Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = rainfall interception loss

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7307 KB  
Article
Rainfall Partitioning by Two Alpine Shrubs in the Qilian Mountains, Northwest China: Implications for Hydrological Modeling in Cold Regions
by Zhangwen Liu, Yongxin Tian, Jinxian Qi, Zhiying Dang, Rensheng Chen, Chuntan Han and Yong Yang
Forests 2025, 16(4), 658; https://doi.org/10.3390/f16040658 - 10 Apr 2025
Viewed by 537
Abstract
Understanding rainfall partitioning by shrub canopies is essential for assessing water balance and improving hydrological models in cold regions. From 2010 to 2012, field experiments were conducted in the Hulu catchment of the Qilian Mountains, focusing on Potentilla fruticosa and Caragana jubata during [...] Read more.
Understanding rainfall partitioning by shrub canopies is essential for assessing water balance and improving hydrological models in cold regions. From 2010 to 2012, field experiments were conducted in the Hulu catchment of the Qilian Mountains, focusing on Potentilla fruticosa and Caragana jubata during the growing season. Throughfall, stemflow, and interception loss were measured using rain gauges, stemflow collars, and a water balance approach. A total of 197 natural rainfall events were recorded, and precipitation partitioning characteristics were analyzed in relation to rainfall intensity, amount, and vegetation traits. One-way ANOVA and regression analyses were used to test differences and correlations. The results showed that the critical rainfall threshold for generating throughfall and stemflow was 1.9 mm. For P. fruticosa, throughfall, stemflow, and interception loss accounted for 66.96%, 3.51%, and 29.53% of gross rainfall, respectively; the corresponding values for C. jubata were 67.31%, 7.27%, and 25.42%. Significant differences (p < 0.05) in stemflow were observed between species. Partitioning components were positively correlated with rainfall amount and stabilized at ~4 mm h−1 intensity. Interception loss percentage decreased with intensity and plateaued at 2 mm h−1 for P. fruticosa and 5 mm h−1 for C. jubata. These findings provide empirical evidence for modeling shrub canopy rainfall redistribution in alpine environments. Full article
(This article belongs to the Special Issue Hydrological Modelling of Forested Ecosystems)
Show Figures

Figure 1

16 pages, 3114 KB  
Article
Applicability of a Modified Gash Model for Artificial Forests in the Transitional Zone between the Loess Hilly Region and the Mu Us Sandy Land, China
by Xin Wang, Zhenqi Yang, Jianying Guo, Fucang Qin, Yabo Wang and Jiajun Ning
Sustainability 2024, 16(19), 8709; https://doi.org/10.3390/su16198709 - 9 Oct 2024
Cited by 1 | Viewed by 1169
Abstract
Afforestation in the transitional zone between the loess hilly area and the Mu Us Sandy Land of China has reshaped the landscape and greatly affected eco-hydrological processes. Plantations are crucial for regulating local net rainfall inputs, thus making it necessary to quantify the [...] Read more.
Afforestation in the transitional zone between the loess hilly area and the Mu Us Sandy Land of China has reshaped the landscape and greatly affected eco-hydrological processes. Plantations are crucial for regulating local net rainfall inputs, thus making it necessary to quantify the closure loss of plantation species in drought and semi-arid areas. To quantify and model the canopy interception of these plantations, we conducted rainfall redistribution measurement experiments. Based on this, we used the modified Gash model to simulate their interception losses, and the model applicability across varying rainfall types was further compared and verified. Herein, Caragana korshinskii, Salix psammophila, and Pinus sylvestris plantations in the Kuye River mountain tract were chosen to measure the precipitation distribution from May to October (growing season). The applicability of a modified Gash model for different stands was then evaluated using the assessed data. The results showed that the canopy interception characteristics of each typical plantation were throughfall, interception, and stemflow. The relative error of canopy interception of C. korshinskii simulated by the modified Gash model was 8.79%. The relative error of simulated canopy interception of S. psammophila was 4.19%. The relative error of canopy interception simulation of P. sylvestris was 13.28%, and the modified Gash model had good applicability in the Kuye River Basin. The modified Gash model has the greatest sensitivity to rainfall intensity among the parameters of the C. korshinskii and S. psammophila forest. The sensitivity of P. sylvestris in the modified Gash model is that the canopy cover has the greatest influence, followed by the mean rainfall intensity. Our results provide a scientific basis for the rational use of water resources and vegetation restoration in the transitional zone between the loess hilly region and the Mu Us Sandy Land. This study is of import for the restoration and sustainability of fragile ecosystems in the region. Full article
Show Figures

