Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (763)

Search Parameters:
Keywords = reaction-diffusion system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2172 KiB  
Article
Study on the High-Temperature Reaction Kinetics of Solid Waste-Based High Belite Sulphoaluminate Cement Containing Residual Gypsum in the Clinker
by Dunlei Su, Mingxin Yang, Yani Hao, Jiahui Wang, Xin Liu, Haojian Tang, Fengyuan Dong, Dejin Xing and Weiyi Kong
Materials 2025, 18(14), 3369; https://doi.org/10.3390/ma18143369 - 17 Jul 2025
Abstract
In order to elucidate the high-temperature reaction process of solid waste-based high belite sulphoaluminate cement containing residual gypsum in clinker (NHBSAC) and obtain the formation laws of each mineral in clinker, this article studied its high-temperature reaction kinetics. Through QXRD analysis and numerical [...] Read more.
In order to elucidate the high-temperature reaction process of solid waste-based high belite sulphoaluminate cement containing residual gypsum in clinker (NHBSAC) and obtain the formation laws of each mineral in clinker, this article studied its high-temperature reaction kinetics. Through QXRD analysis and numerical fitting methods, the formation of C4A3S¯, β-C2S, and CaSO4 in clinker under different calcination systems was quantitatively characterized, the corresponding high-temperature reaction kinetics models were established, and the reaction activation energies of each mineral were obtained. The results indicate that the content of C4A3S¯ and β-C2S increases with the prolongation of holding time and the increase in calcination temperature, while CaSO4 is continuously consumed. Under the control mechanism of solid-state reaction, the formation and consumption of minerals follow the kinetic equation. C4A3S¯ and β-C2S satisfy the D4 equation under diffusion mechanism control, and CaSO4 satisfies the R3 equation under interface chemical reaction mechanism control. The activation energy required for mineral formation varies with different temperature ranges. The activation energies required to form C4A3S¯ at 1200–1225 °C, 1225–1275 °C, and 1275–1300 °C are 166.28 kJ/mol, 83.14 kJ/mol, and 36.58 kJ/mol, respectively. The activation energies required to form β-C2S at 1200–1225 °C and 1225–1300 °C are 374.13 kJ/mol and 66.51 kJ/mol, respectively. This study is beneficial for achieving flexible control of the mineral composition of NHBSAC clinker, providing a theoretical basis and practical experience for the preparation of low-carbon cement and the optimization design of its mineral composition. Full article
(This article belongs to the Special Issue Characterization and Optimization of Cement-Based Materials)
Show Figures

Figure 1

14 pages, 2182 KiB  
Article
Stability Analysis of a Master–Slave Cournot Triopoly Model: The Effects of Cross-Diffusion
by Maria Francesca Carfora and Isabella Torcicollo
Axioms 2025, 14(7), 540; https://doi.org/10.3390/axioms14070540 - 17 Jul 2025
Abstract
A Cournot triopoly is a type of oligopoly market involving three firms that produce and sell homogeneous or similar products without cooperating with one another. In Cournot models, firms’ decisions about production levels play a crucial role in determining overall market output. Compared [...] Read more.
A Cournot triopoly is a type of oligopoly market involving three firms that produce and sell homogeneous or similar products without cooperating with one another. In Cournot models, firms’ decisions about production levels play a crucial role in determining overall market output. Compared to duopoly models, oligopolies with more than two firms have received relatively less attention in the literature. Nevertheless, triopoly models are more reflective of real-world market conditions, even though analyzing their dynamics remains a complex challenge. A reaction–diffusion system of PDEs generalizing a nonlinear triopoly model describing a master–slave Cournot game is introduced. The effect of diffusion on the stability of Nash equilibrium is investigated. Self-diffusion alone cannot induce Turing pattern formation. In fact, linear stability analysis shows that cross-diffusion is the key mechanism for the formation of spatial patterns. The conditions for the onset of cross-diffusion-driven instability are obtained via linear stability analysis, and the formation of several Turing patterns is investigated through numerical simulations. Full article
Show Figures

