
Citation: Rasoulzadeh, A.;

Mostafazadeh, R.; Mobaser, J.A.;

Alaei, N.; Hazbavi, Z.; Kisi, O.

Quantifying Landscape

Pattern–Hydrological Process

Linkage in Northwest Iran.

Atmosphere 2023, 14, 1814. https://

doi.org/10.3390/atmos14121814

Academic Editors: Mohamed Hamdi,

Kalifa Goïta and Carlos E. Ramos

Scharrón

Received: 22 August 2023

Revised: 3 December 2023

Accepted: 9 December 2023

Published: 12 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Quantifying Landscape Pattern–Hydrological Process Linkage
in Northwest Iran
Ali Rasoulzadeh 1,*, Raoof Mostafazadeh 2 , Javanshir Azizi Mobaser 1, Nazila Alaei 3, Zeinab Hazbavi 2

and Ozgur Kisi 4,5,*

1 Department of Water Engineering, Faculty of Agriculture and Natural Resources, Water Management
Research Center, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran; ja_mobaser@uma.ac.ir

2 Department of Range & Watershed Management, Faculty of Agriculture and Natural Resources,
Water Management Research Center, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran;
raoofmostafazadeh@uma.ac.ir (R.M.); z.hazbavi@uma.ac.ir (Z.H.)

3 Department of Range and Watershed Management, Faculty of Natural Resources, Urmia University,
Urmia 57561-51818, Iran; nazila.alaie96@gmail.com

4 Department of Civil Engineering, Lubeck University of Applied Sciences, 23562 Lübeck, Germany
5 Department of Civil Engineering, Ilia State University, 0162 Tbilisi, Georgia
* Correspondence: rasoulzadeh@uma.ac.ir (A.R.); ozgur.kisi@th-luebeck.de (O.K.)

Abstract: The enormous heterogeneity and complexity of landscape patterns and their linkage with
the hydrological responses have rarely been quantified and cataloged, especially in ungauged regions.
This research therefore linked the landscape characteristics to hydrological processes using a newly
developed runoff landscape index (RLI) at the watershed scale in Ardabil Province, northwest Iran.
First, 11 common landscape metrics were calculated using Fragstats 4.2.1 software. Then, a runoff
landscape index (RLI) was developed based on land cover (λC), soil (λK), and topography (λS)
factors in 28 watersheds. Correlation and regression analyses were also conducted to determine
the relationship between RLI, commonly used landscape metrics, and mean base flow. The spatial
variations of all meaningful landscape metrics and RLI were considerable throughout the study
watersheds. The mean values of λC, λK, and λS were found to be 2.78 ± 1.08, 0.50 ± 0.10, and
1.22 ± 0.30, respectively. The mean RLI varied from 0.00009 in the Lay Watershed with an area of
19.09 km2 to 0.28 in the Boran Watershed with 10,268.95 km2. The correlation coefficient (r > 0.42;
p-value < 0.05) was obtained significantly between RLI and only five landscape metrics, including the
largest patch index (LPI), landscape shape index (LSI), landscape division index (DIVISION), splitting
index (SPLIT), and Shannon’s diversity index (SHDI). In addition, a regression model with R2 of 0.97
and 0.67, respectively, in calibration and validation steps was established between river base flow as
the dependent variable and main waterway length, LPI, LSI, SPLIT, modified Simpson’s diversity
index (MSIDI), and λS as independent variables. The result confirms the significant interdependence
of RLI and landscape characteristics, which can be used to interpret the landscape’s dynamic and its
effects on hydrological processes.

Keywords: annual runoff; hydrological processes; landscape metrics; land use change; rainfall
interception loss; terrain factors

1. Introduction

The degradation of human–environment systems is seriously triggered by anthropo-
genic-related drivers, resulting in changes in landscape patterns [1]. The landscape func-
tions have also been negatively affected by inappropriate remediation, industrialization,
and urbanization activities, which have changed the hydrological cycle components, in-
cluding waterways [1,2]. The landscape and socio-hydrological patterns have altered from
being utterly natural with an integral water cycle to a highly developed state that suffers
from an altered water cycle [2,3]. Recent advancements in developing landscape metrics
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have helped management decisions by ascertaining the landscape-change impacts and
risks [4,5].

