Feasibility Synthesis and Characterization of Gadolinia Doped Ceria Coatings Obtained by Cathodic Arc Evaporation
Abstract
1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Minh, N.Q. Ceramic Fuel Cells. J. Am. Ceram. Soc. 1993, 76, 563. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, G.; Dai, R.; Lv, X.; Yang, D.; Geng, S. A review of the chemical compatibility between oxide electrodes and electrolytes in solid oxide fuel cells. J. Power Source 2021, 492, 229630. [Google Scholar] [CrossRef]
- Badwal, S.; Foger, K. Solid oxide electrolyte fuel cell review. Ceram. Int. 1996, 22, 257. [Google Scholar] [CrossRef]
- Ivers-Tiffée, E.; Weber, A.; Herbstritt, D. Materials and technologies for SOFC-components. J. Eur. Ceram. Soc. 2001, 21, 1805. [Google Scholar] [CrossRef]
- Chaubey, N.; Wani, B.N.; Bharadwaj, S.R.; Chattopadhyaya, M.C. Physicochemical properties of rare earth doped ceria Ce0.9Ln0.1O1.95 (Ln = Nd, Sm, Gd) as an electrolyte material for IT-SOFC/SOEC. Solid State Sci. 2013, 20, 135–141. [Google Scholar] [CrossRef]
- Yahiro, H.; Eguchi, K.; Arai, H. Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell. Solid State Ion. 1989, 36, 71. [Google Scholar] [CrossRef]
- Anirban, S.K.; Dutta, A. Revisiting ionic conductivity of rare earth doped ceria: Dependency on different factors. Int. J. Hydrogen 2020, 45, 25139. [Google Scholar] [CrossRef]
- Jaiswal, N.; Tanwar, K.; Suman, R.; Kumar, D.; Upadhyay, S.; Parkash, O. A brief review on ceria based solid electrolytes for solid oxide fuel cells. J. Alloys Compd. 2019, 781, 984. [Google Scholar] [CrossRef]
- Ishihara, T.; Matsuda, H.; Takida, Y. Effects of rare earth cations doped for La site on the oxide ionic conductivity of LaGaO3-based perovskite type oxide. Solid State Ion. 1995, 79, 147. [Google Scholar] [CrossRef]
- Zhang, G.B.; Smyth, D.M. Defects and transport of the brownmillerite oxides with high oxygen ion conductivity—Ba2In2O5. Solid State Ion. 1995, 82, 161. [Google Scholar] [CrossRef]
- Joubert, O.; Ganne, M.; Vannier, R.N.; Mairesse, G. Solid phase synthesis and characterization of new BIMEVOX series: Bi4V2−xMxO11 x (M = CrIII, FeIII). Solid State Ion. 1996, 83, 199. [Google Scholar] [CrossRef]
- Lacorre, P.; Goutenoire, F.; Bohnke, O.; Retous, R.; Laligant, Y. Designing fast oxide-ion conductors based on La2Mo2O9. Nature 2000, 404, 856. [Google Scholar] [CrossRef] [PubMed]
- Briois, P.; Lapostolle, F.; Billard, A. Investigations of Apatite-Structure Coatings Deposited by Reactive Magnetron Sputtering Dedicated to IT-SOFC. Plasma Process. Polym. 2007, 4, S99–S103. [Google Scholar] [CrossRef]
- Ma, C.Y.; Briois, P.; Bohlmark, J.; Lapostolle, F.; Billard, A. La9.33Si6O26 electrolyte thin films for IT-SOFC application deposited by a HIPIMS/DC hybrid magnetron sputtering process. Ionics 2008, 14, 471–476. [Google Scholar] [CrossRef]
- Huang, W.; Shuk, P.; Greenblatt, M. Properties of sol-gel prepared Ce1−xSmxO2−x2 solid electrolytes. Solid State Ion. 1997, 100, 23. [Google Scholar] [CrossRef]
- Yahiro, H.; Eguchi, Y.; Eguchi, K.; Arai, H. Oxygen ion conductivity of the ceria-samarium oxide system with fluorite structure. J. Appl. Electrochem. 1988, 18, 527. [Google Scholar] [CrossRef]
