Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (51)

Search Parameters:
Keywords = radish sprouts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3193 KB  
Article
Application of Brassica juncea and Raphanus sativus Sprout Extracts as Active Agents in Chitosan-Based Edible Coatings: Evaluation of Physicochemical and Biological Properties
by Arash Moeini, Roméo Arago Dougué Kentsop, Aspen Beals, Monica Mattana, Massimiliano Marvasi, Lucie Coquard, Marianna Gregorio, Judyta Cielecka-Piontek, Annamaria Genga, Aleksandra Nesic, Giovanna Lo Vecchio, Sarai Agustin Salazar, Thomas Becker and Pierfrancesco Cerruti
Polymers 2026, 18(2), 252; https://doi.org/10.3390/polym18020252 - 16 Jan 2026
Viewed by 328
Abstract
The use of natural bioactive compounds in edible coatings provides a sustainable approach to reducing food spoilage and meeting consumer demand for safer food preservation. In this study, bioactive extracts from Brassica juncea (green mustard, GM) and Raphanus sativus (radish tango, RT) sprouts [...] Read more.
The use of natural bioactive compounds in edible coatings provides a sustainable approach to reducing food spoilage and meeting consumer demand for safer food preservation. In this study, bioactive extracts from Brassica juncea (green mustard, GM) and Raphanus sativus (radish tango, RT) sprouts were encapsulated into zein/chitosan (Z/CH) microparticles (MPs) using a complex coacervation–based encapsulation approach. The encapsulated microparticles (MPs), characterized by FTIR and UV-Vis spectroscopy, demonstrated a high loading efficiency of up to 90% and maintained their antioxidant activity for up to 168 h. TGA and SEM tests confirmed that the edible films produced by incorporating these microparticles (MPs) into polyvinyl alcohol (PVA) and chitosan (CH) matrices had a more uniform microstructure and enhanced heat stability. The Z/CH/RT6:PVA (1:2) and Z/CH/GM6:CH (1:1) formulations of the films showed significant antioxidant and antibacterial action, with up to 22.4% DPPH inhibition and a 1-log decrease in Salmonella enterica CFU, respectively. Overall, the results underscore the promise of sprout-derived microparticles as components for developing active, biodegradable packaging films with improved functional properties. Full article
Show Figures

Figure 1

17 pages, 3151 KB  
Article
Exploring the Effects of Diluted Plasma-Activated Water (PAW) on Various Sprout Crops and Its Role in Autophagy Regulation
by Injung Song, Suji Hong, Yoon Ju Na, Seo Yeon Jang, Ji Yeong Jung, Young Koung Lee and Sung Un Huh
Agronomy 2026, 16(2), 207; https://doi.org/10.3390/agronomy16020207 - 15 Jan 2026
Viewed by 242
Abstract
Plasma-activated water (PAW) has gained attention across agricultural, medical, cosmetic, and sterilization fields due to its production of reactive oxygen and nitrogen species (ROS and RNS). Although PAW has been primarily explored for seed germination and sterilization in agriculture, its role as a [...] Read more.
Plasma-activated water (PAW) has gained attention across agricultural, medical, cosmetic, and sterilization fields due to its production of reactive oxygen and nitrogen species (ROS and RNS). Although PAW has been primarily explored for seed germination and sterilization in agriculture, its role as a nutrient source and physiological regulator remains less understood. In this study, PAW generated by a surface dielectric barrier discharge (SDBD) system contained approximately 1000 ppm nitrate (NO3) and was designated as PAW1000. Diluted PAW solutions were applied to sprout crops—wheat (Triticum aestivum), barley (Hordeum vulgare), radish (Raphanus sativus), and broccoli (Brassica oleracea var. italica)—grown under hydroponic and soil-based conditions. PAW100 and PAW200 treatments enhanced growth, increasing fresh biomass by up to 26%, shoot length by 22%, and root length by 18%, depending on the species. In silico analysis identified nitrogen-responsive transcripts among several autophagy-related genes. Consistent with this, fluorescence microscopy of Arabidopsis thaliana GFP-StATG8 lines revealed increased autophagosome formation following PAW treatment. The growth-promoting effect of PAW was diminished in atg4 mutants, indicating that autophagy contributes to plant responses to PAW-derived ROS and RNS. Together, these findings demonstrate that diluted PAW generated by SDBD enhances biomass accumulation in sprout crops, and that autophagy plays a regulatory role in mediating PAW-induced physiological responses. Full article
(This article belongs to the Topic Applications of Biotechnology in Food and Agriculture)
Show Figures

