Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = ram pressure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 23469 KiB  
Article
Computational Investigations and Control of Shock Interference
by Cameron Alexander and Ragini Acharya
Appl. Sci. 2025, 15(14), 7963; https://doi.org/10.3390/app15147963 - 17 Jul 2025
Viewed by 302
Abstract
Computational fluid dynamics (CFD) has aided the development, design, and analysis of hypersonic airbreathing propulsion technologies, such as scramjets. The complex flow field in a scramjet isolator has been the subject of intense interest and study for several decades. Many features of this [...] Read more.
Computational fluid dynamics (CFD) has aided the development, design, and analysis of hypersonic airbreathing propulsion technologies, such as scramjets. The complex flow field in a scramjet isolator has been the subject of intense interest and study for several decades. Many features of this flow field also occur in supersonic wind-tunnel nozzles and diffusers. Computational analysis of these topics has frequently provided immense insight into the actual functionality and performance. Research presented in this work supports scientific investigation and understanding of a less-researched topic, which is shock–shock interference and interaction with the boundary layer in supersonic internal flows, as well as the passive control of its adverse effects to prevent the onset of unstart in a scramjet isolator. This computational investigation is conducted on a backpressured isolator and a modified three-dimensional shock-tube to represent a scramjet isolator with ram effects provided by high-pressure gas and high-speed flow provided by a supersonic inflow. Computational results for the backpressured isolator have been validated against available measured time-averaged wall pressure data. The modified shock-tube provided an opportunity to study the shock–shock interference and shock–boundary-layer interaction effects that would occur in a scramjet isolator or a ram-accelerator when the high-speed flow from the inlet interacted with the shock produced due to the combustor pressure traveling and meeting in the isolator. An assessment of wall cooling effects on these phenomena is presented for both the backpressured isolator and the modified shock-tube. Full article
Show Figures

Figure 1

18 pages, 2282 KiB  
Article
Quantifying the Unwinding Due to Ram Pressure Stripping in Simulated Galaxies
by Rubens E. G. Machado, Caroline F. O. Grinberg and Elvis A. Mello-Terencio
Galaxies 2025, 13(4), 76; https://doi.org/10.3390/galaxies13040076 - 7 Jul 2025
Viewed by 443
Abstract
Galaxies moving through the gas of the intracluster medium (ICM) experience ram pressure stripping, which can leave behind a gas tail. When a disk galaxy receives the wind edge-on, however, the characteristic signature is not a typical jellyfish tail, but rather an unwinding [...] Read more.
Galaxies moving through the gas of the intracluster medium (ICM) experience ram pressure stripping, which can leave behind a gas tail. When a disk galaxy receives the wind edge-on, however, the characteristic signature is not a typical jellyfish tail, but rather an unwinding of the spiral arms. We aim to quantify such asymmetries both in the gas and in the stellar component of a simulated galaxy. To this end, we simulate a gas-rich star-forming spiral galaxy moving through a self-consistent ICM gas. The amplitude and location of the asymmetries were measured via Fourier decomposition. We found that the asymmetry is much more evident in the gas component, but it is also measurable in the stars. The amplitude tends to increase with time and the asymmetry radius migrates inwards. We found that, when considering the gas, the spiral arms extend much further and are more unwound than the corresponding stellar arms. Characterizing the unwinding via simulations should help inform the observational criteria used to classify ram pressure stripped galaxies, as opposed to asymmetries induced by other mechanisms. Full article
Show Figures

