmon resonance absorption. The optimal optical design and ITO film thickness were investigated, and the TiO2(SiO2/TiO2)3 multilayer combined with an ITO film thickness of 400 nm was found to provide a high NIR-shielding rate of 94.8%, UVB to UVA-shielding rate of 92.7%, and average visible light transmittance of 68.1%. Further, human skin cells protected by a UV/NIR-shielding coating showed significantly decreased reactive oxygen species generation and inflammatory cytokine expression as compared to those of unprotected cells. The results demonstrate that the development of multifunction coatings have potential for transparent heat insulation windows and human skin protection against UV/IR radiations. Full article
(This article belongs to the Special Issue Thin Films: Deposition, Growth and Characterization Techniques)
Show Figures

Figure 1

11 pages, 4666 KiB  
Article
Feasibility Synthesis and Characterization of Gadolinia Doped Ceria Coatings Obtained by Cathodic Arc Evaporation
by Pascal Briois, Eric Aubry, Armelle Ringuedé, Michel Cassir and Alain Billard
Nanomaterials 2021, 11(5), 1211; https://doi.org/10.3390/nano11051211 - 3 May 2021
Cited by 3 | Viewed by 2159
Abstract
Gadolinia doped ceria coatings were elaborated by cathodic arc evaporation from a metallic Ce–Gd (90–10 at.%) target inserted into a conventional multiarc Ti evaporation target in the presence of a reactive argon–oxygen gas mixture. The structural and chemical features of these films were [...] Read more.
Gadolinia doped ceria coatings were elaborated by cathodic arc evaporation from a metallic Ce–Gd (90–10 at.%) target inserted into a conventional multiarc Ti evaporation target in the presence of a reactive argon–oxygen gas mixture. The structural and chemical features of these films were determined by x-ray diffraction and scanning electron microscopy. Their electrical properties were characterized using impedance spectroscopy measurements. It was shown that the as-deposited coatings crystallize in the fluorite type fcc structure of ceria and that their composition is the same as that of the target. The morphology of the coatings is influenced by the evaporation parameter (stress and droplet). The electrical measurements showed two contributions in Nyquist representation and the activation energy was slightly higher than that given in the literature data for the bulk material. Full article
(This article belongs to the Special Issue Nanomaterials for Solid Oxide Fuel Cells)
Show Figures

Figure 1

16 pages, 3374 KiB  
Article
Tailoring Crystalline Structure of Titanium Oxide Films for Optical Applications Using Non-Biased Filtered Cathodic Vacuum Arc Deposition at Room Temperature
by Elena Guillén, Matthias Krause, Irene Heras, Gonzalo Rincón-Llorente and Ramón Escobar-Galindo
Coatings 2021, 11(2), 233; https://doi.org/10.3390/coatings11020233 - 15 Feb 2021
Cited by 4 | Viewed by 3029
Abstract
Titanium oxide films were deposited at room temperature and with no applied bias using a filtered cathodic vacuum arc (FCVA) system in a reactive oxygen environment. The dependence of film growth on two process parameters, the working pressure (Pw) and the [...] Read more.
Titanium oxide films were deposited at room temperature and with no applied bias using a filtered cathodic vacuum arc (FCVA) system in a reactive oxygen environment. The dependence of film growth on two process parameters, the working pressure (Pw) and the O2 partial pressure (pO2), is described in detail. The composition, morphological features, crystalline structure, and optical properties of the deposited films were systematically studied by Rutherford Back Scattering (RBS), Scanning Electron Microscopy (SEM), X-Ray diffraction (XRD), Raman Spectroscopy, UV-vis spectroscopy, and spectroscopic ellipsometry. This systematic investigation allowed the identification of three different groups or growth regimes according to the stoichiometry and the phase structure of the titanium oxide films. RBS analysis revealed that a wide range of TiOx stoichiometries (0.6 < × < 2.2) were obtained, including oxygen-deficient, stoichiometric TiO2 and oxygen-rich films. TiO, Ti2O3, rutile-type TiO2, and amorphous TiO2 phase structures could be achieved, as confirmed both by Raman and XRD. Therefore, the results showed a highly versatile approach, in which different titanium oxide stoichiometries and crystalline phases especially suited for diverse optical applications can be obtained by changing only two process parameters, in a process at room temperature and without applied bias. Of particular interest are crystalline rutile films with high density to be used in ultra-high reflectance metal-dielectric multilayered mirrors, and reduced-TiO2 rutile samples with absorption in the visible range as a very promising photocatalyst material. Full article
Show Figures

