Computational and Population-Based HLA Permissiveness to HIV Drug Resistance-Associated Mutations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cohort and Ethics Statement
2.2. Selection of Drug Resistance-Associated Mutations
2.3. Selection of HLA Alleles
2.4. HLA-Peptide Binding Prediction
3. Results
3.1. Drug Resistance-Associated Mutations Change the Binding of HIV-1 Subtype B Peptides to HLA Alleles
3.2. Population-Based Permissiveness of HIV-1 Subtype B RAMs with HLA Alleles Frequent in the African American, European American, and European Populations
3.3. RAMs in HIV-1 Subtype C and HLA Permissiveness in the South African Population
3.4. Permissiveness and Non-Permissiveness in the Context of HLA-B57:01
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghosn, J.; Taiwo, B.; Seedat, S.; Autran, B.; Katlama, C. Hiv. Lancet 2018, 392, 685–697. [Google Scholar] [CrossRef]
- Demers, K.R.; Reuter, M.A.; Betts, M.R. CD8+ T-cell effector function and transcriptional regulation during HIV pathogenesis. Immunol. Rev. 2013, 254, 190–206. [Google Scholar] [CrossRef] [PubMed]
- Golstein, P.; Griffiths, G.M. An early history of T cell-mediated cytotoxicity. Nat. Rev. Immunol. 2018, 18, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Martinez, L.E.; Ibarrondo, J.; Guo, Y.; Penichet, M.L.; Epeldegui, M. Follicular CD8+ T Cells Are Elevated in HIV Infection and Induce PD-L1 on B Cells. J. Immunol. 2023, 210, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Romero-Martin, L.; Tarres-Freixas, F.; Pedreno-Lopez, N.; Rodriguez de la Concepcion, M.L.; Cunyat, F.; Hartigan-O’Connor, D.; Carrillo, J.; Mothe, B.; Blanco, J.; Ruiz-Riol, M.; et al. T-Follicular-Like CD8(+) T Cell Responses in Chronic HIV Infection Are Associated With Virus Control and Antibody Isotype Switching to IgG. Front. Immunol. 2022, 13, 928039. [Google Scholar] [CrossRef]
- Lobritz, M.A.; Lassen, K.G.; Arts, E.J. HIV-1 replicative fitness in elite controllers. Curr. Opin. HIV AIDS 2011, 6, 214–220. [Google Scholar] [CrossRef]
- Rahmouni, M.; Clerc, S.L.; Spadoni, J.L.; Labib, T.; Tison, M.; Medina-Santos, R.; Bensussan, A.; Tamouza, R.; Deleuze, J.F.; Zagury, J.F. Deep analysis of the major histocompatibility complex genetic associations using covariate analysis and haploblocks unravels new mechanisms for the molecular etiology of Elite Control in AIDS. BMC Immunol. 2025, 26, 1. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Su, J.; Chen, R.; Wei, W.; Yuan, Z.; Chen, X.; Wang, X.; Liang, H.; Ye, L.; Jiang, J. The Role of Innate Immunity in Natural Elite Controllers of HIV-1 Infection. Front. Immunol. 2022, 13, 780922. [Google Scholar] [CrossRef] [PubMed]
- Koning, D.; Quakkelaar, E.D.; Schellens, I.M.; Spierings, E.; van Baarle, D. Protective HLA Alleles Recruit Biased and Largely Similar Antigen-Specific T Cell Repertoires across Different Outcomes in HIV Infection. J. Immunol. 2022, 208, 3–15. [Google Scholar] [CrossRef]