Figure 1

25 pages, 3850 KiB  
Article
Fundamentals of Innovative Aircraft Heat Exchanger Integration for Hydrogen–Electric Propulsion
by Bernhard Gerl, Matthias Ronovsky-Bodisch, Niccoló Ferrari and Martin Berens
Aerospace 2025, 12(4), 320; https://doi.org/10.3390/aerospace12040320 - 9 Apr 2025
Cited by 2 | Viewed by 2313
Abstract
The potential of utilizing the rejected heat of a fuel cell system to improve the aircraft propulsive efficiency is discussed for various flight conditions. The thermodynamic background of the process and the connection of power consumption in the fan of the ducted propulsor [...] Read more.
The potential of utilizing the rejected heat of a fuel cell system to improve the aircraft propulsive efficiency is discussed for various flight conditions. The thermodynamic background of the process and the connection of power consumption in the fan of the ducted propulsor and fuel cell heat are given, and a link between these two components is presented. A concept that goes beyond the known ram heat exchanger is discussed, which outlines the potential benefits of integrating a fan upstream of the heat exchanger. The influence of the fan pressure ratio, flight speed, and altitude, as well as the temperature level of the available fuel cell heat on the propulsive efficiency, is presented. A correlation between the fan pressure ratio, flight speed, and exchangeable fuel cell heat is established, providing a simplified computational approach for evaluating feasible operating conditions within this process. This paper identifies the challenges of heat exchanger integration at International Standard Atmosphere sea level conditions and its benefits for cruise flight conditions. The results show that for a flight Mach number of 0.8 and a fan pressure ratio of 1.5 at a cruising altitude of 11,000 m, the propulsion efficiency increases by approximately 8 percentage points compared to a ducted propulsor without heat utilization. Under sea-level conditions, the concept does not offer any performance advantages over a ducted propulsor. Instead, it exhibits either comparable or reduced propulsive efficiency. Full article
Show Figures

Figure 1

16 pages, 2550 KiB  
Article
Computational and Population-Based HLA Permissiveness to HIV Drug Resistance-Associated Mutations
by Rizwan Mahmud, Zoë Krullaars, Jolieke van Osch, David Rickett, Zabrina L. Brumme, Kathryn S. Hensley, Casper Rokx, Rob A. Gruters, Jeroen J. A. van Kampen and Thibault Mesplède
Pathogens 2025, 14(3), 207; https://doi.org/10.3390/pathogens14030207 - 20 Feb 2025
Viewed by 933
Abstract
The presentation of HIV peptides by the human leukocyte antigen (HLA) complex to CD8+ cytotoxic T-cells (CTLs) is critical to limit viral pathogenesis. HIV can mutate to evade HLA-restricted CTL responses and resist antiretroviral drugs, raising questions about how it balances these evolutionary [...] Read more.
The presentation of HIV peptides by the human leukocyte antigen (HLA) complex to CD8+ cytotoxic T-cells (CTLs) is critical to limit viral pathogenesis. HIV can mutate to evade HLA-restricted CTL responses and resist antiretroviral drugs, raising questions about how it balances these evolutionary pressures. Here, we used a computational approach to assess how drug resistance-associated mutations (RAMs) affect the binding of HIV-1 subtype B or C peptides to the most prevalent HLA alleles in US, European, and South African populations. We predict RAMs that may be favored in certain populations and report the under-representation of Y181C in people expressing HLA-B*57:01. This finding agreed with our computational predictions when Y181C was at the major anchor site P2, suggesting the potential relevance of our approach. Overall, our findings lay out a conceptual framework to study the implications of HLA alleles on the emergence of HIV RAMs at the individual and population levels. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

13 pages, 13527 KiB  
Article
Influence of High-Speed Ram Transition Position on Porosity and Mechanical Properties of Large One-Piece Die-Casting Al-Si-Mn-Mg Aluminium Alloy
by Sai Zhang, Pengfei Ren, Kangle Wang, Bo Liu and Xianming Meng
Materials 2024, 17(24), 6169; https://doi.org/10.3390/ma17246169 - 17 Dec 2024
Cited by 3 | Viewed by 1043
Abstract
The high-pressure die-casting process can effectively manufacture aluminium alloy castings with complex shapes and thin wall thicknesses. However, due to the complex flow characteristics of the liquid metal during the mould-filling process, there are significant differences in the mechanical properties of different parts [...] Read more.
The high-pressure die-casting process can effectively manufacture aluminium alloy castings with complex shapes and thin wall thicknesses. However, due to the complex flow characteristics of the liquid metal during the mould-filling process, there are significant differences in the mechanical properties of different parts of the casting. This paper analyses the effect of the high-speed ram transition position on porosity and mechanical properties of Al-Si-Mn-Mg aluminium alloys in the high-pressure die-casting (HPDC) process, comparing the 1160 mm and 1200 mm positions. Using a comprehensive methodology that combines CT, tensile tests, and SEM, the research demonstrates that the 1160 mm position improves mechanical properties and reduces porosity, with a larger gap at the near-end of the casting, where the yield limit and elongation of the casting increased by 13% and 25% at 1160 mm compared to 1200 mm, respectively. This result shows that appropriate adjustment of the high-speed ram transition position can effectively optimise the organisational structure of thin-walled castings, and then improve their mechanical properties. Full article
Show Figures