Figure 1

16 pages, 8131 KB  
Article
Forest Structure Regulates Response of Erosion-Induced Carbon Loss to Rainfall Characteristics
by Weiwei Wang, Chao Xu, Teng-Chiu Lin, Zhijie Yang, Xiaofei Liu, Decheng Xiong, Shidong Chen, Guangshui Chen and Yusheng Yang
Forests 2024, 15(7), 1269; https://doi.org/10.3390/f15071269 - 21 Jul 2024
Cited by 1 | Viewed by 1423
Abstract
Forestation is a common measure to control erosion-induced soil and carbon (C) loss, but the effect can vary substantially between different types of forest. Here, we measured event-based runoff, soil, dissolved organic carbon (DOC), particulate organic carbon (POC) and total C loss with [...] Read more.
Forestation is a common measure to control erosion-induced soil and carbon (C) loss, but the effect can vary substantially between different types of forest. Here, we measured event-based runoff, soil, dissolved organic carbon (DOC), particulate organic carbon (POC) and total C loss with runoff plots (20 m × 5 m) in a broad-leaved and a coniferous forest in subtropical China and explored their relationships with rainfall amount, average intensity, maximum 5-min intensity and rainfall erosivity. The broad-leaved forest had a denser canopy but sparse understory vegetation while the coniferous forest had a relatively open canopy but dense understory vegetation. The results showed that runoff, soil, DOC, POC and total C losses were all significantly higher in the broad-leaved forest than the coniferous forest despite the potentially higher canopy interception associated with the greater leaf area index of the broad-leaved forest. The mean runoff in the broad-leaved forest was 3.03 ± 0.20 m3 ha−1 event−1 (mean ± standard error) and 12.49 ± 0.18 m3 ha−1 event−1 in the coniferous forest. The mean soil, DOC, POC and total C loss (kg ha−1 event−1) was 1.12 ± 0.16, 0.045 ± 0.003, 0.118 ± 0.016 and 0.163 ± 0.017, respectively, in the broad-leaved forest and 0.66 ± 0.09, 0.020 ± 0.002, 0.060 ± 0.009 and 0.081 ± 0.010, respectively, in the coniferous forest. Runoff and DOC losses were driven by rainfall in two forests, but the key rainfall characteristic driving soil, POC and total C losses was different in the broad-leaved forest from that in the coniferous forest due to their different understory patterns. Soil, POC and total C losses were mostly driven by rainfall amount in the broad-leaved forest but by EI30 in the conifer forest. Our findings highlight that the response of erosion-induced carbon loss to rainfall characteristics differs between different forest types of the same age but contrasting overstory and understory vegetation covers. Moreover, our study underscores the overlooked significance of understory vegetation in regulating these effects. Thus, we call for the inclusion of understory vegetation in the modeling of soil and carbon erosion in forest ecosystems. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

17 pages, 3080 KB  
Article
Optimizing Straw Mulching Methods to Control Soil and Water Losses on Loess Sloped Farmland
by Xinkai Zhao, Xiaoyu Song, Danyang Wang, Lanjun Li, Pengfei Meng, Chong Fu, Long Wang, Wanyin Wei, Nan Yang, Yu Liu and Huaiyou Li
Agronomy 2024, 14(4), 696; https://doi.org/10.3390/agronomy14040696 - 28 Mar 2024
Cited by 4 | Viewed by 1597
Abstract
Straw mulching is a key method for controlling soil and water losses. Mulching costs may be reduced by applying it in strips rather than over entire areas. However, the effect of different straw mulching methods on the effectiveness of reducing soil erosion is [...] Read more.
Straw mulching is a key method for controlling soil and water losses. Mulching costs may be reduced by applying it in strips rather than over entire areas. However, the effect of different straw mulching methods on the effectiveness of reducing soil erosion is unclear. In this study, the effects of straw mulching strip length (covering 1/4, 1/2, 3/4, and 4/4 of the slope length) and coverage rate (0.2, 0.5, and 0.8 kg m−2) on interception, infiltration, runoff, and soil erosion were investigated at the plot scale using rainfall simulation experiments. The further complex correlations between these variables were analyzed using structural equation modeling (SEM). Bare slopes were used as a control group. The rainfall intensity was chosen to be 60 mm h−1. The results showed that (1) the modified Merriam interception model can describe the change in interception with time under straw mulching conditions well (R2 > 0.91, NSE > 0.75). (2) A total of 35.39–78.79% of the rainwater is converted into infiltration on straw-covered slopes, while this proportion is 36.75% on bare slopes. The proportion of rainwater converted to infiltration was greatest (78.79%) when the straw covered 3/4 of the slope length at a coverage rate of 0.5 kg m−2, which was the most conducive to rainwater harvesting on the slope. (3) Straw mulching protects the topsoil from the impact of raindrops and directly affects the sediment yield (direct effect = −0.44). Straw mulching can also indirectly affect sediment yield by increasing interception, reducing runoff, and decreasing the sediment carrying capacity of runoff (indirect effect = −0.83). Compared with bare slopes, straw covering at least 1/2 of the slope length can significantly reduce runoff yield, but straw covering only 1/4 of the slope length can significantly reduce sediment yield. Moreover, once the straw mulch slope length reaches 3/4 and the coverage rate reaches 0.5 kg m−2, further increases in mulch slope length and coverage rate will not significantly reduce the runoff and sediment yields. These results assessed the effectiveness of different straw mulching methods in controlling soil and water losses on sloping farmland. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