Figure 1

18 pages, 4550 KiB  
Article
Efficient Visible-Light-Driven Photocatalysis of BiVO4@Diatomite for Degradation of Methoxychlor
by Nazar Iqbal, Xiaocui Huang, Khalid Mohamedali Hamid, Hongming Yuan, Irum Batool and Yuxiang Yang
Catalysts 2025, 15(7), 672; https://doi.org/10.3390/catal15070672 - 10 Jul 2025
Viewed by 347
Abstract
As a persistent organic pollutant, methoxychlor has drawn considerable environmental attention. Photocatalysis, recognized for its environmentally friendly characteristics, has been widely utilized for the degradation of contaminants. In this study, the photocatalytic material BiVO4@diatomite was successfully synthesized via the liquid-phase precipitation [...] Read more.
As a persistent organic pollutant, methoxychlor has drawn considerable environmental attention. Photocatalysis, recognized for its environmentally friendly characteristics, has been widely utilized for the degradation of contaminants. In this study, the photocatalytic material BiVO4@diatomite was successfully synthesized via the liquid-phase precipitation method. The synthesized material was comprehensively characterized using X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), UV-vis diffuse reflectance spectroscopy (DRS), and a Brunauer–Emmett–Teller (BET) analysis, providing robust evidence for the material’s stability and biocompatibility. The results confirmed the successful deposition of BiVO4 onto the diatomite surface. Furthermore, the effects of various parameters, including the initial methoxychlor concentration, pH, light exposure duration, and illumination intensity, on the photocatalytic degradation efficiency of methoxychlor by BiVO4@diatomite were systematically investigated to optimize degradation performance. The identification of optimal reaction conditions and the proposed degradation mechanism based on experimental findings will be valuable for guiding future studies and practical applications in environmental pollution control. The integration of BiVO4 with diatomite in this study yields a novel composite system with significantly enhanced photocatalytic degradation performance, offering fresh insights into the design of efficient, stable, and eco-friendly materials for pollutant removal. Full article
Show Figures

Figure 1

24 pages, 5097 KiB  
Article
Non-Monotonic Effect of Substrate Inhibition in Conjunction with Diffusion Limitation on the Response of Amperometric Biosensors
by Romas Baronas
Biosensors 2025, 15(7), 441; https://doi.org/10.3390/bios15070441 - 9 Jul 2025
Viewed by 166
Abstract
The non-monotonic behavior of amperometric enzyme-based biosensors under uncompetitive and noncompetitive (mixed) substrate inhibition is investigated computationally using a two-compartment model consisting of an enzyme layer and an outer diffusion layer. The model is based on a system of reaction–diffusion equations that includes [...] Read more.
The non-monotonic behavior of amperometric enzyme-based biosensors under uncompetitive and noncompetitive (mixed) substrate inhibition is investigated computationally using a two-compartment model consisting of an enzyme layer and an outer diffusion layer. The model is based on a system of reaction–diffusion equations that includes a nonlinear term associated with non-Michaelis–Menten kinetics of the enzymatic reaction and accounts for the partitioning between layers. In addition to the known effect of substrate inhibition, where the maximum biosensor current differs from the steady-state output, it has been determined that external diffusion limitations can also cause the appearance of a local minimum in the current. At substrate concentrations greater than both the Michaelis–Menten constant and the uncompetitive substrate inhibition constant, and in the presence of external diffusion limitation, the transient response of the biosensor, after immersion in the substrate solution, may follow a five-phase pattern depending on the model parameter values: it starts from zero, reaches a global or local maximum, decreases to a local minimum, increases again, and finally decreases to a steady intermediate value. The biosensor performance is analyzed numerically using the finite difference method. Full article
(This article belongs to the Special Issue Novel Designs and Applications for Electrochemical Biosensors)
Show Figures

