Measuring and Modelling Evaporation Losses from Wet Branches of Lemon Trees
Abstract
:1. Introduction
2. Materials and Methods
3. Experimental Layout
4. Results
4.1. Parameters Estimation
4.2. Using IR Images
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gerrits, A.M.J.; Savenije, H.H.G. Treatise on Water Science; Wilderer, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Baiamonte, G. Simplified model to predict runoff generation time for well-drained and vegetated soils. J. Irrig. Drain. Eng. 2016, 142, 04016047. [Google Scholar] [CrossRef]
- Uddin, J.; Foley, J.P.; Smith, R.J.; Hancock, N.H. A new approach to estimate canopy evaporation and canopy interception capacity from evapotranspiration and sap flow measurements during and following wetting. Hydrol. Process. 2015, 30, 1757–1767. [Google Scholar] [CrossRef]
- Savenije, H.H.G. The importance of interception and why we should delete the term evapotranspiration from our vocabulary. Hydrol. Process. 2004, 18, 1507–1511. [Google Scholar] [CrossRef]
- Beven, K.J. Rainfall–Runoff Modelling: The Primer; John Wiley & Sons: Chichester, UK, 2001; ISBN 0-471-98553-8. [Google Scholar]
- Calder, I.R. Evaporation in the Uplands; John Wiley & Sons: Chichester, UK, 1990; ISBN 0-471-92487-3. [Google Scholar]
- Carlyle-Moses, D.E. Throughfall, stemflow, and canopy interception loss fluxes in a semi-arid Sierra Madre Oriental matorral community. J. Arid Environ. 2004, 58, 181–202. [Google Scholar] [CrossRef]
- Wu, J.; Liu, L.; Sun, C.; Su, Y.; Wang, C.; Yang, J.; Liao, J.; He, X.; Li, Q.; Zhang, C.; et al. Estimating Rainfall Interception of Vegetation Canopy from MODIS Imageries in Southern China. Remote Sens. 2019, 11, 2468. [Google Scholar] [CrossRef] [Green Version]
- Bagarello, V.; Baiamonte, G.; Caia, C. Variability of near-surface saturated hydraulic conductivity for the clay soils of a small Sicilian basin. Geoderma 2019, 340, 133–145. [Google Scholar] [CrossRef]
- Calder, I.R. Canopy processes: Implications for transpiration, interception and splash induced erosion, ultimately for forest management and water resources. Plant. Ecol. 2001, 153, 203–214. [Google Scholar] [CrossRef]
- Hall, R.L.; Calder, I.R. Drop Size Modification by Forest Canopies’ Measurements Using a Disdrometer. J. Geophys. 1993, 98, 18465–18470. [Google Scholar] [CrossRef]
- Page, T.; Chappell, N.A.; Beven, K.; Hankin, B.; Kretzschmar, A. Assessing the significance of wet-canopy evaporation from forests during extreme rainfall events for flood mitigation in mountainous regions of the United Kingdom. Hydrol. Process. 2020, 34, 4740–4754. [Google Scholar] [CrossRef]
- Jiao, J.; Su, D.; Han, L.; Wang, Y. A Rainfall Interception Model for Alfalfa Canopy under Simulated Sprinkler Irrigation. Water 2016, 8, 585. [Google Scholar] [CrossRef] [Green Version]
- Muzylo, A.; Llorens, P.; Valente, F.; Keizer, J.J.; Domingo, F.; Gash, J.H.C. A review of rainfall interception modelling. J. Hydrol. 2009, 370, 191–206. [Google Scholar] [CrossRef] [Green Version]
- Rutter, A.J.; Kershaw, K.A.; Robins, P.C.; Morton, A.J. A predictive model of rainfall interception in forests, 1. Derivation of the model from observations in a plantation of Corsican pine. Agric. Meteorol. 1971, 9, 367–384. [Google Scholar] [CrossRef]