25 pages, 8405 KB  
Article
Improving Flash Flood Hydrodynamic Simulations by Integrating Leaf Litter and Interception Processes in Steep-Sloped Natural Watersheds
by Gergely Ámon, Katalin Bene, Richard Ray, Zoltán Gribovszki and Péter Kalicz
Water 2024, 16(5), 750; https://doi.org/10.3390/w16050750 - 1 Mar 2024
Cited by 3 | Viewed by 2146
Abstract
More frequent high-intensity, short-duration rainfall events increase the risk of flash floods on steeply sloped watersheds. Where measured data are unavailable, numerical models emerge as valuable tools for predicting flash floods. Recent applications of various hydrological and hydrodynamic models to predict overland flow [...] Read more.
More frequent high-intensity, short-duration rainfall events increase the risk of flash floods on steeply sloped watersheds. Where measured data are unavailable, numerical models emerge as valuable tools for predicting flash floods. Recent applications of various hydrological and hydrodynamic models to predict overland flow have highlighted the need for improved representations of the complex flow processes that are inherent in flash floods. This study aimed to identify an optimal modeling approach for characterizing leaf litter losses during flash floods. At a gauged watershed in the Hidegvíz Valley in Hungary, a physical-based model was calibrated using two distinct rainfall–runoff events. Two modeling methodologies were implemented, integrating canopy interception and leaf litter storage, to understand their contributions during flash flood events. The results from the model’s calibration demonstrated this approach’s effectiveness in determining the impact of leaf litter on steep-sloped watersheds. Soil parameters can estimate the behavior of leaf litter during flash flood events. In this study, hydraulic conductivity and initial water content emerged as critical factors for effective parametrization. The findings underscore the potential of a hydrodynamic model to explore the relationship between leaf litter and flash flood events, providing a framework for future studies in watershed management and risk-mitigation strategies. Full article
(This article belongs to the Special Issue Advanced Research on Hydraulic Engineering and Hydrological Modelling)
Show Figures

Figure 1

20 pages, 4784 KB  
Article
The Throughfall, Stemflow, and Canopy Interception Loss in Corn and Soybean Fields in Northeast China
by Jilei Wang, Yanqing Liu, Baoguo Li, Zizhong Li, Yan Zhang, Shuai Zhang, Yafei Pan and Feixia Zhang
Water 2024, 16(2), 253; https://doi.org/10.3390/w16020253 - 11 Jan 2024
Cited by 4 | Viewed by 2264
Abstract
Information about throughfall, stemflow, and canopy interception loss is essential for the water use efficiency of crops and the dynamic processes of water erosion. A two-year field experiment was conducted under natural rainfall conditions to observe the characteristics and factors that affect throughfall, [...] Read more.
Information about throughfall, stemflow, and canopy interception loss is essential for the water use efficiency of crops and the dynamic processes of water erosion. A two-year field experiment was conducted under natural rainfall conditions to observe the characteristics and factors that affect throughfall, stemflow, and canopy interception loss in corn (Zea mays L.) and soybean (Glycine max L.) fields in northeast China from 2019 to 2020. Nine measurement sites (A, B, C, D, E, F, G, H, and I) were distributed horizontally between two planting rows under the crop canopy. The mean value of the throughfall volume (TF) in measurement locations B, C, and G under the corn canopy and measurement locations B and C could represent the mean level of TF of corn and soybean fields, respectively. The volume of TF, stemflow (SF), and canopy interception loss (CI) of two growing seasons from 2019 to 2020 accounted for approximately 58.5%, 30.1%, and 11.4% of the gross rainfall (GR) of two growing seasons in corn fields, and 78.0%, 7.5%, and 14.5% of the GR in the soybean field, respectively. The TF and TFR of each rainfall event in the corn and soybean fields could be predicted by linear regression models with a normalized root mean square error (NRMSE) lower than 25.0%. These results and prediction models will be used in water management and soil erosion control in northeast China. Full article
Show Figures