Figure 1

14 pages, 2208 KiB  
Review
The Relationship Between Non-Transferrin-Bound Iron (NTBI), Labile Plasma Iron (LPI), and Iron Toxicity
by Lorena Duca, Elena Di Pierro, Natalia Scaramellini, Francesca Granata and Giovanna Graziadei
Int. J. Mol. Sci. 2025, 26(13), 6433; https://doi.org/10.3390/ijms26136433 - 3 Jul 2025
Viewed by 292
Abstract
Plasma non-transferrin-bound iron (NTBI) comprises multiple subspecies, classified by their composition, chemical reactivity, and susceptibility to chelation. The redox-active and chelatable fraction of NTBI is referred to as labile plasma iron (LPI). The pathophysiological significance of NTBI and LPI lies in their ability [...] Read more.
Plasma non-transferrin-bound iron (NTBI) comprises multiple subspecies, classified by their composition, chemical reactivity, and susceptibility to chelation. The redox-active and chelatable fraction of NTBI is referred to as labile plasma iron (LPI). The pathophysiological significance of NTBI and LPI lies in their ability to enter cells via alternative transport pathways that are not regulated by the transferrin receptor system or by cellular iron levels. Several mechanisms have been proposed for their cellular entry, including the hijacking of divalent metal transporters and passive diffusion. This unregulated uptake can lead to iron accumulation in vulnerable tissues such as the liver and the heart. NTBI and LPI bypassing normal cellular control mechanisms can rapidly exceed the cell’s capacity to safely store excess iron, leading to toxicity. Both NTBI and LPI contribute to oxidative stress by participating in free-radical-generating reactions. However, LPI concentration in the bloodstream may be differentially affected by the mode and extent of iron overload, the presence of residual serum iron-binding activity, and the antioxidant capacity of individual sera. In summary, both NTBI and LPI contribute to iron-mediated toxicity but differ in terms of reactivity, availability, and pathogenic potential depending on the pathophysiological conditions that influence the degree of toxicity. Full article
(This article belongs to the Special Issue Iron Dyshomeostasis)
Show Figures

Figure 1

25 pages, 4696 KiB  
Article
Enhancing Photocatalytic Activity with the Substantial Optical Absorption of Bi2S3-SiO2-TiO2/TiO2 Nanotube Arrays for Azo Dye Wastewater Treatment
by Amal Abdulrahman, Zaina Algarni, Nejib Ghazouani, Saad Sh. Sammen, Abdelfattah Amari and Miklas Scholz
Water 2025, 17(13), 1875; https://doi.org/10.3390/w17131875 - 24 Jun 2025
Viewed by 657
Abstract
One-dimensional TiO2 nanotube arrays (TNAs) were vertically aligned and obtained via the electrochemical anodization method. In this study, Bi2S3-TiO2-SiO2/TNA heterojunction photocatalysts were successfully prepared with different amounts of Bismuth(III) sulfide (Bi2S3 [...] Read more.
One-dimensional TiO2 nanotube arrays (TNAs) were vertically aligned and obtained via the electrochemical anodization method. In this study, Bi2S3-TiO2-SiO2/TNA heterojunction photocatalysts were successfully prepared with different amounts of Bismuth(III) sulfide (Bi2S3) loading on the TNAs by the successive ionic layer adsorption and reaction (SILAR) method and characterized by X-ray diffraction (XRD) patterns, field-emission scanning electron microscope–energy-dispersive spectroscopy (FESEM-EDS), Fourier transform infrared (FTIR) spectra, ultraviolet-visible diffuse reflectance spectra (UV–Vis/DRS), and electrochemical impedance spectroscopy (EIS) techniques. The photocatalytic performances of the samples were investigated by degrading Basic Yellow 28 (BY 28) under visible-light irradiation. Optimization of the condition using the response surface methodology (RSM) and central composite rotatable design (CCRD) technique resulted in the degradation of BY 28 dye, showing that the catalyst with 9.6 mg/cm2 (designated as Bi2S3(9.6)-TiO2-SiO2/TNA) showed the maximum yield in the degradation process. The crystallite size of about 17.03 nm was estimated using the Williamson–Hall method. The band gap energies of TiO2-SiO2/TNA and Bi2S3(9.6)-TiO2-SiO2/TNA were determined at 3.27 and 1.87 eV for the direct electronic transitions, respectively. The EIS of the ternary system exhibited the smallest arc diameter, indicating an accelerated charge transfer rate that favors photocatalytic activity. Full article
(This article belongs to the Special Issue Global Water Resources Management)
Show Figures