- Block, M.; Hong, J.-S. Chronic microglial activation and progressive dopaminergic neurotoxicity. Biochem. Soc. Trans. 2007, 35, 1127–1132. [Google Scholar] [CrossRef] [PubMed]
- Granier, C.; Battivelli, E.; Lécuroux, C.; Venet, A.; Lambotte, O.; Schmitt-Boulanger, M.; Delaugerre, C.; Molina, J.-M.; Chakrabarti, L.A.; Clavel, F. Pressure from TRIM5α contributes to control of HIV-1 replication by individuals expressing protective HLA-B alleles. J. Virol. 2013, 87, 10368–10380. [Google Scholar] [CrossRef] [PubMed]
- Goulder, P.J.; Walker, B.D. HIV and HLA class I: An evolving relationship. Immunity 2012, 37, 426–440. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Zhang, T.H.; Dai, L.; Zheng, X.; Gorin, A.M.; Oishi, J.; Wu, T.T.; Yoshizawa, J.M.; Li, X.; Yang, O.O.; et al. Effects of Mutations on Replicative Fitness and Major Histocompatibility Complex Class I Binding Affinity Are Among the Determinants Underlying Cytotoxic-T-Lymphocyte Escape of HIV-1 Gag Epitopes. mBio 2017, 8, e01050-17. [Google Scholar] [CrossRef] [PubMed]
- Balasubramaniam, M.; Davids, B.O.; Bryer, A.; Xu, C.; Thapa, S.; Shi, J.; Aiken, C.; Pandhare, J.; Perilla, J.R.; Dash, C. HIV-1 mutants that escape the cytotoxic T-lymphocytes are defective in viral DNA integration. PNAS Nexus 2022, 1, pgac064. [Google Scholar] [CrossRef] [PubMed]
- Miura, T.; Brockman, M.A.; Schneidewind, A.; Lobritz, M.; Pereyra, F.; Rathod, A.; Block, B.L.; Brumme, Z.L.; Brumme, C.J.; Baker, B.; et al. HLA-B57/B*5801 human immunodeficiency virus type 1 elite controllers select for rare gag variants associated with reduced viral replication capacity and strong cytotoxic T-lymphocyte [corrected] recognition. J. Virol. 2009, 83, 2743–2755. [Google Scholar] [CrossRef]
- Wainberg, M.A.; Zaharatos, G.J.; Brenner, B.G. Development of antiretroviral drug resistance. N. Engl. J. Med. 2011, 365, 637–646. [Google Scholar] [CrossRef] [PubMed]
- van Kampen, J.J.A.; Pham, H.T.; Yoo, S.; Overmars, R.J.; Lungu, C.; Mahmud, R.; Schurink, C.A.M.; van Boheemen, S.; Gruters, R.A.; Fraaij, P.L.A.; et al. HIV-1 resistance against dolutegravir fluctuates rapidly alongside erratic treatment adherence: A case report. J. Glob. Antimicrob. Resist. 2022, 31, 323–327. [Google Scholar] [CrossRef]
- Mesplede, T.; Quashie, P.K.; Osman, N.; Han, Y.; Singhroy, D.N.; Lie, Y.; Petropoulos, C.J.; Huang, W.; Wainberg, M.A. Viral fitness cost prevents HIV-1 from evading dolutegravir drug pressure. Retrovirology 2013, 10, 22. [Google Scholar] [CrossRef]
- Schommers, P.; Martrus, G.; Matschl, U.; Sirignano, M.; Lutgehetmann, M.; Richert, L.; Hope, T.J.; Fatkenheuer, G.; Altfeld, M. Changes in HIV-1 Capsid Stability Induced by Common Cytotoxic-T-Lymphocyte-Driven Viral Sequence Mutations. J. Virol. 2016, 90, 7579–7586. [Google Scholar] [CrossRef] [PubMed]
- Schneidewind, A.; Brockman, M.A.; Sidney, J.; Wang, Y.E.; Chen, H.; Suscovich, T.J.; Li, B.; Adam, R.I.; Allgaier, R.L.; Mothe, B.R.; et al. Structural and functional constraints limit options for cytotoxic T-lymphocyte escape in the immunodominant HLA-B27-restricted epitope in human immunodeficiency virus type 1 capsid. J. Virol. 2008, 82, 5594–5605. [Google Scholar] [CrossRef]