Graphical abstract

17 pages, 7158 KB  
Article
Quantifying Landscape Pattern–Hydrological Process Linkage in Northwest Iran
by Ali Rasoulzadeh, Raoof Mostafazadeh, Javanshir Azizi Mobaser, Nazila Alaei, Zeinab Hazbavi and Ozgur Kisi
Atmosphere 2023, 14(12), 1814; https://doi.org/10.3390/atmos14121814 - 12 Dec 2023
Cited by 5 | Viewed by 2125
Abstract
The enormous heterogeneity and complexity of landscape patterns and their linkage with the hydrological responses have rarely been quantified and cataloged, especially in ungauged regions. This research therefore linked the landscape characteristics to hydrological processes using a newly developed runoff landscape index (RLI) [...] Read more.
The enormous heterogeneity and complexity of landscape patterns and their linkage with the hydrological responses have rarely been quantified and cataloged, especially in ungauged regions. This research therefore linked the landscape characteristics to hydrological processes using a newly developed runoff landscape index (RLI) at the watershed scale in Ardabil Province, northwest Iran. First, 11 common landscape metrics were calculated using Fragstats 4.2.1 software. Then, a runoff landscape index (RLI) was developed based on land cover (λC), soil (λK), and topography (λS) factors in 28 watersheds. Correlation and regression analyses were also conducted to determine the relationship between RLI, commonly used landscape metrics, and mean base flow. The spatial variations of all meaningful landscape metrics and RLI were considerable throughout the study watersheds. The mean values of λC, λK, and λS were found to be 2.78 ± 1.08, 0.50 ± 0.10, and 1.22 ± 0.30, respectively. The mean RLI varied from 0.00009 in the Lay Watershed with an area of 19.09 km2 to 0.28 in the Boran Watershed with 10,268.95 km2. The correlation coefficient (r > 0.42; p-value < 0.05) was obtained significantly between RLI and only five landscape metrics, including the largest patch index (LPI), landscape shape index (LSI), landscape division index (DIVISION), splitting index (SPLIT), and Shannon’s diversity index (SHDI). In addition, a regression model with R2 of 0.97 and 0.67, respectively, in calibration and validation steps was established between river base flow as the dependent variable and main waterway length, LPI, LSI, SPLIT, modified Simpson’s diversity index (MSIDI), and λS as independent variables. The result confirms the significant interdependence of RLI and landscape characteristics, which can be used to interpret the landscape’s dynamic and its effects on hydrological processes. Full article
(This article belongs to the Special Issue The Impact of Climate Change on Water Resources)
Show Figures

Figure 1

13 pages, 3970 KB  
Article
Effect of Rock Film Mulching on Preferential Flow at Rock–Soil Interfaces in Rocky Karst Areas
by Zhimeng Zhao and Qinghe Wang
Water 2023, 15(9), 1775; https://doi.org/10.3390/w15091775 - 5 May 2023
Cited by 5 | Viewed by 2150
Abstract
Preferential flow is the most common form of water loss occurring at the interface between rock and soil (hereinafter referred to as “rock–soil interface”) in karst areas, and it is also one of the important factors causing soil water leakage into the underground. [...] Read more.
Preferential flow is the most common form of water loss occurring at the interface between rock and soil (hereinafter referred to as “rock–soil interface”) in karst areas, and it is also one of the important factors causing soil water leakage into the underground. Therefore, it is of great significance to cut off the pathway of soil water loss through control of preferential flow. In this experiment, rock film mulching (RFM) was used to control the preferential flow at the rock–soil interface, and its influence on the soil water infiltration pattern and soil water content was analyzed by simulating rainfall, dye tracer tests, and digging soil profiles. The results show that: (1) the RFM can significantly control the soil water loss at the rock–soil interface, (2) so that the water intercepted by the above-ground rocks changed from longitudinal infiltration to transverse diffusion, more water moved into the surrounding soil patches, and (3) the soil water content was significantly increased. These results indicate that the RFM has an important blocking effect on preferential flow at the rock–soil interface, which has important guiding significance for reducing soil water erosion in karst areas. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