Figure 1

18 pages, 1995 KiB  
Article
Enhancing Electrokinetic Remediation of Cu- and Pb-Contaminated Loess Using Irregular Electrode Configurations: A Numerical Investigation of Transport and Remediation Mechanisms
by Xinwen Wang and Wenle Hu
Processes 2025, 13(7), 1948; https://doi.org/10.3390/pr13071948 - 20 Jun 2025
Viewed by 319
Abstract
The strong adsorption capacity of loess poses a significant limitation to the electrokinetic (EK) remediation process. Modified EK technologies, such as graphene oxide-alginate composite hydrogel (GOCH) electrodes, are increasingly employed for the remediation of heavy metal-contaminated loess. However, the complex interactions among multiple [...] Read more.
The strong adsorption capacity of loess poses a significant limitation to the electrokinetic (EK) remediation process. Modified EK technologies, such as graphene oxide-alginate composite hydrogel (GOCH) electrodes, are increasingly employed for the remediation of heavy metal-contaminated loess. However, the complex interactions among multiple physical fields within these modified systems remain poorly understood. This study utilizes COMSOL Multiphysics version 6.0 to simulate diffusion, electromigration, electroosmotic flow, adsorption, and chemical reactions in loess contaminated with copper (Cu) and lead (Pb). A chemical precipitation and ion transport model, governed by the Nernst–Planck equation, was validated through a comparison of simulation results with experimental data. The investigation examines the effects of electrode placement and size on EK efficiency, revealing that diagonally placed irregular electrodes optimize the electric field, minimize ineffective regions, and enhance ion migration. Larger electrodes enhance current density, whereas smaller electrodes mitigate edge shielding effects. This research offers strategic insights into electrode configuration for improved EK remediation of Cu-Pb-contaminated loess, achieving greater efficiency than traditional systems. Full article
Show Figures

Figure 1

24 pages, 11046 KiB  
Article
A Theoretical Analysis of the Effects That the Glycocalyx and the Internal Elastic Lamina Have on Nitric Oxide Concentration Gradients in the Arterial Wall
by Yaroslav R. Nartsissov and Irena P. Seraya
Antioxidants 2025, 14(6), 747; https://doi.org/10.3390/antiox14060747 - 17 Jun 2025
Viewed by 483
Abstract
Nitric oxide (NO) is a well-known member of the reactive oxygen species (ROS) family. The extent of its concentration influences whether it produces beneficial physiological effects or harmful toxic reactions. In a blood system, NO is generally produced by nitric oxide synthase (NOS) [...] Read more.
Nitric oxide (NO) is a well-known member of the reactive oxygen species (ROS) family. The extent of its concentration influences whether it produces beneficial physiological effects or harmful toxic reactions. In a blood system, NO is generally produced by nitric oxide synthase (NOS) in the endothelium. Then, it diffuses into the smooth muscle wall causing a vasodilatation, and it can also be diluted in a lumen blood stream. In the present study, we analyzed a convectional reaction–diffusion of NO in a 3D digital phantom of a short segment of small arteries. NO concentrations were analyzed by applying numerical solutions to the boundary problems, which included the Navier–Stokes equation, Darcy’s law, varying consumption of NO, and the dependence of NOS activity on shear stress. All the boundary problems were evaluated using COMSOL Multiphysics software ver. 5.5. The role of two diffusive barriers surrounding the endothelium producing NO was theoretically proven. When the eNOS rate remains unchanged, an increase in the fenestration of the internal elastic lamina (IEL) and a decrease in the diffusive permeability of a thin layer of endothelial surface glycocalyx (ESG) lead to a notable rise in the NO concentration in the vascular wall. The alterations in pore count in IEL and the viscosity of ESG are considered to be involved in the physiological and pathological regulation of NO concentrations. Full article
(This article belongs to the Special Issue Nitric Oxide and Redox Mechanisms)
Show Figures