Landscape metrics are increasingly used as a valuable tool in assessing land use
change at spatial, temporal, and system scales [6,7]. They provide detailed dynamic and
quantitative information to assess the landscape composition, spatial structure, and pattern,
as well as the environmental processes of various ecosystems [8]. Several multidimensional
indicators for vegetation, soil, algae, and water have been developed to assess wetland con-
ditions [6], sustainable forest management [9,10], ecological quality assessment [11,12], and
water quality monitoring [13,14]. All these indicators and quantitative frameworks of the
landscape have been proposed to estimate the effect of land use change on environmental
systems and the relationships between landscape patterns and ecological processes. How-
ever, limited research has been conducted to assess the relationships between landscape
metrics and hydrological processes (e.g., [3,15,16]).

The spatial patterns of land uses, which have a notable impact on hydrological pro-
cesses like evapotranspiration, runoff, soil moisture, and sediment production, are strongly
influenced by landscape metrics encompassing factors such as shape, size, type, and quan-
tity [17,18]. The hydrological regime of watersheds is significantly impacted by changes
in land use components, which influence the various social dimensions of dependent
stakeholders. It seems that these impacts are continuing due to the lack of appropriate
managerial actions [1]. Although landscape metrics are used in ecology along with maps
and spatial statistics, they do not take into account the topographic, soil, and climatic
characteristics that are important factors influencing hydrological processes [3].

The literature review confirmed that the linkage between landscape metrics and water-
shed hydrology response has been less discussed in different ecological contexts [16,19–21].
Only Bin et al. [3] studied the effect of landscape patterns on surface runoff in the Haihe
Watershed, China, by developing the runoff landscape index (RLI). According to their
findings, a noteworthy and positive correlation exists between the RLI and the amount of
surface runoff. They stated that the value of the correlation coefficient between the amount
of surface runoff and the RLI was equal to 0.83 and was much higher than its relationship
with the common landscape metrics. Therefore, our study is the second application of RLI
to investigate the connectedness between landscape patterns and hydrological processes.

Due to the frequent occurrence of extreme hydrological events such as droughts and
floods in northwest Iran, obtaining comprehensive information on hydrological processes
is essential. On the other hand, studying these processes depends on determining their rela-
tionship with changes in environmental factors, including land use. Therefore, studying the
effect of landscape structure and pattern on surface runoff due to the changing dynamic of
human activities is one of the main steps in developing appropriate management strategies
at local, national, and even global scales. For this reason, the present study was planned to
(1) evaluate the linkage between common landscape metrics and surface runoff throughout
28 watersheds of Ardabil Province (northwest Iran) with a variety of physiographic, land
use, and climatic features; (2) adopt a new hydrological landscape index by considering
land cover, soil, and topography factors that were ignored in the common landscape met-
rics; (3) analyze the spatial distribution of developed landscape metrics; and (4) determine
the statistical correlation between common and developed landscape metrics with runoff
yield and base flow.

This intuitive display of landscape pattern–hydrological process characterization has
never been seen in previous research conducted in Iran. It will provide new ideas for future
land planning and sustainable watershed management. The applied framework is not
limited to the specific area and can therefore be used in other watersheds around the globe.

2. Materials and Methods
2.1. Study Area

Ardabil Province is located northwest of the Iranian plateau (Figure 1). Situated in
proximity to the Republic of Azerbaijan to the north, Guilan Province to the east, Zanjan



Atmosphere 2023, 14, 1814 3 of 17

Province to the south, and East Azerbaijan Province to the west, Ardabil Province occupies
a distinct geographic position. Characterized as a cold mountainous region, Ardabil
Province experiences a mean annual precipitation ranging between 220 and 457 mm per
year. West of Ardabil Province has the highest annual precipitation (ca. 400 to 500 mm).
The southern regions of Ardabil Province (Khalkhal City) have an annual precipitation
of about 350 mm [22]. The maximum, minimum, and mean elevations are respectively
observed in Sabalan Mountain Peak (4811 m amsl), Moghan City (40 m amsl), and Ardabil
Plain (1850 m amsl) [23]. The present study was conducted at the watershed scale, which
does not follow administrative and political divisions.
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Figure 1. Location map of Ardabil Province, Iran.