14 pages, 927 KB  
Article
Effects of Counter Tillage and Slope Gradient on Nutrient Losses on Sloping Farmland
by Shuning Lu, Chong Yao and Faqi Wu
Sustainability 2023, 15(3), 2019; https://doi.org/10.3390/su15032019 - 20 Jan 2023
Cited by 2 | Viewed by 2167
Abstract
Counter tillage is a typical cultivation practice on the Loess Plateau, which can influence the soil erosion process by intercepting runoff and increasing infiltration. However, few studies have investigated the mechanisms of nutrient losses associated with counter tillage. This study was conducted to [...] Read more.
Counter tillage is a typical cultivation practice on the Loess Plateau, which can influence the soil erosion process by intercepting runoff and increasing infiltration. However, few studies have investigated the mechanisms of nutrient losses associated with counter tillage. This study was conducted to reveal the effects of counter tillage and slope gradient on the soil nutrient loss mechanism on sloping farmland. In this study, the rainfall simulation was conducted with a rainfall intensity of 90 mm·h−1 and with five slope gradients (5.24%, 8.75%, 17.63%, 26.79%, 36.40%). The runoff plots involved the counter tillage (CT) and traditional plow (CK), in order to investigate the characteristics of soil erosion and available phosphorus (AP), ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3-N) losses. The soil erosion characteristics included the time until runoff generation, RR (runoff rate), and SR (sediment rate); the nutrient loss characteristics included nutrient loss concentrations, nutrient loss and nutrient loss rate in runoff or sediment. The results indicated that the RR and SR with a slope gradient of 5.24~26.79% on CT decreased by 11.77~94.92% and 20.69~99.27%, respectively, compared with that of CK. As the slope gradient increased (36.40%), a break in the ridge occurred and the reduction in the RR and SR was weakened; this was likely to be close to that of the CK. Nutrient losses differed significantly between different slope gradients and tillage practices. Nutrient losses increased with an increasing slope gradient. The nutrient losses of AP, NH4+-N, and NO3-N in runoff, with the slope gradient of 36.40%, increased 75.75%, 76.34%, 75.63%; meanwhile, in sediment, it increased 32.93, 30.70, 32.18 times, compared with the slope gradient of 5.24% on CT. The CT with the slope gradient of 5.24~26.79% had a good effect in controlling nutrient losses; however, for the slope gradient of 36.40%, the effects of CT in controlling nutrient losses decreased. The nutrient loss rate and RR or SR satisfied a linear positive correlation. The reduction benefits of nutrient losses on CT in runoff and sediment can reach 57.7% to 100% and 45.5% to 100%, respectively. In conclusion, CT is an effective tillage practice to control soil erosion and nutrient losses. This study can provide a reference for soil erosion and nutrient loss control on sloping farmland on the Loess Plateau. Full article
(This article belongs to the Special Issue Effects of Soil Conservation Practices on Sediment Yield)
Show Figures