Figure 1

12 pages, 2114 KiB  
Article
Interface-Sensitive Charge Storage and Activation Behavior of Mn(1,3,5-Benzenetricarboxylic Acid (BTC))-Derived Mn3O4/Carbon Cathodes for Aqueous Zinc-Ion Batteries
by Jieun Lee and Byoungnam Park
Molecules 2025, 30(12), 2566; https://doi.org/10.3390/molecules30122566 - 12 Jun 2025
Viewed by 322
Abstract
In this study, we couple precise interface engineering via alternating current electrophoretic deposition (AC–EPD) with performance-enhancing structural transformation via annealing, enabling the development of high-performance, stable, and tunable Mn-based cathodes for aqueous zinc-ion batteries (ZIBs). Using AC–EPD to fabricate Mn(BTC) (BTC = 1,3,5-benzenetricarboxylic [...] Read more.
In this study, we couple precise interface engineering via alternating current electrophoretic deposition (AC–EPD) with performance-enhancing structural transformation via annealing, enabling the development of high-performance, stable, and tunable Mn-based cathodes for aqueous zinc-ion batteries (ZIBs). Using AC–EPD to fabricate Mn(BTC) (BTC = 1,3,5-benzenetricarboxylic acid) cathodes followed by thermal annealing to synthesize MOF-derived Mn3O4 offers a synergistic approach that addresses several key challenges in aqueous ZIB systems. The Mn3O4 cathode prepared via AC–EPD from Mn(BTC) exhibited a remarkable specific capacity of up to 430 mAh/g at a current density of 200 mA/g. Interestingly, the capacity continued to increase progressively with cycling, suggesting dynamic structural or interfacial changes that improved Zn2+ transport and utilization over time. Such capacity enhancement behavior during prolonged cycling at elevated rates has not been observed in previously reported Mn3O4-based ZIB systems. Kinetic analysis further revealed that the charge storage process is predominantly governed by diffusion-controlled mechanisms. This behavior can be attributed to the intrinsic characteristics of the Mn3O4 phase formed from the MOF precursor, where the bulk redox reactions involving Zn2+ insertion require ion migration into the electrode interior. Even though the electrode was processed as an ultrathin film with enhanced electrolyte contact, the charge storage remains limited by solid-state ion diffusion rather than fast surface-driven reactions, reinforcing the diffusion-dominant nature of the system. Full article
(This article belongs to the Special Issue Functional Porous Frameworks: Synthesis, Properties, and Applications)
Show Figures

Figure 1

23 pages, 4227 KiB  
Review
Redox Mediators for Li2CO3 Decomposition
by Zixuan Liu, Haoshen Huang, Zhengfei Chen, Haiyong He, Deyu Wang and Zhoupeng Li
Inorganics 2025, 13(6), 192; https://doi.org/10.3390/inorganics13060192 - 8 Jun 2025
Viewed by 481
Abstract
Lithium–air batteries (LABs) possess the highest energy density among all energy storage systems, and have drawn widespread interest in academia and industry. However, many arduous challenges are still to be conquered, one of them is Li2CO3, which is a [...] Read more.
Lithium–air batteries (LABs) possess the highest energy density among all energy storage systems, and have drawn widespread interest in academia and industry. However, many arduous challenges are still to be conquered, one of them is Li2CO3, which is a ubiquitous product in LABs. It is inevitably produced but difficult to decompose; therefore, Li2CO3 is perceived as the “Achilles’ heel of LABs”. Among various approaches to addressing the Li2CO3 issue, developing Li2CO3-decomposing redox mediators (RMs) is one of the most convenient and versatile, because they can be electrochemically oxidized at the gas cathode surface, then they diffuse to the solid-state products and chemically oxidize them, recovering the RMs to a pristine state and avoiding solid-state catalysts’ contact instability with Li2CO3. Furthermore, because of their function mechanism, they can double as catalysts for Li2O2/LiOH decomposition, which are needed in LABs/LOBs anyway regardless of Li2CO3 incorporation due to the sluggish kinetics of oxygen reduction/evolution reactions. This review summarizes the progress in Li2CO3-decomposing RMs, including halides, metal–chelate complexes, and metal-free organic compounds. The insights into and discrepancies in the mechanisms of Li2CO3 decomposition and corresponding catalysis processes are also discussed. Full article
(This article belongs to the Special Issue Novel Research on Electrochemical Energy Storage Materials)
Show Figures