- Rutter, A.J.; Morton, A.J.; Robins, P.C. A predictive model of rainfall interception in forests. II. Generalization of the model and comparison with observations in some coniferous and hardwood stands. J. Appl. Ecol. 1975, 12, 367–380. [Google Scholar] [CrossRef]
- Calder, I. A model of transpiration and interception loss from a spruce forest in Plynlimon, Central Wales. J. Hydrol. 1977, 33, 247–265. [Google Scholar] [CrossRef]
- Gash, J.; Morton, A. Application of the Rutter model to the estimation of the interception loss from Thetford forest. J. Hydrol. 1978, 38, 49–58. [Google Scholar] [CrossRef]
- Linsley, R.K., Jr.; Kohler, M.A.; Paulhus, J.L. Applied Hydrology; McGraw-Hill Book Co.: New York, NY, USA, 1988. [Google Scholar]
- Horton, R.E. Rainfall interception. Mon. Weather Rev. 1919, 47, 603–623. [Google Scholar] [CrossRef]
- Merriam, R.A. A note on the interception loss equation. J. Geophys. Res. 1960, 5, 3850–3851. [Google Scholar] [CrossRef]
- Merriam, R.A. Fog drip from artificial leaves in a fog wind tunnel. Water Resour. Res. 1973, 9, 1591–1598. [Google Scholar] [CrossRef]
- Baiamonte, G. Simplified Interception/Evaporation Model. Hydrology 2021, 8, 99. [Google Scholar] [CrossRef]
- Babu, A.K.; Kumaresan, G.; Raj, V.A.A.; Velraj, R. Review of leaf drying: Mechanism and influencing parameters, drying methods, nutrient preservation, and mathematical models. Renew. Sustain. Energy Rev. 2018, 90, 536–556. [Google Scholar] [CrossRef]
- Pumo, D. L’Approvvigionamento Idrico per l’Agricoltura; Aracne Editrice SRL: Rome, Italy, 2008; ISBN 978-88-548-1708-1. (In Italy) [Google Scholar]
- Crockford, R.H.; Richardson, D.P. Partitioning of rainfall into throughfall, stemflow and interception: Effect of forest type, ground cover and climate. Hydrol. Process. 2000, 14, 2903–2920. [Google Scholar] [CrossRef]
- Garcia-Estringana, P.; Alonso-Blázquez, N.; Alegre, J. Water storage capacity, stemflow and water funneling in Mediterranean shrubs. J. Hydrol. 2010, 389, 363–372. [Google Scholar] [CrossRef]
- Hancock, N.H.; Crowther, J.M. A technique for the direct measurement of water storage on a forest canopy. J. Hydrol. 1979, 41, 105–122. [Google Scholar] [CrossRef]
- Huang, Y.S.; Chena, S.S.; Lin, T.P. Continuous monitoring of water loading of trees and canopy rainfall interception using the strain gauge method. J. Hydrol. 2005, 311, 1–7. [Google Scholar] [CrossRef]
- Aston, A.R. Rainfall interception by eight small trees. J. Hydrol. 1979, 42, 383–396. [Google Scholar] [CrossRef]
- Liu, S. Estimation of rainfall storage capacity in the canopies of cypress wetlands and slash pine uplands in North-Central Florida. J. Hydrol. 1998, 207, 32–41. [Google Scholar] [CrossRef]
- Gash, J.H.C.; Lloyd, C.R.; Lachaudb, G. Estimating sparse forest rainfall interception with an analytical model. J. Hydrol. 1995, 170, 79–86. [Google Scholar] [CrossRef]
- Sadeghi, S.M.M.; Attarod, P.; Grant Pypker, T.; Dunkerley, D. Is canopy interception increased in semiarid tree plantations? Evidence from a field investigation in Tehran, Iran. Turk. J. Agric. For. 2015, 38, 792–806. [Google Scholar] [CrossRef]
- Zhang, Q.; Lv, X.; Yu, X.; Ni, Y.; Ma, L.; Liu, Z. Species and spatial differences in vegetation rainfall interception capacity: A synthesis and meta-analysis in China. Catena 2022, 213, 106223. [Google Scholar] [CrossRef]
- Helvey, J.D.; Patric, J.H. Canopy and Litter Interception of Rainfall by Hardwoods of Eastern United States. Water Resour. Res. 1965, 1, 193–206. [Google Scholar] [CrossRef] [Green Version]