Figure 1

20 pages, 3954 KB  
Article
Rainfall Partitioning by Evergreen and Deciduous Broad-Leaved Xerophytic Tree Species: Influence of Rainfall, Canopy Characteristics, and Meteorology
by Changkun Ma, Qian Yao, Haobo Meng, Beibei Zhou, Quanjiu Wang and Yi Luo
Water 2022, 14(22), 3723; https://doi.org/10.3390/w14223723 - 17 Nov 2022
Cited by 9 | Viewed by 2790
Abstract
Understanding how rainfall is partitioned into throughfall, stemflow, and interception losses by xerophytic trees is important for evaluating afforestation projects and modeling hydrological budgets in semi-arid regions. However, information regarding rainfall partitioning by xerophytic trees and the controlling factors in semi-arid regions remains [...] Read more.
Understanding how rainfall is partitioned into throughfall, stemflow, and interception losses by xerophytic trees is important for evaluating afforestation projects and modeling hydrological budgets in semi-arid regions. However, information regarding rainfall partitioning by xerophytic trees and the controlling factors in semi-arid regions remains underrepresented in the literature. We examined whether plant functional groups have a significant impact on rainfall partitioning in two xerophytic trees (evergreen species: Pinus tabuliformis (Pinales:Pinaceae) hereafter called P. tabuliformis, deciduous species: Robinia pseudoacacia L. (Fabales:Fabaceae) hereafter called R. pseudoacacia) commonly used for afforestation on the semi-arid Loess Plateau of China, and evaluated the effects of rainfall, canopy characteristics and meteorological variables on rainfall partitioning. The event-based gross rainfall, throughfall and stemflow were measured during both growing (May–October) and dormant (January–April and November–December) seasons in 2015 and 2016 within an afforested watershed in semi-arid Loess Plateau of China. During our study period, the average rainfall depth for growing season and dormant season was 8.4 mm (varied from 0.2 to 57.6 mm) and 5.6 mm (varied from 0.2 to 41.6 mm), respectively. On average, the measured throughfall, stemflow and interception loss for R. pseudoacacia accounted for 81.8%, 1.4% and 16.8% of gross rainfall, respectively. Corresponding values for P. tabuliformis were 75.1%, 0.7% and 24.1%, respectively. Significant differences (p < 0.05) in stemflow were detected between R. pseudoacacia and P. tabuliformis during both the growing and dormant seasons. The rainfall partitioning components were significantly positively correlated with individual rainfall amounts. The minimum rainfall required to generate stemflow was 5.2 mm for R. pseudoacacia and 5.9 mm for P. tabuliformis during the growing season, and 3.1 mm for R. pseudoacacia and 6.0 mm for P. tabuliformis during the dormant season. Smaller rainfall events contributed to a lower percentage of rainfall amount, throughfall and stemflow but higher percentage of canopy interception loss. The percentage of throughfall and stemflow showed an increased tendency with increasing rain-fall characteristics, while the increasing rainfall characteristics resulted in a decrease in relative interception loss. During the growing season, leaf area index is significantly correlated with throughfall and interception loss of R. pseudoacacia, while there were no significant correlation between meteorological variables and rainfall partitioning. In general, the depth of rainfall partitioning can be predicted reasonably well by using the developed multiple regression models, but the proportions of rainfall partitioning had a relative lower accuracy using the developed models, especially for relative interception loss. To better predict canopy interception loss, other plant morphological and meteorological variables should be considered. Full article
(This article belongs to the Special Issue Advances in Rainfall Partitioning in Natural and Urban Environments)
Show Figures

Figure 1

15 pages, 4336 KB  
Article
Effects of Moss Overlay on Soil Patch Infiltration and Runoff in Karst Rocky Desertification Slope Land
by Na Tu, Quanhou Dai, Youjin Yan, Xudong Peng, Wenping Meng and Longpei Cen
Water 2022, 14(21), 3429; https://doi.org/10.3390/w14213429 - 28 Oct 2022
Cited by 13 | Viewed by 4155
Abstract
The growth and overlay of a large number of bryophytes in the broken soil patches between the exposed bedrocks of karst have an essential influence on the infiltration and runoff process between the exposed bedrocks and even the whole rocky desertification area. The [...] Read more.
The growth and overlay of a large number of bryophytes in the broken soil patches between the exposed bedrocks of karst have an essential influence on the infiltration and runoff process between the exposed bedrocks and even the whole rocky desertification area. The purpose of this study is to explore the effects of moss on the infiltration and runoff of soil patches between karst exposed bedrocks and the processes of rainfall, runoff and infiltration transformation on slopes through rainfall experiments. The results showed that the slopes between the karst outcrops are dominated by subsurface and underground pore runoff. More than 50% of precipitation is lost through underground pores, with surface runoff accounting for only 1–17% of the total. Bryophyte overlay significantly reduced the initial runoff from subsurface and underground pore runoff, and advanced the steady-state time of runoff from subsurface and underground pore runoff, suggesting that bryophyte coverage may reduce the risk of soil erosion caused by short-duration rainfall. Eurohypnum has a significant inhibitory effect on percolation between exposed bedrock and reduces rainfall leakage from subsurface and underground pores. Thuidium has a strong intercepting effect on rainfall, significantly reducing the formation of surface runoff and the risk of surface soil erosion. Moss overlay has an essential role in soil and water conservation between karst exposed bedrock, and Eurohypnum and Thuidium can be considered as pioneer mosses for ecological restoration in the process of rocky desertification control and ecological restoration, which can effectively solve the serious problem of soil and water loss in karst rocky desertification area and improve the benefit of soil and water conservation in karst area. Full article
(This article belongs to the Special Issue Rainfall and Water Flow-Induced Soil Erosion)
Show Figures