Figure 1

16 pages, 5224 KiB  
Article
Large Eddy Simulation (LES) of Hydrogen Jet Flames and Finite Element Analysis of Thermal Barrier Coating
by Alon Davidy
Fluids 2024, 9(12), 287; https://doi.org/10.3390/fluids9120287 - 5 Dec 2024
Viewed by 1238
Abstract
A jet flame occurs when the release of flammable gas or liquid ignites, resulting in a long, intense, and highly directional flame. This type of fire is commonly associated with industrial incidents involving pipelines, storage tanks, and other pressurized equipment. Jet fires are [...] Read more.
A jet flame occurs when the release of flammable gas or liquid ignites, resulting in a long, intense, and highly directional flame. This type of fire is commonly associated with industrial incidents involving pipelines, storage tanks, and other pressurized equipment. Jet fires are a significant concern in the oil and gas industry due to the handling and processing of large volumes of flammable hydrocarbons under pressure. The new computational method presented here includes several aspects of hydrogen jet flame accidents and their mitigation: the CFD simulation of a hydrogen jet flame using the HyRAM code and Fire Dynamics Simulator (FDS) software 5.0 using a large eddy simulation (LES) turbulence model; the calculation of the gaseous mixture’s thermo-physical properties using the GASEQ thermochemical code; the calculation of convective and radiative heat fluxes using empirical correlation; and a heat transfer simulation on the pipe thermal barrier coating (TBC) using COMSOL Multiphysics software 4.2a during the heating phase. This method developed for the ceramic blanket was validated successfully against the previous experimental results obtained by Gravit et al. It was shown that a jet fire’s maximum temperature obtained using FDS software was similar to that obtained using GASEQ thermochemical software 0.79 and HyRAM software. The TBC’s surface temperature reached 1945 °C. The stainless steel’s maximal temperature reached 165.5 °C. There was a slight decrease in UTS at this temperature. Full article
(This article belongs to the Special Issue Analytical and Computational Fluid Dynamics of Combustion and Fires)
Show Figures