Figure 1

16 pages, 816 KB  
Article
Urinary Equol Production Capacity, Dietary Habits, and Premenstrual Symptom Severity in Healthy Young Japanese Women
by Nanae Kada-Kondo, Natsuka Kimura, Kurea Isobe, Akari Kaida, Saki Ota, Akari Fujita, Yuu Haraki, Ryozo Nagai and Kenichi Aizawa
Metabolites 2026, 16(1), 55; https://doi.org/10.3390/metabo16010055 - 8 Jan 2026
Viewed by 387
Abstract
Background/Objectives: Equol, a gut microbial metabolite of the soy isoflavone, daidzein, is associated with estrogenic activity and potential benefits for women’s health. While equol production depends on individual gut microbial composition, its dietary and clinical correlates in young women remain incompletely characterized. [...] Read more.
Background/Objectives: Equol, a gut microbial metabolite of the soy isoflavone, daidzein, is associated with estrogenic activity and potential benefits for women’s health. While equol production depends on individual gut microbial composition, its dietary and clinical correlates in young women remain incompletely characterized. This study explored the relationship between urinary equol production, dietary habits, and premenstrual symptom severity in healthy university-aged women. Methods: We conducted a cross-sectional study of 41 Japanese women, aged 19–20 years. Urinary equol was measured using a validated liquid chromatography–tandem mass spectrometry (LC–MS/MS) method, following enzymatic hydrolysis. Participants were classified as either equol producers or non-producers, based on urinary concentration thresholds. Dietary intake was evaluated using a dietary questionnaire focused on soy products and dietary fiber sources. Premenstrual symptoms were assessed using a standardized Japanese questionnaire for premenstrual syndrome and premenstrual dysphoric disorder. Results: Twelve percent of participants were classified as equol producers. Compared with non-producers, equol producers reported higher consumption of pumpkin, soybean sprouts, and green tea. Among non-producers, higher consumption of certain vegetables and fiber-rich foods, including broccoli, pickled radish, konjac, and konjac jelly, was associated with greater premenstrual symptom severity, whereas such associations were not observed among equol producers. The analytical method demonstrated high sensitivity and reproducibility for urinary equol measurement. Conclusions: These findings suggest that equol production status may be associated with distinct dietary patterns and with differences in the relationship between food intake and premenstrual symptom severity in young women. Although the cross-sectional design and limited sample size preclude causal inference, these findings suggest that urinary equol is a promising candidate biomarker for future research on diet-related modulation of premenstrual symptoms. Full article
(This article belongs to the Special Issue Application of Urinary Metabolomics in Early Disease Detection)
Show Figures

Figure 1

14 pages, 1224 KB  
Article
The Impact of Production Method on the Content of Selected Bioactive Compounds and the Quality of Radish Sprouts
by Joanna Szulc and Joanna Gracz
Processes 2025, 13(12), 4059; https://doi.org/10.3390/pr13124059 - 16 Dec 2025
Viewed by 332
Abstract
This study evaluated the effect of different sprouting methods on the morphological traits, pigmentation, and bioactive compound content of radish sprouts (Raphanus sativus L.). The following four sprouting techniques were compared: tray (T), sprouter (S), jar (J5–J20), and tank (R5–R20), varying in [...] Read more.
This study evaluated the effect of different sprouting methods on the morphological traits, pigmentation, and bioactive compound content of radish sprouts (Raphanus sativus L.). The following four sprouting techniques were compared: tray (T), sprouter (S), jar (J5–J20), and tank (R5–R20), varying in seed density and aeration conditions. The results demonstrated that the sprouting method significantly influenced growth parameters and phytochemical profiles. Sprouts produced using the tray (T) and sprouter (S) methods exhibited the highest mass and lowest dry matter content, reflecting favorable hydration and aeration. Sprouter-grown sprouts were particularly rich in chlorophyll (47.6 mg/100 g DW) and ascorbic acid (11.36 mg/100 g DW), indicating optimal photosynthetic and antioxidant metabolism. Tray-grown sprouts showed the highest polyphenol (919.8 mg GAE/100 g DW) and anthocyanin (217.0 mg C3G/100 g DW) concentrations, suggesting enhanced synthesis of secondary metabolites under mild abiotic stress. A comparative assessment using a three-point scale confirmed that sprouter, tray, and low-density tank methods provided the most favorable nutritional and sensory attributes. Overall, both technological factors and genetic background determine the nutritional quality of radish sprouts, offering practical guidance for optimizing sprout production and developing functional foods. Full article
(This article belongs to the Special Issue Processes in Agri-Food Technology)
Show Figures