Figure 1

12 pages, 3513 KB  
Article
Rainfall Physical Partitioning and Chemical Characteristics in Evergreen Coniferous and Deciduous Broadleaved Forest Stands in a High Nitrogen Deposition Region, China
by Tao Yang, Yong Li, Xueying Ouyang, Bo Wang, Xiaomin Ge and Luozhong Tang
Forests 2022, 13(10), 1644; https://doi.org/10.3390/f13101644 - 8 Oct 2022
Cited by 2 | Viewed by 1783
Abstract
Atmospheric rainfall is one of the major sources of water and nutrient inputs in forest stands. Understanding the atmospheric rainfall partitioning and hydrochemical fluxes of forest stands is critical for forest management and monitoring regional atmospheric pollution, especially in high N deposition regions. [...] Read more.
Atmospheric rainfall is one of the major sources of water and nutrient inputs in forest stands. Understanding the atmospheric rainfall partitioning and hydrochemical fluxes of forest stands is critical for forest management and monitoring regional atmospheric pollution, especially in high N deposition regions. In this study, annual rainfall collections were implemented to investigate rainfall partitioning, element concentrations, and element fluxes in an evergreen coniferous forest (ECF) stand, a deciduous broadleaved forest (DBF) stand, and open area field (OAF) in a high N deposition region, China. Rainfall in the ECF and DBF was partitioned into throughfall, stemflow, and interception loss, which accounted for 74.7%, 4.8%, and 20.5% of the gross annual rainfall in the ECF stand, respectively; and 79.8%, 5.8%, and 14.4% of the gross annual rainfall in the DBF stand, respectively. Rainfall physical partitioning chemical characteristics varied with forest stand type. The amount of throughfall and stemflow in the ECF stand was lower than that in the DBF stand; the interception loss in the ECF stand was higher than that in the DBF stand. Element concentrations and element fluxes increased as rainfall passed through forest canopies in the high N deposition region. The stemflow pH in the ECF was lower than that in the DBF stand, the concentrations of NO3-N, Cl, and SO42−-S in stemflow in the ECF stand were higher than those in the DBF stand, and the concentrations of K+, Na+, Ca2+, Mg2+ and NH4+-N in stemflow in the ECF stand were lower than those in the DBF stand. The inorganic N deposition was 52.7 kg ha−1 year−1 for the OAF, 110.9 kg ha−1 year−1 for the ECF stand, and 99.6 kg ha−1 year−1 for the DBF stand; stemflow accounted for 15.1% and 19.2% of inorganic N deposition in the ECF stand and the DBF stand, respectively. In the present study, given the similar rainfall characteristics and meteorological conditions, the differences in rainfall partitioning and chemical characteristics between the ECF stand and the DBF stand could largely be attributed to their differences in stand characteristics. The results of the study will facilitate a greater understanding of the atmospheric rainfall partitioning and hydrochemical fluxes of forest stands in a high nitrogen deposition region. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

18 pages, 2600 KB  
Article
Modeling Litter Stocks in Planted Forests of Northern Mexico
by Felipa de Jesús Rodríguez-Flores, José-Guadalupe Colín, José de Jesús Graciano-Luna and José Návar
Forests 2022, 13(7), 1049; https://doi.org/10.3390/f13071049 - 2 Jul 2022
Viewed by 2312
Abstract
Litter, LS, is the organic material in which locates in the top A soil horizon, playing key ecological roles in forests. Models, in contrast to common allocation factors, must be used in LS assessments as they are currently absent in the scientific [...] Read more.
Litter, LS, is the organic material in which locates in the top A soil horizon, playing key ecological roles in forests. Models, in contrast to common allocation factors, must be used in LS assessments as they are currently absent in the scientific literature. Its evaluation assess the mass, input and flux of several bio-geo-chemicals, rainfall interception as one component of the local hydrology, and wildfire regimes, among others, hence its importance in forestry. The aim of this study was to: (i) develop models to assess LS, accumulation, and loss rates; and (ii) assess rainfall interception and fire regimes in 133 northern forest plantations of Mexico. Two developed techniques: the statistical model (SMLS) and the mass balance budget model (MBMLS) tested and validated local and regional LS datasets. Models use basal area, timber, aboveground tree biomass, litter fall, accumulation, and loss sub-models. The best fitting model was used to predict rainfall interception and fire behavior in forest plantations. Results showed the SMLS model predicted and validated LS datasets (p = 0.0001; r2 = 0.82 and p = 0.0001; r2 = 0.79) better than the MBMLS model (p = 0.0001; r2 = 0.32 and p = 0.0001; r2 = 0.66) but the later followed well tendencies of Mexican and World datasets; counts for inputs, stocks, and losses from all processes and revealed decomposition loss may explain ≈40% of the total LS variance. SMLS predicted forest plantations growing in high productivity 40-year-old stands accumulate LS > 30 Mg ha−1 shifting to the new high-severity wildfire regime and intercepting ≈15% of the annual rainfall. SMLS is preliminarily recommended for LS assessments and predicts the need of LS management in forest plantations (>40-year-old) to reduce rainfall interception as well as the risk of high-severity wildfires. The novel, flexible, simple, contrasting and consistent modeling approaches is a piece of scientific information required in forest management. Full article
(This article belongs to the Special Issue Aboveground and Belowground Interaction and Forest Carbon Cycling)
Show Figures