- Shahid, A.; Olvera, A.; Anmole, G.; Kuang, X.T.; Cotton, L.A.; Plana, M.; Brander, C.; Brockman, M.A.; Brumme, Z.L. Consequences of HLA-B*13-Associated Escape Mutations on HIV-1 Replication and Nef Function. J. Virol. 2015, 89, 11557–11571. [Google Scholar] [CrossRef]
- Tsai, M.C.; Singh, S.; Adland, E.; Goulder, P. Impact of HLA-B*52:01-Driven Escape Mutations on Viral Replicative Capacity. J. Virol. 2020, 94, e02025-19. [Google Scholar] [CrossRef]
- Mueller, S.M.; Spriewald, B.M.; Bergmann, S.; Eismann, K.; Leykauf, M.; Korn, K.; Walter, H.; Schmidt, B.; Arnold, M.L.; Harrer, E.G.; et al. Influence of major HIV-1 protease inhibitor resistance mutations on CTL recognition. J. Acquir. Immune Defic. Syndr. 2011, 56, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Kuse, N.; Murakoshi, H.; Chikata, T.; Gatanaga, H.; Oka, S.; Takiguchi, M. Raltegravir and elvitegravir-resistance mutation E92Q affects HLA-B*40:02-restricted HIV-1-specific CTL recognition. Microbes Infect. 2014, 16, 434–438. [Google Scholar] [CrossRef]
- Schmitt, M.; Harrer, E.; Goldwich, A.; Bauerle, M.; Graedner, I.; Kalden, J.R.; Harrer, T. Specific recognition of lamivudine-resistant HIV-1 by cytotoxic T lymphocytes. AIDS 2000, 14, 653–658. [Google Scholar] [CrossRef]
- Santos-Pereira, A.; Triunfante, V.; Araujo, P.M.M.; Martins, J.; Soares, H.; Poveda, E.; Souto, B.; Osorio, N.S. Nationwide Study of Drug Resistance Mutations in HIV-1 Infected Individuals under Antiretroviral Therapy in Brazil. Int. J. Mol. Sci. 2021, 22, 5304. [Google Scholar] [CrossRef] [PubMed]
- Mahnke, L.; Clifford, D. Cytotoxic T cell recognition of an HIV-1 reverse transcriptase variant peptide incorporating the K103N drug resistance mutation. AIDS Res. Ther. 2006, 3, 21. [Google Scholar] [CrossRef] [PubMed]
- Gatanaga, H.; Murakoshi, H.; Hachiya, A.; Hayashida, T.; Chikata, T.; Ode, H.; Tsuchiya, K.; Sugiura, W.; Takiguchi, M.; Oka, S. Naturally selected rilpivirine-resistant HIV-1 variants by host cellular immunity. Clin. Infect. Dis. 2013, 57, 1051–1055. [Google Scholar] [CrossRef]
- Nguyen, H.; Thorball, C.W.; Fellay, J.; Boni, J.; Yerly, S.; Perreau, M.; Hirsch, H.H.; Kusejko, K.; Thurnheer, M.C.; Battegay, M.; et al. Systematic screening of viral and human genetic variation identifies antiretroviral resistance and immune escape link. eLife 2021, 10, e67388. [Google Scholar] [CrossRef]
- Willim, R.; Shadabi, E.; Sampathkumar, R.; Li, L.; Balshaw, R.; Kimani, J.; Plummer, F.A.; Luo, M.; Liang, B. High Level of Pre-Treatment HIV-1 Drug Resistance and Its Association with HLA Class I-Mediated Restriction in the Pumwani Sex Worker Cohort. Viruses 2022, 14, 273. [Google Scholar] [CrossRef]