2.2. Data Used

For the present study, the daily flow discharge, measured at 28 river gauge stations
of major rivers in Ardabil Province, was collected from the Regional Water Company of
Ardabil (http://www.arrw.ir/?l=EN, accessed on 10 May 2021). The available recorded
data period of 22 years, from 1993 to 2014, was used in the hydrological analysis. In
addition, the base flow discharge was calculated using the local minima filtered smooth
separation method [23,24]. Here, the surface runoff (overland flow) is defined as a part of
the overland water that cannot infiltrate the soil and underground layers draining to river
networks. In addition, the base flow is quantified as a part of the overall river flow that
reacts to the precipitation event, and it is usually related to the water discharged from the
underground waters. Actually, its boundary is under the water table, and it exists in a river
in the absence of a precipitation event [23–26].

http://www.arrw.ir/?l=EN
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2.3. Landscape Metrics Calculation

Landscape metrics are tools for measuring and quantifying different dimensions of the
landscape pattern at a given point in time [19,27]. The quantification of landscape structure
has diverse and significant applications in determining the rate of human intervention,
land use change, vegetation behavior, and many other processes related to the landscape.
For this reason, in the last two decades, they have been considered an integral part of
many environmental research projects. Fragstats Software was used due to its excellent
capability and the calculation of a more significant number of landscape metrics [27]. This
program has no limitations in scale (area and magnification) and is suitable for analyzing
the spatial pattern and different measurements of the patches that make up the landscape
in heterogeneous environments and different conditions.

Three output files (patch, class, and landscape) are created for each input in Fragstats
Software. For the present study, after collecting the 2016 land use map in vector format
(Figure 2), it was converted to raster format. Then, the Fragstats 4.2.1 software was used
at the landscape level for each hydrological unit (i.e., watershed). One of the most critical
issues here is choosing the most appropriate metrics from the many calculated landscape
metrics. It should be noted that the landscape metrics have, in many cases, overlapped
and provided similar information [19]. For this purpose, an initial refinement is required.
Table 1 summarizes the characteristics of the landscape metrics used for the present study.
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Patch density (PD) was used to measure the integrity and cohesion of land uses. With
increasing PD, the cohesion of the landscape decreases [28]. Therefore, the presence of small
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patches in different vegetation types reduces the distances between two similar patches
and thus increases the fragmentation rate. The landscape shape index (LSI) is a cumulative
metric with a spatial scattering characteristic. The LSI measures the ratio (margin length)
of the patch to the minimum possible environment for a patch with maximum aggregation
(accumulation). If this metric is equal to unity, this means the appearance of the land
consists of a patch with maximum compaction and an almost square shape, while the
more scattered the patch, the more irregular the border, and the more complex the shape,
its values increase without restriction. Furthermore, DIVISION and SPLIT refer to the
description of human intervention and the cohesion degree of the landscape based on the
performance of the residual dimension distribution [27,29].

Table 1. Landscape metrics characteristics.

Landscape Metric Symbol Unit Formula Value

Patch density PD No. per 100 ha PD = ni
A (10000)(100) PD > 0

Landscape shape index LSI Dimensionless LSI = 0/25E*
√

A
LSI ≥ 1

Splitting index SPLIT Dimensionless SPLIT = A2

∑m
j = 1 ∑n

j = 1 a2
ij

1 5 SPLIT 5 number of cells
in the landscape squared

Shannon’s diversity index SHDI Dimensionless SHDI = −
m

∑
i = 1

Pi ∗ ln Pi
0 5 SHDI 5 1

Modified Simpson’s
diversity index MSIDI Dimensionless MSIDI = −ln

m

∑
i = 1

p2
i

MSIDI ≥ 0, without limit

Landscape division index DIVISION Dimensionless DIVISION =

[
1−

n

∑
j = 1

( aij
A

)2
]

0 5 DIVISION 5 1

Contiguity index
distribution CONTIG_MN Dimensionless

CONTIG =

[
∑*

r = 1 cijr
a*
ijr

]
−1

v−1

0 5 CONTIG_MN 5 1

Largest patch index LPI % LPI =
max(aij)

A (100) 0 < LPI 5 100

Interspersion and
juxtaposition index IJI % IJI =

−∑m
i = 1 ∑m

k = i+1

[( eik
E

)
∗ln
( eik

E

)]
ln(0.5[m(m−1)]) (100) 0 < IJI 5 100

Aggregation index AI % AI =

[
gii

max→
.

gii

]
(100) 0 5 AI 5 100

Mean Euclidean nearest
neighbor distance ENN_MN m ∑n

j = 1 hij
N

ENN_MN > 0, without limit.

The largest patch index (LPI) also indicates the predominance of patches (land uses)
in the system. The mean distance of the Euclidean nearest neighbor (ENN_MN) is perhaps
the most straightforward measure of the patch frame and has been widely used to measure
patch isolation. The ENN_MN is defined as the shortest direct distance between the central
patch and the nearest neighbor of that class using simple Euclidean geometry [27,29].