Figure 1

15 pages, 2882 KB  
Article
Measuring and Modelling Evaporation Losses from Wet Branches of Lemon Trees
by Giorgio Baiamonte and Samuel Palermo
Hydrology 2022, 9(7), 118; https://doi.org/10.3390/hydrology9070118 - 28 Jun 2022
Cited by 2 | Viewed by 2624
Abstract
Evaporation losses of rainfall intercepted by canopies depend on many factors, including the temporal scale of observations. At the event scale, interception is a few millimetres, whereas at a larger temporal scale, the number of times that a canopy is filled by rainfall [...] Read more.
Evaporation losses of rainfall intercepted by canopies depend on many factors, including the temporal scale of observations. At the event scale, interception is a few millimetres, whereas at a larger temporal scale, the number of times that a canopy is filled by rainfall and then depleted can make the interception an important fraction of the rainfall depth. Recently, a simplified interception/evaporation model has been proposed, which considers a modified Merrian model to compute interception during wet spells and a simple power-law equation to model evaporation from wet canopy during dry spells. Modelling evaporation process at the sub hourly temporal scale required the two parameters of the power-law, describing the hourly evaporation depth and the evaporation rate. In this paper, for branches of lemon trees, we focused on the evaporation process from wet branches starting from the interception capacity, S, and simple models in addition to the power-law were applied and tested. In particular, for different temperature, T, and vapour pressure deficit, VPD, conditions, numerous experimental testes were carried out, and the two parameters describing the evaporation process from wet branches were determined and linked to T, VPD and S. The results obtained in this work help us to understand the studied process, highlight its complexity, and could be implemented in the recently introduced interception/evaporation model to quantify this important component of the hydrologic cycle. Full article
Show Figures

Graphical abstract

17 pages, 3307 KB  
Article
Application of the Reformulated Gash Analytical Model for Rainfall Interception Loss to Unmanaged High-Density Coniferous Plantations Laden with Dead Branches
by Seonghun Jeong, Tomonori Kume, Yoshinori Shinohara, Moein Farahnak and Kyoichi Otsuki
Forests 2022, 13(5), 657; https://doi.org/10.3390/f13050657 - 23 Apr 2022
Cited by 5 | Viewed by 2601
Abstract
Interception loss (IL) by the forest canopy removes a substantial quantity of rainwater within forested ecosystems. The large-scale unmanaged Japanese coniferous plantations with high stand density (SD) in Japan raise concerns about an additional increasing IL as a result [...] Read more.
Interception loss (IL) by the forest canopy removes a substantial quantity of rainwater within forested ecosystems. The large-scale unmanaged Japanese coniferous plantations with high stand density (SD) in Japan raise concerns about an additional increasing IL as a result of a new influential factor of dead branches under canopies. Thus, evaluating the usage of IL estimation models is vital to regulating the water and environment in such coniferous plantations. This study aimed to examine the applicability of the reformulated Gash analytical model (RGAM) to unmanaged coniferous plantations with high SD laden with dead branches. We established two plots (P1 and P2) laden with dead branches under the same SD of 2250 stems ha−1 but with different numbers of dead branches (56 vs. 47 branches per tree) in an unmanaged Japanese coniferous plantation. Results demonstrated that a large difference was found in canopy storage capacity (S) in P1 and P2 (3.94 vs. 3.25 mm), which was influenced by the different number of dead branches; therefore, the IL ratio to gross rainfall differed considerably (32.7% in P1 and 26.7% in P2) regardless of the SD being the same. The difference in S enables the RGAM to reflect the influence of dead branch structures on IL, leading to an acceptable RGAM performance for both P1 and P2 (“fair” IL relative errors: −20.2% vs. −16.1%) in the present study of unmanaged coniferous plantations with high SD laden with dead branches. Full article
(This article belongs to the Section Forest Hydrology)
Show Figures

Figure 1

Back to TopTop