- George, J.M.; Kuriakose, S.S.; Dee, N.; Stoll, P.; Lalani, T.; Dewar, R.; Khan, M.A.; Rehman, M.T.; Grossman, Z.; Maldarelli, F.; et al. Rapid Development of High-Level Resistance to Dolutegravir With Emergence of T97A Mutation in 2 Treatment-Experienced Individuals With Baseline Partial Sensitivity to Dolutegravir. Open Forum Infect. Dis. 2018, 5, ofy221. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, Y.; Pfafferott, K.; Frater, J.; Matthews, P.; Payne, R.; Addo, M.; Gatanaga, H.; Fujiwara, M.; Hachiya, A.; Koizumi, H.; et al. Adaptation of HIV-1 to human leukocyte antigen class I. Nature 2009, 458, 641–645. [Google Scholar] [CrossRef] [PubMed]
- Carlson, J.M.; Du, V.Y.; Pfeifer, N.; Bansal, A.; Tan, V.Y.; Power, K.; Brumme, C.J.; Kreimer, A.; DeZiel, C.E.; Fusi, N.; et al. Impact of pre-adapted HIV transmission. Nat. Med. 2016, 22, 606–613. [Google Scholar] [CrossRef]
- Brumme, Z.L.; Kinloch, N.N.; Sanche, S.; Wong, A.; Martin, E.; Cobarrubias, K.D.; Sandstrom, P.; Levett, P.N.; Harrigan, P.R.; Joy, J.B. Extensive host immune adaptation in a concentrated North American HIV epidemic. AIDS 2018, 32, 1927–1938. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.F.; Shafer, R.W. Web resources for HIV type 1 genotypic-resistance test interpretation. Clin. Infect. Dis. 2006, 42, 1608–1618. [Google Scholar] [CrossRef]
- Shafer, R.W. Rationale and uses of a public HIV drug-resistance database. J. Infect. Dis. 2006, 194, S51–S58. [Google Scholar] [CrossRef] [PubMed]
- Rhee, S.-Y.; Gonzales, M.J.; Kantor, R.; Betts, B.J.; Ravela, J.; Shafer, R.W. Human immunodeficiency virus reverse transcriptase and protease sequence database. Nucleic Acids Res. 2003, 31, 298–303. [Google Scholar] [CrossRef]
- Nunes, J.M.; Buhler, S.; Roessli, D.; Sanchez-Mazas, A.; Collaboration, H.n.; Andreani, M.; Benhamamouch, S.; Boldyreva, M.; Canossi, A.; Chiaroni, J. The HLA-net GENE [RATE] pipeline for effective HLA data analysis and its application to 145 population samples from Europe and neighbouring areas. Tissue Antigens 2014, 83, 307–323. [Google Scholar] [CrossRef]
- Creary, L.E.; Gangavarapu, S.; Mallempati, K.C.; Montero-Martín, G.; Caillier, S.J.; Santaniello, A.; Hollenbach, J.A.; Oksenberg, J.R.; Fernández-Viña, M.A. Next-generation sequencing reveals new information about HLA allele and haplotype diversity in a large European American population. Human Immunol. 2019, 80, 807–822. [Google Scholar] [CrossRef] [PubMed]
- Tu, B.; Mack, S.; Lazaro, A.; Lancaster, A.; Thomson, G.; Cao, K.; Chen, M.; Ling, G.; Hartzman, R.; Ng, J. HLA-A,-B,-C,-DRB1 allele and haplotype frequencies in an African American population. Tissue Antigens 2007, 69, 73–85. [Google Scholar] [CrossRef] [PubMed]
- Tshabalala, M.; Mellet, J.; Vather, K.; Nelson, D.; Mohamed, F.; Christoffels, A.; Pepper, M.S. High Resolution HLA approximately A, approximately B, approximately C, approximately DRB1, approximately DQA1, and approximately DQB1 Diversity in South African Populations. Front. Genet. 2022, 13, 711944. [Google Scholar] [CrossRef]