- Eliades, M.; Bruggeman, A.; Djuma, H.; Christou, A.; Rovanias, K.; Lubczynski, M.W. Testing three rainfall interception models and different parameterization methods with data from an open Mediterranean pine forest. Agric. For. Meteorol. 2022, 313, 108755. [Google Scholar] [CrossRef]
- Black, T.A.; Gardner, W.R.; Thurtell, G.W. The prediction of evaporation, drainage, and soil water storage for a bare soil. Soil Sci. Soc. Amer. Proc. 1969, 33, 655–660. [Google Scholar] [CrossRef]
- Ritchie, J.T. Model for predicting evaporation from a row crop with incomplete cover. Water Resour. Res. 1972, 8, 1204–1213. [Google Scholar] [CrossRef] [Green Version]
- Baiamonte, G. Dimensionless Stage-Discharge Relationship for a Non-Linear Water Reservoir: Theory and Experiments. Hydrology 2020, 7, 23. [Google Scholar] [CrossRef] [Green Version]
- Medrado, J.P.T.; Inman, R.H.; Coimbra, C.F.M. Isothermal and near-isothermal free evaporation of water from open tubes in air. Int. J. Heat Mass Transf. 2022, 189, 122687. [Google Scholar] [CrossRef]
- Alvarado-Barrientos, M.S.; Holwerdab, F.; Asbjornsena, H.; Dawsonc, T.E.; Bruijnzeel, L.A. Suppression of transpiration due to cloud immersion in a seasonally dry Mexican weeping pine plantation. Agric. For. Meteorol. 2014, 186, 12–25. [Google Scholar] [CrossRef]
- Aparecido, L.M.T.; Miller, G.R.; Cahill, A.T.; Moore, G.W. Comparison of tree transpiration under wet and dry canopy conditions in a Costa Rican premontane tropical forest. Hydrol. Process. 2016, 30, 5000–5011. [Google Scholar] [CrossRef]
- Baiamonte, G.; Motisi, A. Analytical approach extending the Granier method to radial sap flow patterns. Agric. Water Manage. 2020, 231, 105998. [Google Scholar] [CrossRef]
- Iida, S.; Levia, D.F.; Shimizu, A.; Shimizu, T.; Tamai, K.; Nobuhiro, T.; Kabeya, N.; Noguchi, S.; Sawano, S.; Araki, M. Intrastorm scale rainfall interception dynamics in a mature coniferous forest stand. J. Hydrol. 2017, 548, 770–783. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Cardona, A. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
run # | #L | LA (m2) | S (mm) | <RH> (%) | CV(RH) | <T> (°C) | CV(T) | VPD | n | m | R | t0 (h) | tmax (h) | E/S |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1a | 34 | 0.149 | 0.089 | 64.9 | 1.1% | 26.5 | 0.8% | 1.212 | 0.0234 | 0.0499 | 0.905 | 0.119 | 5.38 | 1.00 |
1b | 140 | 0.293 | 0.108 | 63.6 | 3.1% | 26.7 | 1.4% | 1.276 | 0.0296 | 0.0533 | 0.935 | 0.165 | 6.39 | 1.02 |
1aR | 34 | 0.149 | 0.106 | 62.8 | 3.0% | 26.6 | 1.2% | 1.294 | 0.0246 | 0.0401 | 0.976 | 0.196 | 14.44 | 1.00 |
1bR | 140 | 0.293 | 0.114 | 63.5 | 2.4% | 26.7 | 1.2% | 1.274 | 0.0294 | 0.0432 | 0.979 | 0.230 | 11.29 | 0.98 |
2a | 76 | 0.148 | 0.099 | 56.2 | 1.8% | 26.3 | 1.3% | 1.498 | 0.0274 | 0.0779 | 0.976 | 0.058 | 2.15 | 1.00 |
2b | 48 | 0.162 | 0.090 | 56.5 | 1.9% | 26.3 | 1.1% | 1.486 | 0.0259 | 0.0642 | 0.975 | 0.084 | 2.72 | 1.05 |
3a | 52 | 0.153 | 0.104 | 45.9 | 1.7% | 29.7 | 0.5% | 2.260 | 0.0302 | 0.0896 | 0.983 | 0.051 | 1.61 | 1.04 |
3b | 93 | 0.205 | 0.114 | 46.0 | 1.6% | 29.9 | 1.0% | 2.275 | 0.0336 | 0.0819 | 0.979 | 0.088 | 2.63 | 1.06 |
4aR | 38 | 0.162 | 0.075 | 58.8 | 6.4% | 18.5 | 1.6% | 0.877 | 0.0199 | 0.0563 | 0.957 | 0.059 | 2.55 | 1.10 |
4bR | 62 | 0.157 | 0.088 | 58.4 | 6.6% | 18.5 | 1.7% | 0.888 | 0.0268 | 0.0562 | 0.963 | 0.122 | 3.33 | 0.96 |