- Arabaci, A. Effect of Sm and Gd dopants on tsructurals characteristics and ionic conductivity of ceria. Ceram. Int. 2015, 41, 5836. [Google Scholar] [CrossRef]
- Steele, B.C.H. Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500 °C. Solid State Ion. 2000, 129, 95. [Google Scholar] [CrossRef]
- Butler, V.; Catlow, C.; Fender, B.; Harding, J. Dopant ion radius and ionic conductivity in cerium dioxide. Solid State Ion. 1983, 8, 109. [Google Scholar] [CrossRef]
- Leng, Y.; Chan, S.; Jiang, S.; Khor, K. Low-temperature SOFC with thin film GDC electrolyte prepared in situ by solid-state reaction. Solid State Ion. 2004, 170, 9. [Google Scholar] [CrossRef]
- Fang, Q.; Zhang, J.Y. Preparation of Ce1−xGdxO2−0.5x thin films by UV assisted sol–gel method. Surf. Coat. Technol. 2002, 100, 151–152. [Google Scholar] [CrossRef]
- Christie, G.M.; van Berkel, F.P.F. Microstructure-ionic conductivity relationships in ceria-gadolinia electrolytes. Solid State Ion. 1996, 83, 17. [Google Scholar] [CrossRef]
- Arabacı, A.; Öksüzömer, M.F. Preparation and characterization of 10 mol% Gd doped CeO2 (GDC) electrolyte for SOFC applications. Ceram. Int. 2012, 38, 6509. [Google Scholar] [CrossRef]
- Gourba, E.; Ringuede, A.; Cassir, M.; Billard, A.; Päivãsaari, J.; Niinisto, J.; Putkonen, M.; Niinisto, L. Characterisation of thin films of ceria-based electrolytes for Intermediate Temperature—Solid oxide fuel cells (IT-SOFC). Ionics 2003, 9, 15. [Google Scholar] [CrossRef]
- Hong, Y.; Kim, S.; Kim, W.; Yoon, H. Fabrication and characterization GDC electrolyte thin films by e-beam technique for IT-SOFC. Curr. Appl. Phys. 2011, 11, S163–S168. [Google Scholar] [CrossRef]
- Briois, P.; Billard, A. A comparison of electrical properties of sputter-deposited electrolyte coatings dedicated to intermediate temperature solid oxide fuel cells. Surf. Coat. Technol. 2006, 201, 1328. [Google Scholar] [CrossRef]
- Mickan, M.; Coddet, P.; Vulliet, J.; Caillard, A.; Sauvage, T.; Thomann, A.-L. Optimized magnetron sputtering process for the deposition of gadolinia doped ceria layers with controlled structural properties. Surf. Coat. Technol. 2020, 398, 126095. [Google Scholar] [CrossRef]
- Jiang, J.; Shen, W.; Hertz, J. Structure and ionic conductivity of nanoscale gadolinia-doped ceria thin films. Solid State Ion. 2013, 249–250, 139–143. [Google Scholar] [CrossRef]
- Chapusot, V.; Pierson, J.-F.; Lapostolle, F.; Billard, A. Arc-evaporated nanocomposite zirconium-based boronitride coatings. Mater. Chem. Phys. 2009, 114, 780–784. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, X. Effect of O2 pressure on the preferred orientation of TiO2 films prepared by filtered arc deposition. Thin Solid Films 1998, 326, 171. [Google Scholar] [CrossRef]
- Koller, C.; Dalbauer, V.; Schmelz, A.; Raab, R.; Polcik, P.; Ramm, J.; Mayrhofer, P. Structure, mechanical properties, and thermal stability of arc evaporated (Al1-xCrx)2O3 coatings. Surf. Coat. Technol. 2018, 342, 37. [Google Scholar] [CrossRef]
- Boukamp, B.A. A Nonlinear Least Squares Fit procedure for analysis of immittance data of electrochemical systems. Solid State Ion. 1986, 20, 31. [Google Scholar] [CrossRef]