- Andreatta, M.; Nielsen, M. Gapped sequence alignment using artificial neural networks: Application to the MHC class I system. Bioinformatics 2016, 32, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, M.; Lundegaard, C.; Worning, P.; Lauemoller, S.L.; Lamberth, K.; Buus, S.; Brunak, S.; Lund, O. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci. 2003, 12, 1007–1017. [Google Scholar] [CrossRef]
- Jurtz, V.; Paul, S.; Andreatta, M.; Marcatili, P.; Peters, B.; Nielsen, M. NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data. J. Immunol. 2017, 199, 3360–3368. [Google Scholar] [CrossRef]
- Phloyphisut, P.; Pornputtapong, N.; Sriswasdi, S.; Chuangsuwanich, E. MHCSeqNet: A deep neural network model for universal MHC binding prediction. BMC Bioinform. 2019, 20, 270. [Google Scholar] [CrossRef]
- Reynisson, B.; Alvarez, B.; Paul, S.; Peters, B.; Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 2020, 48, W449–W454. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Masum, M.H.U.; Parvin, R.; Das, S.C.; Talukder, A. Designing of an mRNA vaccine against high-risk human papillomavirus targeting the E6 and E7 oncoproteins exploiting immunoinformatics and dynamic simulation. PLoS ONE 2025, 20, e0313559. [Google Scholar] [CrossRef] [PubMed]
- Trolle, T.; McMurtrey, C.P.; Sidney, J.; Bardet, W.; Osborn, S.C.; Kaever, T.; Sette, A.; Hildebrand, W.H.; Nielsen, M.; Peters, B. The length distribution of class I–restricted T cell epitopes is determined by both peptide supply and MHC allele–specific binding preference. J. Immunol. 2016, 196, 1480–1487. [Google Scholar] [CrossRef]
- Kuruvilla, R.; Scott, K.; Pirmohamed, M. Pharmacogenomics of Drug Hypersensitivity: Technology and Translation. Immunol. Allergy Clin. 2022, 42, 335–355. [Google Scholar]
- Illing, P.T.; Pymm, P.; Croft, N.P.; Hilton, H.G.; Jojic, V.; Han, A.S.; Mendoza, J.L.; Mifsud, N.A.; Dudek, N.L.; McCluskey, J.; et al. HLA-B57 micropolymorphism defines the sequence and conformational breadth of the immunopeptidome. Nat. Commun. 2018, 9, 4693. [Google Scholar] [CrossRef]
- Brenner, B.G.; Thomas, R.; Blanco, J.L.; Ibanescu, R.I.; Oliveira, M.; Mesplède, T.; Golubkov, O.; Roger, M.; Garcia, F.; Martinez, E.; et al. Development of a G118R mutation in HIV-1 integrase following a switch to dolutegravir monotherapy leading to cross-resistance to integrase inhibitors. J. Antimicrob. Chemother. 2016, 71, 1948–1953. [Google Scholar] [CrossRef] [PubMed]
- Quashie, P.K.; Mesplede, T.; Han, Y.S.; Oliveira, M.; Singhroy, D.N.; Fujiwara, T.; Underwood, M.R.; Wainberg, M.A. Characterization of the R263K mutation in HIV-1 integrase that confers low-level resistance to the second-generation integrase strand transfer inhibitor dolutegravir. J. Virol. 2012, 86, 2696–2705. [Google Scholar] [CrossRef] [PubMed]