Figure 1

21 pages, 5027 KB  
Article
Accumulation Characteristics of Trace Elements in Leafy Vegetables with Different Heavy Metal Tolerances Under Cd and as Stress
by Yuan Meng, Liang Zhang, Liping Li, Linquan Wang, Yongfu Wu, Tao Zeng, Haiqing Shi, Zeli Chang, Qian Shi and Jian Ma
Agronomy 2025, 15(8), 1790; https://doi.org/10.3390/agronomy15081790 - 25 Jul 2025
Viewed by 1780
Abstract
This study investigates growth responses, heavy metal (Cd, As) uptake, translocation, and mineral nutrient regulation in leafy vegetables with varying heavy metal tolerance, addressing the threat posed by combined Cd and As pollution. Three high-tolerance, four moderate-tolerance, and one sensitive leafy vegetable were [...] Read more.
This study investigates growth responses, heavy metal (Cd, As) uptake, translocation, and mineral nutrient regulation in leafy vegetables with varying heavy metal tolerance, addressing the threat posed by combined Cd and As pollution. Three high-tolerance, four moderate-tolerance, and one sensitive leafy vegetable were grown in Cd+As-contaminated hydroponics. Post-harvest yields and concentrations of Cd, As, and trace elements were assessed. Results showed that (1) compared with single heavy metal treatments, the combination of Cd and As significantly increased the translocation factor of Cd in black bean sprouts and white radish sprouts by up to 83.83% and 503.2%; (2) changes in mineral nutrient concentrations in leafy vegetables were similar between single and combined heavy metal stresses, but the regulatory patterns varied among different leafy vegetable species; (3) under Cd/As exposure, high-tolerance leafy vegetables (e.g., pak choi) had strong heavy metal accumulation abilities, and heavy metal stress positively regulated mineral elements in their roots; In contrast, sensitive leafy vegetables (e.g., pea sprouts) often exhibited suppressed mineral element content in their roots, which was a result of their strategy to reduce heavy metal uptake. These results offer key insights into resistance mechanisms against combined heavy metal pollution in leafy vegetables, supporting phytoremediation efforts and safe production. Full article
(This article belongs to the Special Issue Heavy Metal Pollution and Prevention in Agricultural Soils)
Show Figures

Figure 1

16 pages, 1343 KB  
Article
The Effect of Light on the Germination of Raphanus sativus Seeds and the Use of Sprout Extracts in the Development of a Dermatocosmetic Gel
by Mihaela Carmen Eremia, Ramona Daniela Pavaloiu, Oana Livadariu, Anca Daniela Raiciu, Fawzia Sha’at, Corina Bubueanu and Dana Maria Miu
Gels 2025, 11(7), 515; https://doi.org/10.3390/gels11070515 - 2 Jul 2025
Viewed by 908
Abstract
This study investigates the influence of different light sources (sunlight, green, red, and white LED) on the germination of Raphanus sativus L. sprouts and the potential use of their sprout extracts in the development of natural dermatocosmetic gels. The bioactive fractions were extracted [...] Read more.
This study investigates the influence of different light sources (sunlight, green, red, and white LED) on the germination of Raphanus sativus L. sprouts and the potential use of their sprout extracts in the development of natural dermatocosmetic gels. The bioactive fractions were extracted using simple methods and analyzed for total polyphenol content and antioxidant activity. Statistical analysis of weight, total phenolic content, and antioxidant activity of Raphanus sativus L. sprouts was performed using ANOVA. Sprouts exposed to green LED light showed the highest biomass (16.13 ± 0.38 g), while red LED light resulted in the highest total polyphenol content (3.28 ± 0.03 mg GAE/g fresh weight). The highest antioxidant activity (6.60 ± 0.08 mM Trolox/g fresh weight) was obtained under white LED. Although variations were observed, ANOVA analysis revealed that only sprout weight differed significantly among treatments (p < 0.001), while differences in polyphenol content and antioxidant activity were not statistically significant (p > 0.05). The extract with the highest antioxidant activity was incorporated as an active ingredient into Carbopol-based hydrogel formulations containing natural gelling agents and gentle preservatives. The resulting gels demonstrated favorable pH (4.85–5.05), texture, and stability. The results indicate that the light spectrum influences the germination process and the initial development of seedlings. Moreover, radish sprout extracts, rich in bioactive compounds, show promise for dermatocosmetic applications due to their antioxidant, soothing, and antimicrobial properties. This study supports the use of natural resources in the development of care products, in line with current trends in green cosmetics. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