2.4. RLI Characterization

For the present research, the runoff landscape index (RLI), adapted by Bin et al. [3], was
used to connect the commonly-used landscape metrics to surface runoff in Ardabil Province.
To compensate for the shortcomings of common landscape metrics in the expression of
surface runoff-related processes, this new landscape metric was developed based on land
cover, soil, and topography characteristics. To this end, three factors: land cover (λC), soil
(λK), and topography (λS), were estimated.

Disparities in canopy cover were observable across various vegetation types, con-
tingent upon the specific species involved, the canopy density and diameter could have
different effects on runoff production [30,31]. In addition, maintenance created by infras-
tructure such as residential areas, roads, bridges, and canals had various effects on runoff
production. Accordingly, the λC was calculated based on Table 2 and varied from zero to
one depending on the degree of land cover participation in the runoff generation.
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Table 2. Land cover factor (λC) value used for different vegetation types.

Land Cover Classification Reference Study Area Rainfall Interception
Loss (%)

Land Cover
Factor (λC)

Forest

Pinus nigra

[32]
Reforest Campus of University

Agriculture Shirvan

34.77 0.46
Cupressus sempervirens 44.97 0.45

Robinia pseudoacacia 9.78 0.8
Platanus orientalis 5.5 0.83

Natural stand
(Fagus orientalis) and exotic

plantation (Picea abies)
[33] Siahkal Forests, Gilan 11.7 0.77

Fagus orientalis Lipsky [34]
Kheyrud forest

research station of University of
Tehran

33.7 0.47

Quercus brantii [35] Zagros forests, Ilam 58.26 0.41

Pinus eldarica
[36] Tehran Chitgar Forest Park 59.25

0.41Cupressus 62.28

Fagus orientalis Lipsky [37] Educational-research Forest of
Shast-Kalateh of Gorgan 60.7 0.40

Fagus Orientalis Lipsky [38] Siyahkal Shenrood Forests
(Caspian Region) 51.3 0.40

Quercus castaneifolia [39] Kheyrud Forest Research Station of
Tehran 0.26 0.79

Shrub lands

Rosa persica [40] Campus of the Ferdowsi University
of Mashhad, Khorasan Razavi

22 0.78
Peganum harmala 39 0.45

Fagus orientalis and a Picea
abies [41] Kelardasht Region, North of Iran 48.6

26.5
0.43
0.75

Bush [42] Haihe River Basin, China 11.26 0.79

Grassland

Belongs to grasslands with
long grass [43] South Central Great Plains, USA 44 0.55

Grass [42] Haihe River Basin, China 3.78 0.85

Wetlands Appartient à un lagon
natural [44] Upstream of the Biebrza watershed,

Poland 13 0.80

Agricultural
land Fermes corn [45] Agricultural land in Varmin, located

southwest of Tehran (Iran) 11.2–19.9 0.40

Urban land

Urban areas [46] Tianjin, Haihe Watershed, China 48.2–64
0.50

Urban catchments [47] 20 urban watersheds from around
the world 32.82

Evergreen benjamin tree F. [48] Querétaro City in central Mexico 2.4 0.78

Rural land Rural areas [46] Tianjin, Haihe Watershed, China 85–66 0.40

Bare land Bare land [49] Yangou Watershed, southern China 21.28 0.80

Soil factor (λK) indicated the participation of soil type in runoff production, which was
estimated by soil drainage classes. Permeability is one of the most critical factors affecting
surface runoff due to its differences in various soil textures [50]. Low drainage classes
showed low permeability (Table 3). The long-term relationship between runoff coefficient
and impermeability was presented by Goldshleger et al. [51]. It was concluded that when
the runoff coefficient linearly increased from 0.2 to 0.8, the degree of impermeability varied
from 30 to 90% (Table 3).

Table 3. Relationship between drainage classes and runoff coefficient [3,49].

Drainage Class Very Poor Poor Imperfectly Moderately Good good Somewhat Excessive Excessive

Runoff coefficient 0.8 0.7 0.6 0.5 0.4 0.3 0.2
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The topographic factor (λS) was characterized using the slope coefficient (1/cosα) [3].
As emphasized in the existing literature [52,53], slope represents a pivotal element influenc-
ing the initiation of surface runoff. On a smaller scale, the generation of surface runoff was
intricately tied to the degree of slope steepness. Investigations conducted on laboratory
runoff plots conclusively demonstrated that steeper slopes yield a greater volume of runoff
when compared to gentler slopes [54]. The interplay between flow velocity and slope
steepness had also been subject to scrutiny, revealing a positive correlation between slope
steepness and runoff velocity. Notably, the maximum velocity was found to occur at slopes
of approximately 35 degrees [52].