- Quashie, P.K.; Mesplede, T.; Han, Y.S.; Veres, T.; Osman, N.; Hassounah, S.; Sloan, R.D.; Xu, H.T.; Wainberg, M.A. Biochemical analysis of the role of G118R-linked dolutegravir drug resistance substitutions in HIV-1 integrase. Antimicrob. Agents Chemother. 2013, 57, 6223–6235. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.A.; Cleyle, J.; Yoo, S.; Forrest, M.; Krullaars, Z.; Pham, H.T.; Mesplede, T. The G118R plus R263K Combination of Integrase Mutations Associated with Dolutegravir-Based Treatment Failure Reduces HIV-1 Replicative Capacity and Integration. Antimicrob. Agents Chemother. 2023, 67, e0138622. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.; Tao, K.; Kouamou, V.; Avalos, A.; Scott, J.; Grant, P.M.; Rhee, S.Y.; McCluskey, S.M.; Jordan, M.R.; Morgan, R.L.; et al. Prevalence of Emergent Dolutegravir Resistance Mutations in People Living with HIV: A Rapid Scoping Review. Viruses 2024, 16, 399. [Google Scholar] [CrossRef]
- Mesplède, T.; Quashie, P.K.; Hassounah, S.; Osman, N.; Han, Y.; Liang, J.; Singhroy, D.N.; Wainberg, M.A. The R263K substitution in HIV-1 subtype C is more deleterious for integrase enzymatic function and viral replication than in subtype B. AIDS 2015, 29, 1459–1466. [Google Scholar] [CrossRef]
- Kemp, S.A.; Kamelian, K.; Cuadros, D.F.; Consortium, P.; Vukuzazi, T.; Cheng, M.T.K.; Okango, E.; Hanekom, W.; Ndung’u, T.; Pillay, D.; et al. HIV transmission dynamics and population-wide drug resistance in rural South Africa. Nat. Commun. 2024, 15, 3644. [Google Scholar] [CrossRef] [PubMed]
Drug Class | RAMs |
---|---|
Integrase strand transfer inhibitors | T66A, T66I, T66K, E92Q, G118R, E138A, E138K, E138T, G140A, G140C, G140S, G140R, Y143C, Y143H, Y143R, S147G, Q148H, Q148K, Q148R, N155H, R263K |
Nucleoside and nucleotide reverse transcriptase inhibitors | M41L, K65R, D67N, K70E, K70R, L74I, L74V, Y115F, Q151M, M184I, M184V, L210W, T215F, T215Y, K219E, K219Q |
Non-nucleoside reverse transcriptase inhibitors | L100I, K101E, K101P, K103N, K103S, V106A, V106M, E138A, E138G, E138Q, E138K, Y181C, Y181V, Y188L, G190A, G190S, G190E, M230L |
Protease inhibitors | D30N, V32I, L33F, M46I, M46L, I47A, I47V, G48M, G48V, I50L, I50V, I54A, I54L, I54M, I54T, I54V, L67V, V82A, V82F, V82L, V82T, V82S, I84V, N88D, N88S, L90M |
HLA Allele | European | European American | African American |
---|---|---|---|
HLA-A01:01 | 10–15% | 16% | |
HLA-A02:01 | >20% | 26% | 12% |
HLA-A03:01 | 10–15% | 13% | 9% |
HLA-A11:01 | 7% | ||
HLA-A24:02 | 10–15% | 8% | |
HLA-A30:01 | 8% | ||
HLA-A30:02 | 6% | ||
HLA-A33:03 | 5% | ||
HLA-A74:01 | 5% | ||
HLA-B07:02 | 13% | 7% | |
HLA-B08:01 | 11% | ||
HLA-B15:01 | 6% | ||
HLA-B35:01 | >20% | 6% | 7% |
HLA-B35:03 | >20% | ||
HLA-B42:01 | 6% | ||
HLA-B44:02 | >20% | 7% | |
HLA-B44:03 | 5% | ||
HLA-B51:01 | >20% | 5% | |
HLA-C02:10 | 6% | ||
HLA-C03:03 | 5% | ||
HLA-C03:04 | 7% | ||
HLA-C04:01 | >10% | 7% | 20% |
HLA-C05:01 | 7% | ||
HLA-C06:02 | 7% | 9% | |
HLA-C07:01 | 20–40% | 14% | 12% |
HLA-C07:02 | 20–40% | 12% | 7% |
HLA-C07:06 | 20–40% | ||
HLA-C12:03 | 6% | ||
HLA-C16:01 | 9% | ||
HLA-C17:01 | 8% |
WT | Y181C | Affinity WT (nM) | Affinity Y181C (nM) | FC | |
---|---|---|---|---|---|
9-mer | KQNPDIVIY | KQNPDIVIC | 10,541.8 | 15,082.7 | 0.70 |