Figure 1

18 pages, 3289 KiB  
Article
In Vitro Corrosion of Titanium Nitride and Oxynitride-Based Biocompatible Coatings Deposited on Stainless Steel
by Iulian Pana, Viorel Braic, Mihaela Dinu, Emile S. Massima Mouele, Anca C. Parau, Leslie F. Petrik and Mariana Braic
Coatings 2020, 10(8), 710; https://doi.org/10.3390/coatings10080710 - 22 Jul 2020
Cited by 38 | Viewed by 6045
Abstract
The reactive cathodic arc deposition technique was used to produce Ti nitride and oxynitride coatings on 304 stainless steel substrates (SS). Both mono (SS/TiN, SS/TiNO) and bilayer coatings (SS/TiN/TiNO and SS/TiNO/TiN) were investigated in terms of elemental and phase composition, microstructure, grain size, [...] Read more.
The reactive cathodic arc deposition technique was used to produce Ti nitride and oxynitride coatings on 304 stainless steel substrates (SS). Both mono (SS/TiN, SS/TiNO) and bilayer coatings (SS/TiN/TiNO and SS/TiNO/TiN) were investigated in terms of elemental and phase composition, microstructure, grain size, morphology, and roughness. The corrosion behavior in a solution consisting of 0.10 M NaCl + 1.96 M H2O2 was evaluated, aiming for biomedical applications. The results showed that the coatings were compact, homogeneously deposited on the substrate, and displaying rough surfaces. The XRD analysis indicated that both mono and bilayer coatings showed only cubic phases with (111) and (222) preferred orientations. The highest crystallinity was shown by the SS/TiN coating, as indicated also by the largest grain size of 23.8 nm, which progressively decreased to 16.3 nm for the SS/TiNO monolayer. The oxynitride layers exhibited the best in vitro corrosion resistance either as a monolayer or as a top layer in the bilayer structure, making them a good candidate for implant applications. Full article
(This article belongs to the Special Issue Surface Modification of Medical Implants)
Show Figures

Figure 1

15 pages, 5163 KiB  
Article
Two-Layer Nanocomposite TiC-Based Coatings Produced by a Combination of Pulsed Cathodic Arc Evaporation and Vacuum Electro-Spark Alloying
by Philipp Kiryukhantsev-Korneev, Alina Sytchenko, Alexander Sheveyko, Dmitry Moskovskikh and Stepan Vorotylo
Materials 2020, 13(3), 547; https://doi.org/10.3390/ma13030547 - 23 Jan 2020
Cited by 8 | Viewed by 2904
Abstract
A novel two-stage technology combining vacuum electro-spark alloying (VESA) and pulsed cathodic arc evaporation (PCAE) was approbated for the deposition of TiC-based coatings in inert (Ar) and reactive (C2H4) atmospheres. The deposition was carried out using a TiC-NiCr-Eu2 [...] Read more.
A novel two-stage technology combining vacuum electro-spark alloying (VESA) and pulsed cathodic arc evaporation (PCAE) was approbated for the deposition of TiC-based coatings in inert (Ar) and reactive (C2H4) atmospheres. The deposition was carried out using a TiC-NiCr-Eu2O3 electrode and 5140 steel substrates. Structural, elemental, and phase compositions of the deposited coatings were investigated by scanning electron microscopy, energy-dispersive spectrometry, and X-ray diffraction. The mechanical properties of the coatings were measured by nanoindentation using a 4 mN load. The tribological properties of the coatings were measured using the pin-on-disc setup in air and in distilled water at a 5 N load. The experimental data suggest that VESA coatings are characterized by surface defects, a hardness of 12.2 GPa, and a friction coefficient of 0.4. To ensure good adhesion between the VESA coating and the upper layer containing diamond-like carbon (DLC), an intermediate layer was deposited by PCAE in the Ar atmosphere. The intermediate layer had a hardness of up to 31 GPa. The upper layer of the coating ensured a low and stable friction coefficient of 0.2 and high wear resistance due to the formation of an sp2–sp3 bound carbon phase. Multilayer TiC-based coating with the upper DLC layer, in addition to high tribological properties, was characterized by the lowest corrosion current density (12 μA/cm2). Full article
(This article belongs to the Special Issue Advances in Diamond-Like Carbon (DLC) Films)
Show Figures