Figure 1

13 pages, 1273 KiB  
Article
The Respiratory Rate, Age, and Mean Arterial Pressure (RAM) Index: A Novel Prognostic Tool to Predict Mortality among Adult Patients with Acute Heart Failure in the Emergency Department
by Yu Chang, Chan-Huan Peng, Jiann-Hwa Chen, Yu-Ting Lee, Meng-Yu Wu and Jui-Yuan Chung
Medicina 2024, 60(9), 1423; https://doi.org/10.3390/medicina60091423 - 30 Aug 2024
Cited by 1 | Viewed by 1460
Abstract
Background and Objectives: Acute heart failure (AHF) is a life-threatening condition frequently encountered in the emergency department (ED). Identifying reliable prognostic indicators for in-hospital mortality is crucial for risk stratification and the appropriate management of AHF patients. This study aimed to assess [...] Read more.
Background and Objectives: Acute heart failure (AHF) is a life-threatening condition frequently encountered in the emergency department (ED). Identifying reliable prognostic indicators for in-hospital mortality is crucial for risk stratification and the appropriate management of AHF patients. This study aimed to assess the most effective method for predicting in-hospital mortality among various physiological parameters in patients with AHF presenting to the ED. Additionally, the study evaluated the effectiveness of the RAM index—respiratory rate (RR), age, and mean arterial pressure (MAP)—derived from the shock index (SI) by replacing heart rate with RR, as a novel prognostic tool. This was compared with the SI and its other derivatives to predict in-hospital mortality in adult patients with AHF presenting to the ED. Materials and Methods: This is a retrospective study conducted in the ED of an urban medical center, enrolling adult patients with signs and symptoms of AHF, who met the epidemiological diagnosis criteria, between January 2017 and December 2021. Baseline physiological parameters, including the RR, heart rate, systolic blood pressure, and diastolic blood pressure, were recorded upon ED admission. The RAM index was calculated as the RR multiplied by the age divided by the MAP. Statistical analysis was performed, including univariate analysis, logistic regression, and receiver operating characteristic (ROC) curve analysis. Results: A total of 2333 patients were included in the study. A RAM index > 18.6 (area under ROC curve (AUROC): 0.81; 95% confidence interval (CI): 0.79–0.83) had a superior mortality discrimination ability compared to an SI > 0.77 (AUROC: 0.75; 95% CI: 0.72–0.77), modified shock index > 1.11 (AUROC: 0.75; 95% CI: 0.73–0.77), age shock index > 62.7 (AUROC: 0.74; 95% CI: 0.72–0.76), and age-modified shock index > 79.9 (AUROC: 0.75; 95% CI: 0.73–0.77). A RAM index > 18.6 demonstrated a 7.36-fold higher risk of in-hospital mortality with a sensitivity of 0.80, specificity of 0.68, and negative predictive value of 0.97. Conclusions: The RAM index is an effective tool to predict mortality in AHF patients presenting to the ED. Its superior performance compared to traditional SI-based parameters suggests that the RAM index can aid in risk stratification and the early identification of high-risk patients, facilitating timely and aggressive treatment strategies. Full article
(This article belongs to the Section Emergency Medicine)
Show Figures

Figure 1

16 pages, 10272 KiB  
Article
The Function of Horn Ridges for Impact Damping
by Nayeon Lee, Sungkwang Mun, Kyle L. Johnson and Mark F. Horstemeyer
Biomimetics 2024, 9(8), 506; https://doi.org/10.3390/biomimetics9080506 - 22 Aug 2024
Viewed by 1965
Abstract
This study explores the damping effects of ram horn ridges on mechanical impacts resulting from ramming. We measured the amplitudes and frequencies of ridges along the axial (pitch) direction of the ridges of ram horns obtained from eight specimens across six different species. [...] Read more.
This study explores the damping effects of ram horn ridges on mechanical impacts resulting from ramming. We measured the amplitudes and frequencies of ridges along the axial (pitch) direction of the ridges of ram horns obtained from eight specimens across six different species. While the horns shared a similar spiral-shaped pattern with surface ridges, our findings show variations among the horns, including ridge spacing and growth trends. Additionally, we employed finite element analysis (FEA) to compare a ridged horn model with a non-ridged counterpart to provide an understanding of the damping characteristics of the surface ridges. Our FEA results reveal that the ridged horn decreased the initial ramming pressure by 20.7%, increased the shear stress by 66.9%, and decreased the axial strain by 27.3%, the radial strain by 16.7%, and the shear strain by 14.3% at a 50 ms impact duration compared to those of the non-ridged horn. The damping ratio was increased by 7.9% because of the ridges. This study elucidates three primary functions of the different species of ram horns’ spirals and ridges: (1) to transfer longitudinal waves into shear waves, (2) to filter shear waves, and (3) to stabilize the structure by mitigating excessive strain. Full article
(This article belongs to the Special Issue Bionic Design & Lightweight Engineering)
Show Figures