QNPDIVIYQ | QNPDIVICQ | 32,259.5 | 34,363.3 | 0.94 | |
NPDIVIYQY | NPDIVICQY | 23,451.7 | 24,244.5 | 0.97 | |
PDIVIYQYM | PDIVICQYM | 29,611.2 | 33,195.3 | 0.89 | |
DIVIYQYMD | DIVICQYMD | 33,387.3 | 35,307.7 | 0.95 | |
IVIYQYMDD | IVICQYMDD | 25,116 | 25,813.3 | 0.97 | |
VIYQYMDDL | VICQYMDDL | 22,674.4 | 28,647.8 | 0.79 | |
IYQYMDDLY | ICQYMDDLY | 26,921.8 | 20,628.5 | 1.31 | |
YQYMDDLYV | CQYMDDLYV | 24,214.4 | 25,038.2 | 0.97 | |
10-mer | RKQNPDIVIY | RKQNPDIVIC | 14,073.5 | 17,708.8 | 0.79 |
KQNPDIVIYQ | KQNPDIVICQ | 18,394.2 | 21,798.1 | 0.84 | |
QNPDIVIYQY | QNPDIVICQY | 26,064.5 | 28,065.1 | 0.93 | |
NPDIVIYQYM | NPDIVICQYM | 23,506.3 | 25,071.8 | 0.94 | |
PDIVIYQYMD | PDIVICQYMD | 34,629.8 | 36,405.6 | 0.95 | |
DIVIYQYMDD | DIVICQYMDD | 34,060.8 | 34,366.6 | 0.99 | |
IVIYQYMDDL | IVICQYMDDL | 21,105.3 | 22,379.3 | 0.94 | |
VIYQYMDDLY | VICQYMDDLY | 18,940.7 | 27,438.2 | 0.69 | |
IYQYMDDLYV | ICQYMDDLYV | 25,849.7 | 23,556.9 | 1.10 | |
YQYMDDLYVG | CQYMDDLYVG | 23,955.3 | 24,907.9 | 0.96 | |
11-mer | FRKQNPDIVIY | FRKQNPDIVIC | 28,212.5 | 30,168.4 | 0.94 |
RKQNPDIVIYQ | RKQNPDIVICQ | 29,171 | 31,073.8 | 0.94 | |
KQNPDIVIYQY | KQNPDIVICQY | 17,142.8 | 21,485.2 | 0.80 | |
QNPDIVIYQYM | QNPDIVICQYM | 33,385.1 | 35,156.4 | 0.95 | |
NPDIVIYQYMD | NPDIVICQYMD | 35,814.5 | 35,965.5 | 1.00 | |
PDIVIYQYMDD | PDIVICQYMDD | 40,804.6 | 41,305.7 | 0.99 | |
DIVIYQYMDDL | DIVICQYMDDL | 35,541.9 | 36,375.3 | 0.98 | |
IVIYQYMDDLY | IVICQYMDDLY | 24,685.2 | 25,753.6 | 0.96 | |
VIYQYMDDLYV | VICQYMDDLYV | 33,265.4 | 35,260.4 | 0.94 | |
IYQYMDDLYVG | ICQYMDDLYVG | 34,494 | 30,751.7 | 1.12 | |
YQYMDDLYVGS | CQYMDDLYVGS | 35,590.4 | 36,039.9 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmud, R.; Krullaars, Z.; van Osch, J.; Rickett, D.; Brumme, Z.L.; Hensley, K.S.; Rokx, C.; Gruters, R.A.; van Kampen, J.J.A.; Mesplède, T. Computational and Population-Based HLA Permissiveness to HIV Drug Resistance-Associated Mutations. Pathogens 2025, 14, 207. https://doi.org/10.3390/pathogens14030207
Mahmud R, Krullaars Z, van Osch J, Rickett D, Brumme ZL, Hensley KS, Rokx C, Gruters RA, van Kampen JJA, Mesplède T. Computational and Population-Based HLA Permissiveness to HIV Drug Resistance-Associated Mutations. Pathogens. 2025; 14(3):207. https://doi.org/10.3390/pathogens14030207
Chicago/Turabian StyleMahmud, Rizwan, Zoë Krullaars, Jolieke van Osch, David Rickett, Zabrina L. Brumme, Kathryn S. Hensley, Casper Rokx, Rob A. Gruters, Jeroen J. A. van Kampen, and Thibault Mesplède. 2025. "Computational and Population-Based HLA Permissiveness to HIV Drug Resistance-Associated Mutations" Pathogens 14, no. 3: 207. https://doi.org/10.3390/pathogens14030207
APA StyleMahmud, R., Krullaars, Z., van Osch, J., Rickett, D., Brumme, Z. L., Hensley, K. S., Rokx, C., Gruters, R. A., van Kampen, J. J. A., & Mesplède, T. (2025). Computational and Population-Based HLA Permissiveness to HIV Drug Resistance-Associated Mutations. Pathogens, 14(3), 207. https://doi.org/10.3390/pathogens14030207