Combining land cover (λC), soil (λK), and topography (λS) factors for all network
cells (i) in one patch (i.e., land use) produces a landscape runoff factor (P) as given in
Equation (1) [3].

P =
∑n

i = 1 λCi ∗ λKi ∗ λSi

n
(1)

Then, with considering the area of each study patch (ai) in km2 and the whole area of
the study region (A) in km2, the runoff landscape index (RLI) was calculated for each patch
(Equation (2)) and the whole landscape of the study region (Equation (3)) [3].

RLI =
k

∑
i = 1

Pi ∗
ai
A

(2)

RLI =
m

∑
i = 1

k

∑
j = 1

Pij ∗
aij

A
(3)

where Pij (dimensionless) is the runoff landscape factor of patch ij; aij is the area of patch
ij in km2; A is the total area of the landscape in km2. All land cover (λC), soil (λK), and
topography (λS) factors and RLI are dimensionless.

2.5. Correlation and Regression Analysis

Pearson correlation analysis [55] was used to evaluate the relationship between com-
mon landscape metrics (their units given in Table 1), including PD, LSI, SPLIT, SHDI,
MSIDI, DIVISION, CONTIG_MN, LPI, IJI, AI, ENN_MN, watershed perimeter (m), mean
annual precipitation (mm), mainstream length (Km), impervious surfaces (%), λC, λK, and
λS as independent variables with the mean values of base flow (mm) and surface runoff
(mm) as dependent variables. The multivariate backward regression method was carried
out using IBM SPSS Statistics 22.0 software. This method is used for distance scale data
and as a function of the dependent variable that predicts the independent variables [56].
About 70% and 30% of the study watersheds were, respectively, randomly selected for
the calibration and validation stages. The degree of autocorrelation and multicollinearity
between the study independent variables in predicting the mean base flow was evaluated
using Durbin-Watson (desired limits = 1.5–2.5) and the variance inflation factor (VIF less
than 10), respectively [54]. Then, appropriate regression models were selected based on the
cross-validation results and the performance of the statistical criteria (Equations (4)–(7)).

MAE =
∑|Oi − Pi|

N
(4)

RMSE =

√
∑(Oi − Pi)

2

N
(5)
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R2 =

 ∑n
i
(
Oi −Om

)(
Pi − Pm

)(
∑N

i
(
Oi −Om

)2
∑N

i
(

Pi − Pm
)2
)0.5


2

(6)

ME =
1
N

n

∑
i = 1

(Qi − Pi) (7)

where, MAE, RMSE, R2, and ME were respectively mean absolute error, root mean square
error, coefficient of determination, root mean square error, and mean error. In addition, the
Oi and Pi, respectively, showed the observed and predicted values of mean base flow (mm)
for the ith watershed, Om and Pm were the mean values of observed and predicted base
flow (mm), and N was the total number of watersheds.

3. Results
3.1. Spatial Changes of Landscape Metrics

As shown in Figures 3 and 4, the landscape metrics were categorized into three groups
according to their magnitude among the studied watersheds. For the first group, the mean
and standard deviation of 0.19 ± 0.10, 0.23 ± 0.07, 0.59 ± 0.25, 0.91 ± 0.34, and 0.56 ± 0.20
were respectively attributed to PD, CONTIG_MN, DIVISION, SHDI, and MSIDI. In the
second group, five landscape metrics of LPI, LSI, IJI, SPLIT, and AI were found with
mean values of 53.91 ± 24.23, 5.29 ± 4.27, 56.47 ± 15.84, 3.89 ± 3.06, and 83.04 ± 4.80,
respectively. The ENN_MN metric, with a mean value of 1378.77 ± 463.18, was categorized
in the last group and showed the most variation throughout the province.

The Box–Whisker plots for the study landscape metrics showed a positive skewness
for PD, CONTIG_MN, LPI, LSI, IJI, and SPLIT and a negative skewness for ENN_MN,
DIVISION, MSIDI, SHDI, and AI (Figure 3).

3.2. Spatial Changes in RLI and Its Factors

The values of λC in the study watersheds varied from 1.43 to 4.79, with a mean of
2.78 ± 1.08 (Figure 5). Noticeable zonal differences were found for this factor. According to
the results, the λC changes had more influence on the RLI characterization because of its
high variability (CV = 39%). In addition, the spatial pattern of λK (Figure 5) with a mean
and standard deviation of 0.10 and 0.50 indicated a relatively medium drainage level in
most watersheds (more than 18 watersheds). According to Figure 5, the λK had the highest
value for the Aladizgeh Watershed (with a numerical value of 0.72) and the lowest value
for Lay Watershed (with a numerical value of 0.31). According to Figure 5, the λS was
evaluated as the highest value for the Aladizge Watershed (with a numerical value of 2.33)
and the lowest value for the Akbrdavod Watershed (with a numerical value of 1.00).