Figure 1

21 pages, 13293 KiB  
Article
Wind Tunnel Experiment and Numerical Simulation of Secondary Flow Systems on a Supersonic Wing
by Sheng Zhang, Zheng Lin, Zeming Gao, Shuai Miao, Jun Li, Lifang Zeng and Dingyi Pan
Aerospace 2024, 11(8), 618; https://doi.org/10.3390/aerospace11080618 - 28 Jul 2024
Cited by 2 | Viewed by 1972
Abstract
Aircraft secondary flow systems are small-flow circulation devices that are used for thermal and cold management, flow control, and energy generation on aircraft. The aerodynamic characteristics of main-flow-based inlets have been widely studied, but the secondary-flow-based small inlets, jets, and blowing and suction [...] Read more.
Aircraft secondary flow systems are small-flow circulation devices that are used for thermal and cold management, flow control, and energy generation on aircraft. The aerodynamic characteristics of main-flow-based inlets have been widely studied, but the secondary-flow-based small inlets, jets, and blowing and suction devices have seldom been studied. Two types of secondary flow systems embedded in a supersonic aircraft wing, a ram-air intake and a submerged intake, are researched here. Firstly, wind tunnel tests under subsonic, transonic, and supersonic conditions are carried out to test the total pressure recovery and total pressure distortion. Secondly, numerical simulations are used to analyze the flow characteristics in the secondary flow systems. The numerical results are validated with experimental data. The calculating errors of the total pressure recovery on the ram-air and submerged secondary flow systems are 8% and 10%, respectively. The simulation results demonstrate that the total pressure distortion tends to grow while the total pressure recovery drops with the increasing Mach number. As the Mach number increases from 0.4 to 2, the total pressure recovery of the ram-air secondary flow system decreases by 68% and 71% for the submerged system. Moreover, the total pressure distortion of the ram-air and submerged secondary flow systems is increased by 19.7 times and 8.3 times, respectively. Thirdly, a detailed flow mechanism is studied based on the simulation method. It is found that the flow separation at the front part of the tube is induced by adverse pressure gradients, which primarily determine the total pressure recovery at the outlet. The three-dimensional vortex in the tube is mainly caused by the change in cross-sectional shape, which influences the total pressure distortion. Full article
(This article belongs to the Special Issue Recent Advances in Applied Aerodynamics)
Show Figures

Figure 1

18 pages, 4335 KiB  
Article
Emergence of Rarely Reported Extensively Drug-Resistant Salmonella Enterica Serovar Paratyphi B among Patients in East China
by Jiefu Peng, Jingchao Feng, Hong Ji, Xiaoxiao Kong, Jie Hong, Liguo Zhu and Huimin Qian
Antibiotics 2024, 13(6), 519; https://doi.org/10.3390/antibiotics13060519 - 2 Jun 2024
Cited by 1 | Viewed by 1814
Abstract
Background: In recent years, global concern over increasing multidrug resistance (MDR) among various Salmonella serotypes has grown significantly. However, reports on MDR Salmonella Paratyphi B remain scarce, let alone the extensively drug-resistant (XDR) strains. Methods: In this retrospective study, we investigated the isolates [...] Read more.
Background: In recent years, global concern over increasing multidrug resistance (MDR) among various Salmonella serotypes has grown significantly. However, reports on MDR Salmonella Paratyphi B remain scarce, let alone the extensively drug-resistant (XDR) strains. Methods: In this retrospective study, we investigated the isolates of Salmonella Paratyphi B in Jiangsu Province over the past decade and carried out antimicrobial susceptibility tests, then the strains were sequenced and bioinformatics analyses were performed. Results: 27 Salmonella Paratyphi B strains were identified, of which the predominant STs were ST42 (11), ST86 (10), and ST2814 (5). Among these strains, we uncovered four concerning XDR Salmonella Paratyphi B ST2814 strains (4/5) which were previously unreported. These alarmingly resistant isolates showed resistance to all three major antibiotic classes for Salmonella treatment and even the last resort treatment tigecycline. Bioinformatics analysis revealed high similarity between the plasmids harbored by these XDR strains and diverse Salmonella serotypes and Escherichia coli from China and neighboring regions. Notably, these four plasmids carried the ramAp gene responsible for multiple antibiotic resistance by regulating the AcrAB-TolC pump, predominantly originating from China. Additionally, a distinct MDR ST42(1/11) strain with an ICE on chromosome was also identified. Furthermore, phylogenetic analysis of global ST42/ST2814 isolates highlighted the regional specificity of these strains, with Jiangsu isolates clustering together with domestic isolates and XDR ST2814 forming a distinct branch, suggesting adaptation to local antibiotic pressures. Conclusions: This research underscores the pressing need for closely monitoring the MDR/XDR Salmonella Paratyphi B, particularly the emerging ST2814 strains in Jiangsu Province, to effectively curb its spread and protect public health. Moreover, surveillance should be strengthened across different ecological niches and genera to track resistance genes and horizontal gene transfer elements under the concept of “ONE HEALTH”. Full article
(This article belongs to the Section Mechanism and Evolution of Antibiotic Resistance)
Show Figures