Figure 1

13 pages, 5204 KiB  
Article
Effect of Ti Transition Layer Thickness on the Structure, Mechanical and Adhesion Properties of Ti-DLC Coatings on Aluminum Alloys
by Hongshuai Cao, Fugang Qi, Xiaoping Ouyang, Nie Zhao, Yun Zhou, Beibei Li, Wenzhong Luo, Bin Liao and Jun Luo
Materials 2018, 11(9), 1742; https://doi.org/10.3390/ma11091742 - 16 Sep 2018
Cited by 61 | Viewed by 7249
Abstract
Multilayers of Ti doped diamond-like carbon (Ti-DLC) coatings were deposited on aluminum alloys by filtered cathodic vacuum arc (FCVA) technology using C2H2 as a reactive gas. The effect of different Ti transition layer thicknesses on the structure, mechanical and adhesion [...] Read more.
Multilayers of Ti doped diamond-like carbon (Ti-DLC) coatings were deposited on aluminum alloys by filtered cathodic vacuum arc (FCVA) technology using C2H2 as a reactive gas. The effect of different Ti transition layer thicknesses on the structure, mechanical and adhesion properties of the coatings, was investigated by scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), nanoindentation and a scratch tester. The results showed that the Ti transition layer could improve interfacial transition between the coating and the substrate, which was beneficial in obtaining excellent adhesion of the coatings. The Ti transition layer thickness had no significant influence on the composition and structure of the coatings, whereas it affected the distortion of the sp2-C bond angle and length. Nanoindentation and scratch test results indicated that the mechanical and adhesion properties of the Ti-DLC coatings depended on the Ti transition layer thickness. The Ti transition layer proved favorable in decreasing the residual compressive stress of the coating. As the Ti transition layer thickness increased, the hardness value of the coating gradually decreased. However, its elastic modulus and adhesion exhibited an initial decrease followed by an increasing fluctuation. Among them, the Ti-DLC coating with a Ti transition layer thickness of 1.1 μm exhibited superior mechanical properties. Full article
(This article belongs to the Special Issue Thin Film Fabrication and Surface Techniques)
Show Figures

Figure 1

20 pages, 25338 KiB  
Article
Enhancement of the Corrosion Resistance of 304 Stainless Steel by Cr–N and Cr(N,O) Coatings
by Mihaela Dinu, Emile S. Massima Mouele, Anca C. Parau, Alina Vladescu, Leslie F. Petrik and Mariana Braic
Coatings 2018, 8(4), 132; https://doi.org/10.3390/coatings8040132 - 5 Apr 2018
Cited by 42 | Viewed by 11153
Abstract
Chromium nitride and oxynitride coatings were deposited as monolayers ((Cr–N), Cr(N,O)) and bilayers (Cr–N/Cr(N,O), Cr(N,O)/Cr–N) on 304 steel substrates by reactive cathodic arc method. The coatings were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), surface profilometry, [...] Read more.
Chromium nitride and oxynitride coatings were deposited as monolayers ((Cr–N), Cr(N,O)) and bilayers (Cr–N/Cr(N,O), Cr(N,O)/Cr–N) on 304 steel substrates by reactive cathodic arc method. The coatings were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), surface profilometry, and scratch tester. The anticorrosive properties of the coatings were assessed by electrochemical tests in 0.10 M NaCl + 1.96 M H2O2, carried out at 24 °C. Cr2N, CrN, and Cr(N,O) phases were identified in the coatings by grazing incidence X-ray diffraction (GI-XRD) measurements. The measured adhesion values ranged from 19 N to 35 N, the highest value being obtained for the bilayer with Cr(N,O) on top. Electrochemical tests showed that Cr(N,O) presence in both mono- and bilayered coatings determined the lowest damage in corrosive solution, as compared to the Cr–N coatings. This improvement was ascribed to the more compact structure, lower coatings porosity, and smoother surface. Full article
(This article belongs to the Special Issue Coatings for Harsh Environments)
Show Figures

Graphical abstract

Back to TopTop