- Gourba, E.; Briois, P.; Ringuedé, A.; Cassir, M.; Billard, A. Electrical properties of gadolinia-doped ceria thin films deposited by sputtering in view of SOFC application. J. Solid State Electrochem. 2004, 8, 633. [Google Scholar] [CrossRef]
- Anders, A. Approaches to rid cathodic arc plasmas of macro- and nanoparticles: A review. Surf. Coat. Technol. 1999, 120–121, 319–330. [Google Scholar] [CrossRef]
- Boxman, R.; Goldsmith, S. Macroparticle contamination in cathodic arc coatings: Generation, transport and control. Surf. Coat. Technol. 1992, 52, 39–50. [Google Scholar] [CrossRef]
- Rakhovskii, V.I. Experimental Study of the Dynamics of Cathode Spots Development. IEEE Trans. Plasma Sci. 1976, 4, 81–102. [Google Scholar] [CrossRef]
- Billard, A.; Perry, F.; Frantz, C. Stable and unstable conditions of the sputtering mode by modulating at low frequency the current of a magnetron discharge. Surf. Coat. Technol. 1997, 94–95, 345. [Google Scholar] [CrossRef]
- Pierson, J.-F.; Billard, A.; Belmonte, T.; Michel, H.; Frantz, C. Influence of oxygen flow rate on the structural and mechanical properties of reactively magnetron sputter-deposited Zr–B–O coatings. Thin Solid Films 1999, 347, 78. [Google Scholar] [CrossRef]
- Suzuki, T.; Kosacki, I.; Anderson, H.U. Microstructure—Electrical conductivity relationships in nanocrystalline ceria thin films. Solid State Ion. 2002, 151, 111. [Google Scholar] [CrossRef]
- Bauerle, J. Study of solid electrolyte polarization by a complex admittance method. J. Phys. Chem. Solids 1969, 30, 2657. [Google Scholar] [CrossRef]
- Tschöpe, A.; Sommer, E.; Birringer, R. Grain Size Dependent Electrical Conductivity of Polycrystalline Cerium Oxide. Solid State Ion. 2001, 139, 255. [Google Scholar] [CrossRef]
- Pérez-Coll, D.; Núñez, P.; Frade, J.; Abrantes, J. Conductivity of CGO and CSO ceramics obtained from freeze-dried precursors. Electrochim. Acta 2003, 48, 1551. [Google Scholar] [CrossRef]
- Balazs, G.B.; Glass, R.S. Ac impedance studies of rare earth oxide doped ceria. Solid State Ion. 1995, 76, 155. [Google Scholar] [CrossRef]
Sample | Cleaning by Bias | Bias (V/mA) | Magnet | DAr (Sccm) | DO2 (Sccm) | Pressure (Pa) | Intensity (A) | Voltage (V) |
---|---|---|---|---|---|---|---|---|
GDC 08 | Yes | −50/500 | 2 | 20 | 40 | 0.6 | 60 | 38.5 |
GDC 09 | −50/400 | 0 | 40 | 0.6 | 40 | |||
GDC 10 | −30/700 | 1 | 30 | 0.4 | 18 | |||
GDC 11 | −50/600 | 1 | 40 | 0.6 | 40 |
Sample | Bragg Angle (°) | Lattice Parameter (nm) | Grain Size (nm) | Thickness (nm) |
---|---|---|---|---|
GDC08 | 16.62 | 0.542 | 13.1 | 700 |
GDC09 | 16.10 | 0.559 | 5.7 | 500 |
GDC10 | 16.57 | 0.543 | 13.7 | 740 |
GDC11 | 16.17 | 0.556 | 10.4 | 550 |
Previous work [33] | 16.65 | 0.541 | 38.1 | 1000 |
GDC08 | Contribution 1 (Bulk) | |||||
T(°C) | R (Ω) | CPE (F) | n | |||
200 | 3.64 × 108 | 1.65 × 10−11 | 0.95 | |||
240 | 1.03 × 108 | 2.89 × 10−11 | 0.9041 | |||
280 | 2.63 × 107 | 5.13 × 10−11 | 0.8657 | |||
320 | 5.72 × 106 | 8.03 × 10−11 | 0.85 | |||
360 | 1.73 × 106 | 1.03 × 10−10 | 0.85 | |||
400 | 1.12 × 106 | 3.89 × 10−10 | 0.796 | |||