Figure 1

35 pages, 21115 KiB  
Article
A Framework for Structural Analysis of Icebreakers during Ramming of First-Year Ice Ridges
by Weidong Zhao, Bernt Johan Leira, Knut Vilhelm Høyland, Ekaterina Kim, Guoqing Feng and Huilong Ren
J. Mar. Sci. Eng. 2024, 12(4), 611; https://doi.org/10.3390/jmse12040611 - 31 Mar 2024
Cited by 5 | Viewed by 1961
Abstract
This paper presents a framework for structural analysis of icebreakers during ramming of first-year ice ridges. The framework links the ice-ridge load and the structural analysis based on the physical characteristics of ship–ice-ridge interactions. A ship–ice-ridge interaction study was conducted to demonstrate the [...] Read more.
This paper presents a framework for structural analysis of icebreakers during ramming of first-year ice ridges. The framework links the ice-ridge load and the structural analysis based on the physical characteristics of ship–ice-ridge interactions. A ship–ice-ridge interaction study was conducted to demonstrate the feasibility of the proposed framework. A PC-2 icebreaker was chosen for the ship–ice interaction study, and the geometrical and physical properties of the ice ridge were determined based on empirical data. The ice ridge was modeled by solid elements equipped with the continuous surface cap model (CSCM). To validate the approach, the simulated ice resistance was computed using the Lindqvist solution and in situ tests of R/V Xuelong 2. First, the local ice-induced pressure on the hull shell was determined based on numerical simulations. Subsequently, the local ice pressure was applied to local deformable sub-structural models of the PC-2 icebreaker hull by means of triangular impulse loads. Finally, the structural response of sub-structural models with refined meshes was computed. This case study demonstrates that the proposed framework is suitable for structural analysis of ice-induced stresses in local hull components. The results show that the ice load and the structural response obtained based on the four first-year ice-ridge models show obvious differences. Furthermore, the ice load and corresponding structural response increases with the width of the ridge and with increasing ship speed. Full article
(This article belongs to the Special Issue Design of Marine Structures against Ice Actions)
Show Figures