The spatial pattern of RLI with a mean and standard deviation of 0.03 and 0.07 was
obtained. The RLI was highest for the Boran Watershed (with a numerical value of 0.33),
and lowest for the Lay Watershed (with a numerical value of 0.00) (Figures 6 and 7).

3.3. Results of Correlation and Regression Analysis

The results of the correlation analysis (Table 4) showed that the landscape metrics,
including LPI, LSI, DIVISION, SPLIT, and SHDI, were highly correlated with RLI. The
LPI showed a negative correlation with RLI. By contrast, the DIVISION, SPLIT, and SHDI
values of landscapes were positively correlated with the RLI. This positive correlation
indicated accelerated runoff when watersheds included many different land cover types
that were small and dispersed.
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In this study, the backward elimination method was used to analyze the relationship
between landscape metrics, RLI factors, surface runoff (Figure 8, left), and base flow
amount (Figure 8, right). According to the adjusted R2 of 0.98, the correlation coefficient of
0.94, and a significant level (α < 0.001), the assumption of a significant linear relationship
between independent and dependent variables with a 95% confidence level was confirmed.
Furthermore, based on the equation provided for base flow estimation (Equation (8)), the
inverse relationship between the stream length as well as the direct relationship with LPI,
LSI, SPLIT, MSIDI, and topography factor (λS) was detected with the base flow.

Baseflow = −5.21− 0.008× stream length + 0.04× LPI + 0.38× LSI + 0.28× SPLIT + 2.34× SHEI + 0.52× λS (8)
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Table 4. Results of the correlation coefficient between landscape metrics, base flow, runoff, and RLI.
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PD 1.00

LPI 0.99 1.00

LSI 0.98 0.97 1.00

CONTIGMN 0.99 0.99 0.98 1.00

ENNMN 0.99 0.99 0.99 0.99 1.00

IJI 0.99 1.00 0.98 1.00 1.00 1.00

DIVISION 0.99 0.99 0.99 0.99 0.99 0.99 1.00

SPLIT 0.98 0.97 1.00 0.98 0.99 0.98 0.99 1.00

MSIDI 0.99 0.98 0.99 0.99 0.99 0.99 1.00 0.99 1.00

SHEI 1.00 0.99 0.98 1.00 1.00 1.00 1.00 0.99 1.00 1.00

AI 0.99 1.00 0.98 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00

Base flow 0.93 0.93 0.98 0.94 0.95 0.94 0.95 0.98 0.95 0.94 0.94 1.00

Runoff 0.93 0.92 0.98 0.93 0.94 0.93 0.95 0.97 0.94 0.94 0.93 1.00 1.00

RLI −0.36 −0.58 0.94 −0.26 0.16 −0.21 0.53 0.88 0.42 −0.01 0.06 0.89 0.94

Note: The bold and non-bold-faced numerical values respectively indicate non-significant and significant correla-
tions at the 0.05 level.

Atmosphere 2023, 14, x FOR PEER REVIEW 13 of 19 
 

 

AI 0.99 1.00 0.98 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00   
Base flow 0.93 0.93 0.98 0.94 0.95 0.94 0.95 0.98 0.95 0.94 0.94 1.00  

Runoff 0.93 0.92 0.98 0.93 0.94 0.93 0.95 0.97 0.94 0.94 0.93 1.00 1.00 
RLI −0.36 −0.58 0.94 −0.26 0.16 −0.21 0.53 0.88 0.42 −0.01 0.06 0.89 0.94 

Note: The bold and non-bold-faced numerical values respectively indicate non-significant and sig-
nificant correlations at the 0.05 level. 

In this study, the backward elimination method was used to analyze the relationship 
between landscape metrics, RLI factors, surface runoff (Figure 8, left), and base flow 
amount (Figure 8, right). According to the adjusted R2 of 0.98, the correlation coefficient 
of 0.94, and a significant level (α < 0.001), the assumption of a significant linear relation-
ship between independent and dependent variables with a 95% confidence level was 
confirmed. Furthermore, based on the equation provided for base flow estimation 
(Equation (8)), the inverse relationship between the stream length as well as the direct 
relationship with LPI, LSI, SPLIT, MSIDI, and topography factor (λS) was detected with 
the base flow. Base low = −5.21 − 0.008 stream length 0.04 LPI 0.38 LSI 0.28 SPLIT 2.34 SHEI 0.52 λS  (8)

To validate the model, this formula was applied to 30% of the remaining watersheds 
(Figure 9). The MAE, RMSE, R2, and ME were obtained at 0.02, 0.60, 0.60, and −0.39, in-
dicating the relatively appropriate performance of backward regression. 