GDC09 | Contribution 1 (Bulk) | Contribution 2 (Grain Boundaries) | ||||
T(°C) | R (Ω) | CPE (F) | n | R (Ω) | CPE (F) | n |
280 | 8.06 × 106 | 5.33 × 10−11 | 0.91 | Not detectable | ||
320 | 3.99 × 106 | 7.05 × 10−11 | 0.91 | 5.40 × 106 | 8.66 × 10−10 | 0.82 |
360 | 1.55 × 106 | 8.45 × 10−11 | 0.91 | 4.00 × 106 | 1.43 × 10−9 | 0.76 |
400 | 7.38 × 105 | 1.59 × 10−10 | 0.87 | 2.48 × 106 | 1.08 × 10−8 | 0.63 |
440 | 2.78 × 105 | 2.96 × 10−10 | 0.83 | 1.03 × 106 | 4.48 × 10−8 | 0.54 |
480 | 7.59 × 104 | 3.20 × 10−11 | 1 | 1.07 × 105 | 3.49 × 10−9 | 0.81 |
GDC10 | Contribution 1 (Bulk) | Contribution 2 (Grain Boundaries) | ||||
T(°C) | R (Ω) | CPE (F) | n | R (Ω) | CPE (F) | n |
240 | 6.80 × 108 | 1.86 × 10−11 | 0.93 | Not detectable | ||
280 | 1.68 × 108 | 2.65 × 10−11 | 0.9 | |||
320 | 4.17 × 107 | 1.79 × 10−11 | 0.95 | |||
360 | 1.57 × 107 | 2.55 × 10−11 | 0.92 | |||
400 | 4.84 × 106 | 3.34 × 10−11 | 0.92 | 7.05 × 106 | 1.62 × 10−9 | 0.76 |
440 | 1.90 × 106 | 1.65 × 10−11 | 0.98 | 1.40 × 106 | 1.35 × 10−9 | 0.85 |
480 | 6.21 × 105 | 1.36 × 10−11 | 1 | 4.19 × 105 | 3.12 × 10−10 | 0.97 |
520 | 2.74 × 105 | 1.40 × 10−11 | 1 | 2.20 × 105 | 1.86 × 10−8 | 0.76 |
560 | 1.10 × 105 | 1.58 × 10−11 | 1 | 4.60 × 104 | 5.16 × 10−9 | 0.88 |
GDC11 | Contribution 1 (Bulk) | Contribution 2 (Grain Boundaries) | ||||
T(°C) | R (Ω) | CPE (F) | n | R (Ω) | CPE (F) | n |
200 | 6.99 × 108 | 1.13 × 10−11 | 0.98 | Not detectable | ||
240 | 1.86 × 108 | 2.68 × 10−11 | 0.92 | |||
320 | 1.30 × 107 | 2.63 × 10−11 | 0.9321 | |||
360 | 3.34 × 106 | 3.24 × 10−11 | 0.94 | 8.08 × 106 | 3.87 × 10−10 | 0.835 |
400 | 2.03 × 106 | 2.32 × 10−11 | 0.96 | 1.78 × 106 | 2.68 × 10−10 | 1 |
440 | 6.54 × 105 | 3.23 × 10−11 | 0.95 | 7.64 × 105 | 2.40 × 10−9 | 0.8 |
480 | 2.48 × 105 | 1.83 × 10−11 | 1 | 4.00 × 105 | 3.07 × 10−9 | 0.8 |
520 | 6.59 × 104 | 2.04 × 10−11 | 1 | 5.27 × 104 | 8.97 × 10−9 | 0.8 |
Sample | Bulk (eV) | Grain Boundaries (eV) | Apparent (eV) |
---|---|---|---|
GDC 08 | 0.84 | - | 0.84 |
GDC 09 | 0.81 | 0.84 | 0.62 |
GDC 10 | 1.0 | 1.44 | 0.92 |
GDC 11 | 0.91 | 1.24 | 0.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Briois, P.; Aubry, E.; Ringuedé, A.; Cassir, M.; Billard, A. Feasibility Synthesis and Characterization of Gadolinia Doped Ceria Coatings Obtained by Cathodic Arc Evaporation. Nanomaterials 2021, 11, 1211. https://doi.org/10.3390/nano11051211
Briois P, Aubry E, Ringuedé A, Cassir M, Billard A. Feasibility Synthesis and Characterization of Gadolinia Doped Ceria Coatings Obtained by Cathodic Arc Evaporation. Nanomaterials. 2021; 11(5):1211. https://doi.org/10.3390/nano11051211
Chicago/Turabian StyleBriois, Pascal, Eric Aubry, Armelle Ringuedé, Michel Cassir, and Alain Billard. 2021. "Feasibility Synthesis and Characterization of Gadolinia Doped Ceria Coatings Obtained by Cathodic Arc Evaporation" Nanomaterials 11, no. 5: 1211. https://doi.org/10.3390/nano11051211
APA StyleBriois, P., Aubry, E., Ringuedé, A., Cassir, M., & Billard, A. (2021). Feasibility Synthesis and Characterization of Gadolinia Doped Ceria Coatings Obtained by Cathodic Arc Evaporation. Nanomaterials, 11(5), 1211. https://doi.org/10.3390/nano11051211