Figure 1

19 pages, 9735 KiB  
Article
Biomechanical Effects of Different Auxiliary–Aligner Designs on the Rotation of an Upper Canine: A Finite Element Analysis of a Specific Patient
by Vincenzo D’Antò, Tecla Bocchino, Carmine Levatè, Raffaele Buono, Armando Razionale, Sandro Barone and Roberto Savignano
Appl. Sci. 2024, 14(6), 2308; https://doi.org/10.3390/app14062308 - 9 Mar 2024
Cited by 3 | Viewed by 2536
Abstract
Aim: The objective of this research has been to apply a specific simulation to a patient to assess the biomechanical consequences of rotating an upper canine tooth through different attachment–aligner configurations and to predict the most efficient design using a three-dimensional finite element [...] Read more.
Aim: The objective of this research has been to apply a specific simulation to a patient to assess the biomechanical consequences of rotating an upper canine tooth through different attachment–aligner configurations and to predict the most efficient design using a three-dimensional finite element model of a full maxillary arch of a specific patient. Materials and methods: This was obtained by combining Cone-Beam Computed Tomography (CBCT) with the aim of reconstructing tooth roots and bone tissues, and Surface Structured-Light Scanning for creating digital tooth crown models from the patient’s impressions. This model was imported into the finite element solver (Ansys® 17). Three different attachment–aligner combinations were created through the exploitation of computer-aided design (CAD) procedures, i.e., without attachments, with a couple of attachments and with an attachment and a pressure point. For each simulation, the resulting force–moment (MF) system applied by the aligner to the target tooth, as well as the tooth displacement and rotation, was computed using a workstation based on Intel Xeon CPU E3-1245 v3@3.40 GHz and 16 GB RAM. Simulations reported that by adding the pressure point and the attachment to the standard aligner the amount of Moment z (Mz) delivered to the tooth increased almost two times. Results and conclusions: The maximum tooth displacement (0.85 mm) was obtained with the attachment and pressure point aligner, while the lowest (0.058 mm) was obtained with use of a couple of attachments. Both the attachment and the pressure point have the potential to enhance the appliance’s effectiveness. Particularly, the pressure point showed a higher influence on the load absolute value. The method applied in the present study should be used to retrieve the best design configuration for each patient and specific tooth movement. Full article
(This article belongs to the Special Issue Advanced Biotechnology Applied to Orthodontic TSADs and CBCT)
Show Figures

Figure 1

21 pages, 370 KiB  
Review
A Comprehensive Literature Review of Treatment-Emergent Integrase Resistance with Dolutegravir-Based Regimens in Real-World Settings
by Cassidy Henegar, Emilio Letang, Ruolan Wang, Charles Hicks, Dainielle Fox, Bryn Jones, Annemiek de Ruiter and Vani Vannappagari
Viruses 2023, 15(12), 2426; https://doi.org/10.3390/v15122426 - 14 Dec 2023
Cited by 4 | Viewed by 2687
Abstract
After a decade of dolutegravir (DTG) use in various antiretroviral therapy combinations and in diverse populations globally, it is critical to identify HIV strains with reduced drug susceptibility and monitor emergent resistance in people living with HIV who experience virologic failure while on [...] Read more.
After a decade of dolutegravir (DTG) use in various antiretroviral therapy combinations and in diverse populations globally, it is critical to identify HIV strains with reduced drug susceptibility and monitor emergent resistance in people living with HIV who experience virologic failure while on DTG-based regimens. We searched the PubMed, Embase, and Cochrane databases to identify studies that reported DTG resistance-associated mutations (RAMs) emerging under selection pressure. Our review showed that RAMs conferring resistance to DTG were rare in 2-drug and 3-drug regimens used in real-world cohorts, corroborating data from clinical trials. The potency of DTG in maintaining virologic suppression was demonstrated, even in cases of pre-existing resistance to companion drugs in the regimen. Estimates of DTG RAMs depended on the population and certain risk factors, including monotherapy, baseline resistance or lack of genotypic testing, treatment history and prior virologic failure, and suboptimal treatment adherence. The RAMs detected after virologic failure, often in heavily treatment-experienced individuals with prior exposure to integrase strand transfer inhibitors, were G118R, E138K, G140A/C/R/S, Q148H/K/R, N155H, and R263K. Overall, these data highlight the durable effectiveness and high barrier to resistance of DTG as part of combination antiretroviral therapy in a wide variety of settings. Full article
14 pages, 1843 KiB  
Article
The Use of Regional Anesthesia to Reduce Blood Loss in Isolated Limb Perfusion (ILP)—A Novel Approach
by Maya Niethard, Heilwig Fischer, Bernhard Gaßmann, Lyubomir Haralambiev, Alexander Tipp and Per-Ulf Tunn
J. Clin. Med. 2023, 12(20), 6542; https://doi.org/10.3390/jcm12206542 - 16 Oct 2023
Cited by 1 | Viewed by 1901
Abstract
Background: Isolated limb perfusion (ILP) for soft tissue sarcomas (STS) is usually performed with tumor necrosis factor alpha (TNF-α) and melphalan. ILP regularly leads to a total blood loss (BLt) of 1.5–2 L/patient. Blood inflow from the central blood circulation to the limb [...] Read more.
Background: Isolated limb perfusion (ILP) for soft tissue sarcomas (STS) is usually performed with tumor necrosis factor alpha (TNF-α) and melphalan. ILP regularly leads to a total blood loss (BLt) of 1.5–2 L/patient. Blood inflow from the central blood circulation to the limb is influenced by unstable pressure gradients and pain reactions after the administration of melphalan. With perioperative regional anesthesia (RA), pain levels can be reduced, and the pressure gradient stabilized resulting in a reduced BLt. The aim of this study was to compare the BLt with and without RA in patients with ILP during circulation of drugs. Methods: Patients were treated according to the following protocol: After the establishment of limb circulation, ILP was started with the administration of TNF-α. Half the dose of melphalan was given as a bolus after 30 min, and the remaining dose was continuously administered in the following 30 min. The extremity was washed out after 90 min. ILP with perioperative RA (supraclavicular plexus block/peridural catheter) was performed prospectively in 17 patients and compared to a matched retrospective control group of 17 patients without RA. BLt was documented and perioperative anesthesiological data were analyzed for response rates after the application of melphalan (RaM). Results: BLt and RaM tended to be lower for the intervention group with RA if compared to the control group without RA in all analyses. The trend of lower BLt and RaM in ILP with RA was more pronounced for the upper extremity compared to the lower extremity. Results were not statistically significant. Conclusion: These findings indicate that the use of RA can help to stabilize hemodynamic anesthetic management and reduce the BLt in ILP, especially during perfusion of the upper extremities. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