Graphical abstract

16 pages, 1154 KiB  
Article
Dynamics of HLB Transmission: Integrating Saturated Removal and Vector Bias in Spatial/Non-Spatial Models
by Yang Liu, Yirong Gao, Fumin Zhang and Shujing Gao
Axioms 2025, 14(6), 434; https://doi.org/10.3390/axioms14060434 - 2 Jun 2025
Viewed by 287
Abstract
Huanglongbing (HLB), a globally devastating citrus disease, demands sophisticated mathematical modeling to decipher its complex transmission dynamics and inform optimized disease management protocols. This investigation develops an innovative compartmental framework that simultaneously incorporates two critical factors in HLB epidemiology: saturated removal rates of [...] Read more.
Huanglongbing (HLB), a globally devastating citrus disease, demands sophisticated mathematical modeling to decipher its complex transmission dynamics and inform optimized disease management protocols. This investigation develops an innovative compartmental framework that simultaneously incorporates two critical factors in HLB epidemiology: saturated removal rates of infected citrus trees and behavioral bias in vector movement patterns. Our study delves into the dynamics of non-spatial systems by analyzing the basic reproduction numbers, equilibria, bifurcation phenomena, and the stability of these equilibria. Additionally, we explore the impact of spatial factors on system stability. Results indicate that when the basic reproduction number R0<1, the system may exhibit bistable behavior, while R0>1 leads to a unique stable equilibrium. Notably, vector bias significantly enhances the likelihood of forward bifurcation, and the delay in the removal of diseased trees increases the risk of backward bifurcation. However, reaction–diffusion processes do not alter the stability of the system’s equilibria, and the spatial system lacks complex dynamic properties. This research offers valuable insights into the mechanisms driving HLB transmission and provides a foundation for developing effective control strategies. Full article
Show Figures

Figure 1

26 pages, 8542 KiB  
Article
Solution of Coupled Systems of Reaction–Diffusion Equations Using Explicit Numerical Methods with Outstanding Stability Properties
by Husniddin Khayrullaev, Andicha Zain and Endre Kovács
Computation 2025, 13(6), 129; https://doi.org/10.3390/computation13060129 - 1 Jun 2025
Viewed by 335
Abstract
Recently, new and nontrivial analytical solutions that contain the Kummer functions have been found for an equation system of two diffusion–reaction equations. The equations are coupled by two different types of linear reaction terms which have explicit time-dependence. We first make some corrections [...] Read more.
Recently, new and nontrivial analytical solutions that contain the Kummer functions have been found for an equation system of two diffusion–reaction equations. The equations are coupled by two different types of linear reaction terms which have explicit time-dependence. We first make some corrections to these solutions in the case of two different reaction terms. Then, we collect eight efficient explicit numerical schemes which are unconditionally stable if the reaction terms are missing, and apply them to the system of equations. We show that they severely outperform the standard explicit methods when low or medium accuracy is required. Using parameter sweeps, we thoroughly investigate how the performance of the methods depends on the coefficients and parameters such as the length of the examined time interval. We obtained that, similarly to the single-equation case, the leapfrog–hopscotch method is usually the most efficient to solve these problems. Full article
Show Figures

Figure 1

25 pages, 12198 KiB  
Article
Early Hydration Characteristics and Kinetics Model of Ordinary Portland Cement-Calcium Sulfoaluminate Cement Composites
by Jincai Chen, Bo Xie, Zhongyu Lu, Shaohua He and Shuqian Ma
Materials 2025, 18(11), 2559; https://doi.org/10.3390/ma18112559 - 29 May 2025
Viewed by 530
Abstract
This study investigates the early hydration characteristics and kinetics of ordinary Portland cement (OPC) and calcium sulfoaluminate cement (CSA) composite pastes. The hydration mechanisms of OPC-CSA systems with different proportions are analyzed through zonal analysis and the Krstulović–Dabić method. The experimental results show [...] Read more.
This study investigates the early hydration characteristics and kinetics of ordinary Portland cement (OPC) and calcium sulfoaluminate cement (CSA) composite pastes. The hydration mechanisms of OPC-CSA systems with different proportions are analyzed through zonal analysis and the Krstulović–Dabić method. The experimental results show that in OPC-dominated systems, an appropriate amount of CSA promotes the rapid hydration of ye’elimite and optimizes the cumulative hydration heat and pore structure. However, excessive CSA inhibits hydration due to alkalinity imbalance. In CSA-dominated systems, 10% OPC increases the alkalinity, promoting ye’elimite to hydrate into ettringite. Higher OPC content hinders the hydration process due to ion concentration imbalance. The kinetics model indicates that CSA accelerates the interfacial reaction and diffusion in the OPC system, while OPC reduces the overall hydration rate of the CSA system. Microscopic analysis confirms that the composite system improves the pore structure through mineral interaction. In the OPC-dominated area, the pore structure is mainly composed of small and dense pores. In the CSA-dominated area, the characteristics of large pores are affected by the expansion properties of CSA and hydration heat. This study constructs a coupling mechanism of alkalinity regulation and crystal nucleus generation, providing a theoretical basis for the design of high-performance composite cement materials. Full article
Show Figures