 

 
Figure 8. Surface runoff (mm) and base flow (mm) per watersheds of Ardabil Province. Figure 8. Surface runoff (mm) and base flow (mm) per watersheds of Ardabil Province.



Atmosphere 2023, 14, 1814 13 of 17

To validate the model, this formula was applied to 30% of the remaining watersheds
(Figure 9). The MAE, RMSE, R2, and ME were obtained at 0.02, 0.60, 0.60, and −0.39,
indicating the relatively appropriate performance of backward regression.
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Figure 9. Validation results for regression analysis of base flow and study variables for 25% of the
study watersheds.

4. Discussion

Common and meaningful landscape metrics were widely used to assess the pattern
and structure of the land uses affected by human disturbances. Due to the different
behavior of landscapes in terms of hydrology, it is essential to provide an appropriate
linkage between traditional landscape metrics and hydrological characteristics. Hence, the
attempt of this research was to link quantitative ecological features of the landscape with
the corresponding hydrological parameters.

The presence of high PD in the watersheds (Figures 3 and 4) indicated an increase in
land degradation, which had led to an increase in fragmentation. The LSI was calculated
as a measure of the mean patch shape index [8] which varied from 1.51 (Hir Watershed
located in the southeast of the province) to 17.04 (Boran Watershed extended from the
northwest to southeast of the province). SPLIT was based on the distribution of cumulative
patches and interpreted as an effective network or number of patches with a time-constant
size [27]. The mean value and standard deviation of this metric for the study province were
equal to 3.06 and 3.89, respectively.

The mean of the CONTIG_MN (Figure 4) as a measure of the irregular arrangement of
patches in the landscape [8] varied from 0.39 (Nanekaran Watershed located in the west
of the province) to 0.14 (PoleSoltani Watershed located in the southeast of the province).
The highest DIVISION and LPI were observed for the Mashiran Watershed with values
of 0.92 and 96.64, respectively. Their lowest values were also found for the Hir Watershed
(DIVISION = 0.07; LPI = 17.04). The mean and standard deviation of the AI were equal
to 83.04 and 4.80, respectively. This metric varied from 73.76% in the Eril Watershed (east
of the province) to 98.86% in the Hir Watershed (east of the province). The ENN_MN, as
the most straightforward metric of the patch structure, has been widely used [55]. For
the study province, the maximum and minimum ENN_MN were obtained for the Boran
(2799.91) and Hir (0.00) watersheds (Figure 4).

A full agreement was established between current results and previous studies con-
ducted for Ardabil Province. For instance, the spatio-temporal changes of some landscape
metrics in Ardabil Province from 1987 to 2015 were also monitored by Kakehmami et al. [57].
Their results verified the high variations between the landscape metrics and increasing
man-made patches due to the increase in population growth, rangeland conversion to
agriculture, and urban development. Furthermore, the analysis of rangelands structure
indicated the spatial heterogeneity of landscape metrics in the Eril Watershed, located in
the eastern part of Ardabil Province [58]. In addition, in the riparian area of the Gharesou
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River, Central Ardabil, Esfandiyari Darabad et al. [59] found the critical parts of landscape
degradation for adapting conservation practices throughout landscape metric analysis.

Our results (Figures 5–9) provided practical implications for geomorphological and
ecological practitioners and experts, with an emphasis on soil erosion assessment and
control. The dynamics of spatial heterogeneity in λC play a critical role in generating runoff,
soil infiltration, and the water balance of a watershed, particularly in regions with sparse
vegetation cover [60,61]. In addition, λK was characterized by drainage, permeability,
and runoff coefficient classes. Identification of the drainage hotspots that influence runoff
generation is necessary for management strategies. Mostafazadeh and Mehri [22] identified
the highest spatial variability in flood coefficient in the north-eastern and western parts
of Ardabil Province over a 22-year period (1991–2011). The spatial pattern of the λS in
the study watersheds was also obtained, with a mean and standard deviation of 0.30 and
1.29, respectively. The effect of slope gradient on runoff production is well documented in
other studies [3,52]. Hotspots of RLI showed the behavior of the watershed systems from
multiple perspectives. The larger RLI indicated more surface runoff generation. The results
were consistent with Bin et al.’s [3] study, which found the RLI in the range of 0.096 and
0.976 for the Haihe River Basin, China.