20 pages, 4189 KiB  
Article
Experimental and Numerical CFD Modelling of the Hydrodynamic Effects Induced by a Ram Pump Waste Valve
by Stefania Evangelista, Giuseppe Tortora and Giacomo Viccione
Sustainability 2023, 15(17), 13104; https://doi.org/10.3390/su151713104 - 31 Aug 2023
Cited by 3 | Viewed by 2781
Abstract
The hydraulic ram pump or hydram is a machine capable of lifting water to a hydraulic head higher than the level of the supply source. It is a sustainable and self-sufficient device: the working principle is based on the rise of abrupt pressure [...] Read more.
The hydraulic ram pump or hydram is a machine capable of lifting water to a hydraulic head higher than the level of the supply source. It is a sustainable and self-sufficient device: the working principle is based on the rise of abrupt pressure variations occurring in the feeding pipeline when the liquid inside it undergoes a locally sharp change in velocity as a consequence of the sudden closure of the waste valve. Invented in 1772, the pump has been improved over the decades. Due to its simplicity, low cost and reliability, it has been widely used worldwide to provide adequate domestic water supplies, especially before the spreading of electricity and internal combustion engines. In recent years, the new attention placed on sustainability and energy transition from fossil fuels to renewable energy devices has brought a growing interest to this basic machine, essentially forgotten and abandoned in the last century; it seems promising especially in developing countries. The hydram is, in fact, a very simple machine, with only two moving parts, the waste and delivery valves. The efficiency of the hydraulic ram pump is mainly influenced by the characteristics of the waste valve. However, sufficient data are not available for the design of the hydram and the waste valve. In this work, the behaviour of the waste valve of a hydram was simulated by means of Computational Fluid Dynamics (CFD). Velocity and pressure values were analysed for different scenarios with different closing times of the valve. The data obtained from the developed numerical model were compared, in order to verify the validity of the simulations, with those collected during the operation of the hydram placed at the Laboratory of Environmental and Marine Hydraulics (LIDAM) of the University of Salerno, Italy. The numerical model thus obtained can, therefore, be used to identify the ideal configuration of the valve in order to ensure the best performance of the hydram. Full article
(This article belongs to the Special Issue Hydraulic Engineering Modeling and Technology)
Show Figures

Figure 1

Back to TopTop