Figure 1

19 pages, 4616 KiB  
Article
Modeling Streamer Discharge in Air Using Implicit and Explicit Finite Difference Methods with Flux Correction
by Hasupama Jayasinghe, Liliana Arevalo, Richard Morrow and Vernon Cooray
Plasma 2025, 8(2), 21; https://doi.org/10.3390/plasma8020021 - 29 May 2025
Viewed by 1056
Abstract
Implementing a computationally efficient numerical model for a single streamer discharge is essential to understand the complex processes such as lightning initiation and electrical discharges in high voltage systems. In this paper, we present a streamer discharge simulation in air, by solving one-dimensional [...] Read more.
Implementing a computationally efficient numerical model for a single streamer discharge is essential to understand the complex processes such as lightning initiation and electrical discharges in high voltage systems. In this paper, we present a streamer discharge simulation in air, by solving one-dimensional (1D) drift diffusion reaction (DDR) equations for charged species with the disc approximation for electric field. A recently developed fourth-order space and time-centered implicit finite difference method (FDM) with a flux-corrected transport (FCT) method is applied to solve the DDR equations, followed by a comparative simulation using the well-established explicit FDM with FCT. The results demonstrate good agreement between implicit and explicit FDMs, verifying their reliability for streamer modeling. The total electrons, total charge, streamer position, and hence the streamer bridging time obtained using the FDMs with FCT agree with the same streamer computed in the literature using different numerical methods and dimensions. The electric field is obtained with good accuracy due to the inclusion of image charges representing the electrodes in the disc method. This accuracy can be further improved by introducing more image charges. Both implicit and explicit FDMs effectively capture the key streamer behavior, including the variations in charged particle densities and electric field. However, the implicit FDM is computationally more efficient. Full article
(This article belongs to the Special Issue Recent Advances of Dielectric Barrier Discharges)
Show Figures

Figure 1

23 pages, 6315 KiB  
Article
BiOBr@PZT Nanocomposite Membranes via Electrospinning-SILAR Technology: A Sustainable Green Material for Photocatalytic Degradation in Coloration-Related Wastewater Remediation
by Zhengyu Ding, Jun Zhang, Zheyao Xia, Binjie Xin, Jiali Yu and Xiaoyuan Lei
Sustainability 2025, 17(11), 4984; https://doi.org/10.3390/su17114984 - 29 May 2025
Viewed by 575
Abstract
The textile industry encounters serious environmental challenges from wastewater with persistent organic pollutants, demanding sustainable solutions for remediation. Herein, we report a novel green synthesis of flexible BiOBr@PZT nanocomposite membranes via electrospinning and successive ionic layer adsorption and reaction (SILAR) for visible-light-driven photocatalytic [...] Read more.
The textile industry encounters serious environmental challenges from wastewater with persistent organic pollutants, demanding sustainable solutions for remediation. Herein, we report a novel green synthesis of flexible BiOBr@PZT nanocomposite membranes via electrospinning and successive ionic layer adsorption and reaction (SILAR) for visible-light-driven photocatalytic degradation. The hierarchical structure integrates leaf-like BiOBr nanosheets with PAN/ZnO/TiO2 (PZT) nanofibers, forming a Z-scheme heterojunction. This enhances the separation of photogenerated carriers while preserving mechanical integrity. SILAR-enabled low temperature deposition ensures eco-friendly fabrication by avoiding toxic precursors and cutting energy use. Optimized BiOBr@PZT-5 shows exceptional photocatalytic performance, achieving 97.6% tetracycline hydrochloride (TCH) degradation under visible light in 120 min. It also has strong tensile strength (4.29 MPa) and cycling stability. Mechanistic studies show efficient generation of O2 and OH radicals through synergistic light absorption, charge transfer, and turbulence-enhanced mass diffusion. The material’s flexibility allows reusable turbulent flow applications, overcoming rigid catalyst limitations. Aligning with green chemistry and UN SDGs, this work advances multifunctional photocatalytic systems for scalable, energy-efficient wastewater treatment, offering a paradigm that integrates environmental remediation with industrial adaptability. Full article
Show Figures

Figure 1

Back to TopTop