The RLI had the highest correlation with the SPLIT and LSI metrics (Table 4). Division
metric refers to the role of human intervention and the degree of landscape cohesion [19,29].
For the Calumpang Watershed, Philippines, a regression coefficient of −0.35 was obtained
between the surface runoff and LPI_forest [16]. Their findings verified that the increasing
PD_agriculture and LPI_forest led to a decrease in surface runoff and an increase in base
flow amount. Zhou and Li [15], through investigating the correlation between the landscape
metric and hydrological process, found different behavior in the Yanhe Watershed, China.
They observed a low correlation coefficient (with the absolute value of 0.016–0.288) between
landscape metrics and runoff.

The relatively appropriate performance of statistical criteria was supported by Mirzaei
et al. [19], who found a significant relationship between base flow, slope, and some land-
scape metrics in the Amoughin Watershed, central province. This finding is critical in
the water resource allocation and local strategic planning behind social and economic
aspects. Bin et al. [3] also verified a high correlation between RLI and surface runoff for
the Haihe River Basin, China. They reported the R2 of 0.88 and 0.91, as well as RMSE
of 0.005 and 0.018, respectively, for calibration and validation steps. Partial least squares
(PLS) regression results [16] showed a significant direct correlation between the base flow
and LPI_forest and an inverse correlation between the base flow and AI_agriculture. The
framework provided by the present results plays a base role in regional and provincial
planning from landscape ecology and hydrology perspectives.

In this research, it was hypothesized that the base flow is like the landscape metrics,
more or less permanent. Its amount is affected by the precipitation event, as the used
landscape metrics could also be variable depending on ecological and climatic changes.
Additionally, it was supposed that the land use and all other considered metrics and factors
were responses to long-term hydrological–ecological–human interactions. Therefore, the
mean values of the surface runoff and base flow for 22 years for calibration and validation
steps were considered for calibration and validation steps. However, it could be better to
investigate these relationship types and consistencies in future research.

5. Conclusions

An integrated index multiplied by three runoff-related landscape factors, includ-
ing land cover (λC), soil (λK), and topography (λS), was developed throughout Ardabil
Province, northwest Iran. The landscape metrics of the 28 studied watersheds widely
varied, and greater variances were obtained for LSI and SPLIT. The results of 11 studied
landscape metrics showed coefficients of variation (CV%) of 81 (LSI), 79 (SPLIT), 52 (PD),
45 (LPI), 42 (DIVISION), 37 (SHDI), 35 (MSIDI), 34 (ENN_MN), 30 (CONTIG_MN), 28 (IJI),
and 6 (AI).
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Mean λC, λK, and λS factors of 2.78 ± 1.08, 0.50 ± 0.10, and 1.22 ± 0.30 were found,
respectively. The developed runoff landscape index (RLI) also resulted in a mean of
0.03 ± 0.07. The developed RLI showed a positive correlation with LSI, ENN_MN, DIVI-
SION, SPLIT, SHDI, and AI and a negative correlation with PD, LPI, CONTIG_MN, IJI, and
MSIDI. A significant correlation between RLI and LPI, LSI, DIVISION, SPLIT, and SHDI
was found (r > 0.42; p-value < 0.05). Therefore, using these results (the 11 traditional land-
scape metrics and the newly developed RLI), it is possible to predict future hydrological
processes in ungauged watersheds, as a global topic of interest.

The regression analysis also verified the relationship between base flow as the depen-
dent variable and main waterway length (inverse), LPI (direct), LSI (direct), SPLIT (direct),
MSIDI (direct), and λS (direct) as independent variables with R2 of 0.97 and 0.67, respec-
tively, in the calibration and validation steps (α < 0.01). These findings can be applied to
simply determine the relationships between landscape patterns and watershed hydrology,
providing quantitative information to natural resource authorities in formulating practical
and adaptive programs. Due to the simple and widely used characteristics used to develop
RLI, implementing this research methodology in ungauged watersheds around the world
is highly emphasized. As a concluding remark, the application of this approach in areas
with different landscapes and various hydrological responses can reveal important aspects
of the relationship between land use distribution patterns and processes related to erosion
and sediment production. In addition, the relationship between different components of
the landscape and other components of the water cycle could be a future research topic.
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