5a | 48 | 0.154 | 0.136 | 63.1 | 1.5% | 23.8 | 1.0% | 1.088 | 0.0354 | 0.0615 | 0.970 | 0.176 | 8.26 | 1.06 |
5b | 93 | 0.228 | 0.134 | 63.4 | 1.3% | 23.8 | 1.0% | 1.081 | 0.0397 | 0.0594 | 0.954 | 0.224 | 6.52 | 1.06 |
6a | 33 | 0.145 | 0.105 | 67.5 | 1.3% | 24.1 | 0.9% | 0.977 | 0.0256 | 0.0522 | 0.977 | 0.131 | 7.97 | 1.00 |
6b | 68 | 0.228 | 0.084 | 67.6 | 1.4% | 24.2 | 0.9% | 0.976 | 0.0242 | 0.0434 | 0.954 | 0.167 | 5.29 | 1.07 |
7a | 63 | 0.186 | 0.082 | 70.8 | 4.2% | 21.6 | 1.4% | 0.751 | 0.0220 | 0.0491 | 0.957 | 0.108 | 4.37 | 1.13 |
7b | 64 | 0.154 | 0.054 | 71.4 | 4.1% | 21.6 | 1.3% | 0.736 | 0.0160 | 0.0389 | 0.899 | 0.088 | 2.52 | 1.23 |
8a | 90 | 0.195 | 0.078 | 55.1 | 1.6% | 21.8 | 1.4% | 1.175 | 0.0191 | 0.0566 | 0.980 | 0.052 | 3.05 | 1.05 |
8b | 72 | 0.223 | 0.068 | 55.1 | 1.5% | 21.9 | 1.3% | 1.177 | 0.0182 | 0.0452 | 0.966 | 0.083 | 3.53 | 1.09 |
9a | 54 | 0.163 | 0.043 | 57.0 | 1.3% | 19.9 | 1.2% | 1.002 | 0.0144 | 0.0304 | 0.957 | 0.121 | 2.45 | 1.17 |
9b | 8 | 0.040 | 0.067 | 56.2 | 3.0% | 20.0 | 1.3% | 1.025 | 0.0167 | 0.0377 | 0.966 | 0.104 | 5.73 | 0.95 |
9aR | 54 | 0.163 | 0.055 | 55.1 | 1.3% | 20.1 | 1.1% | 1.058 | 0.0175 | 0.0338 | 0.936 | 0.144 | 3.28 | 1.07 |
9bR | 8 | 0.040 | 0.043 | 55.1 | 1.3% | 20.1 | 1.1% | 1.058 | 0.0099 | 0.0285 | 0.993 | 0.057 | 4.46 | 0.94 |
Regression Statistics | n | m |
---|---|---|
Multiple R | 0.9638 | 0.8414 |
R Square | 0.9290 | 0.7079 |
Adjusted R Square | 0.9172 | 0.6592 |
Standard Error | 0.0021 | 0.0094 |
Observations | 22 | 22 |
ANOVA | df | SS | MS | F | Significance F |
---|---|---|---|---|---|
n parameter | |||||
Regression | 3 | 0.0010 | 0.0003 | 78.50 | 1.56 × 10−10 |
Residual | 18 | 0.0001 | 4.43 × 10−6 | ||
Total | 21 | 0.0011 | |||
m parameter | |||||
Regression | 3 | 0.0038 | 0.0013 | 14.54 | 4.68 × 10−5 |
Residual | 18 | 0.0016 | 0.0001 | ||
Total | 21 | 0.0054 |
Explanatory Variables | Coefficients | Standard Error | t Stat | p-Value | Lower 95% | Upper 95% |
---|---|---|---|---|---|---|
n parameter | ||||||
Intercept | 0.0035 | 0.0039 | 0.8960 | 0.3821 | −0.0048 | 0.0118 |
<T> | −3.032 × 10−4 | 0.0003 | −1.0750 | 0.2966 | −0.0009 | 0.0003 |
VPD | 3.075 × 10−3 | 0.0020 | 1.5376 | 0.1415 | −0.0011 | 0.0073 |
S | 0.2724 | 0.0238 | 11.436 | 1.1×10−9 | 0.2224 | 0.3225 |
m parameter | ||||||
Intercept | 0.0266 | 0.0175 | 1.5168 | 0.1467 | −0.0103 | 0.0635 |
<T> | −1.885 × 10−3 | 0.0013 | −1.5026 | 0.1503 | −0.0045 | 0.0008 |
VPD | 3.386 × 10−2 | 0.0089 | 3.8069 | 0.0013 | 0.0152 | 0.0525 |
S | 0.3334 | 0.1060 | 3.1469 | 0.0056 | 0.1108 | 0.5560 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baiamonte, G.; Palermo, S. Measuring and Modelling Evaporation Losses from Wet Branches of Lemon Trees. Hydrology 2022, 9, 118. https://doi.org/10.3390/hydrology9070118
Baiamonte G, Palermo S. Measuring and Modelling Evaporation Losses from Wet Branches of Lemon Trees. Hydrology. 2022; 9(7):118. https://doi.org/10.3390/hydrology9070118
Chicago/Turabian StyleBaiamonte, Giorgio, and Samuel Palermo. 2022. "Measuring and Modelling Evaporation Losses from Wet Branches of Lemon Trees" Hydrology 9, no. 7: 118. https://doi.org/10.3390/hydrology9070118
APA StyleBaiamonte, G., & Palermo, S. (2022). Measuring and Modelling Evaporation Losses from Wet Branches of Lemon Trees. Hydrology, 9(7), 118. https://doi.org/10.3390/hydrology9070118