22 pages, 1821 KB  
Article
Comparative Nutrient Study of Raphanus sativus L. Sprouts Microgreens, and Roots
by Dominika Kajszczak, Dorota Sosnowska, Radosław Bonikowski, Kamil Szymczak, Barbara Frąszczak, Katarzyna Pielech-Przybylska and Anna Podsędek
Agronomy 2025, 15(5), 1216; https://doi.org/10.3390/agronomy15051216 - 17 May 2025
Cited by 6 | Viewed by 4037
Abstract
Radish (Raphanus sativus L.) is an important vegetable crop worldwide. Four red radish cultivars (Carmen, Jutrzenka, Saxa 2, and Warta) were evaluated for their macronutrients (protein, fat, available carbohydrates), as well as ash, and dietary fiber at the sprout, microgreen, and mature [...] Read more.
Radish (Raphanus sativus L.) is an important vegetable crop worldwide. Four red radish cultivars (Carmen, Jutrzenka, Saxa 2, and Warta) were evaluated for their macronutrients (protein, fat, available carbohydrates), as well as ash, and dietary fiber at the sprout, microgreen, and mature (root) stages. Fatty acids, organic acids, and sugars were also profiled by using chromatographic methods. Radish roots are characterized by a good chemical composition due to a lower fat content, lower energy value, and higher available carbohydrate content compared to sprouts and microgreens. Microgreens outperformed other forms of radish in terms of organic acids, ash, and soluble dietary fiber, while sprouts contained the most protein. Both immature forms of radish proved to be better sources of fiber than their mature roots. In all radish samples analyzed, glucose, oxalic acid, and oleic acid or alpha-linolenic acid were the dominant sugar, organic acid, and fatty acid, respectively. The results indicate a diverse composition of radish sprouts, microgreens, and roots, and confirm the validity of using red radishes in various forms as valuable components of our diet. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

20 pages, 4160 KB  
Article
Chemical Composition, Antibacterial Activity, and Food Application of Sprouts from Fabaceae and Brassicaceae Species
by Christine (Neagu) Dragomir, Corina Dana Misca, Sylvestre Dossa, Călin Jianu, Isidora Radulov, Monica Negrea, Loredana Paven and Ersilia Alexa
Appl. Sci. 2025, 15(4), 1896; https://doi.org/10.3390/app15041896 - 12 Feb 2025
Cited by 4 | Viewed by 1887
Abstract
The aim of this paper is to evaluate, from a chemical and antibacterial point of view, sprouts from species of Fabaceae and Brassicaceae families, to establish a correlation between analyzed parameters and to test the possibility of using these functional compounds in the [...] Read more.
The aim of this paper is to evaluate, from a chemical and antibacterial point of view, sprouts from species of Fabaceae and Brassicaceae families, to establish a correlation between analyzed parameters and to test the possibility of using these functional compounds in the flour food industry. The material used was lentil sprouts (LS), pea sprouts (PS), bean sprouts (BS), and radish sprouts (RS), which were chemically analyzed by determining the content of total and individual polyphenols and macro- and microelements. The antimicrobial potential of the sprout extracts obtained was tested using the disk diffusion method on five bacterial strains: Escherichia coli, Proteus mirabilis, Klebsiella pneumoniae, Enterococcus faecalis, and Staphylococcus aureus. In order to capitalize on the flour food industry, the sprouts were introduced in the recipes for the manufacture of some cookies, and sensory analysis was performed. The results obtained indicated that LS are the sprouts with the highest content of TPC (524.130 mg/100 g) and highest content for Ni, Cu, Zn, Fe, Mn, and Mg, while the highest values for Ca were recorded in the case of PS (256.575 ± 2.23 mg/kg), and for K in the case of the BS sample (4819.450 ± 1.1 mg/kg). The RS extract has been shown to be effective against E. faecalis (MIC-70 µL/mL), S. aureus (MIC 50 µL/mL), and PS against S. aureus (MIC 70 µL/mL). Regarding the sensory analysis of cookies, the panelists participating in the study preferred products based on BS and PS in a percentage of 2.5%. Full article
Show Figures

Figure 1

16 pages, 1799 KB  
Article
Study on the Effect of Radish Sprouts on Short-Chain Fatty Acids and Gut Microbial Diversity in Healthy Individuals
by Ru Li, Xuehong Chen, Cong Shi and Yi Zhu
Foods 2025, 14(2), 170; https://doi.org/10.3390/foods14020170 - 8 Jan 2025
Cited by 2 | Viewed by 2848
Abstract
This study aimed to assess the impact of radish sprouts on the gut microbiota of healthy individuals. Radish sprout additives, subjected to short-term storage and steam treatment, were used to intervene in an in vitro culture of human gut microbiota. The influence of [...] Read more.
This study aimed to assess the impact of radish sprouts on the gut microbiota of healthy individuals. Radish sprout additives, subjected to short-term storage and steam treatment, were used to intervene in an in vitro culture of human gut microbiota. The influence of radish sprouts on the gut microbiota was evaluated by monitoring short-chain fatty acid (SCFA) content and proportion in the fermentation broth, and microbial diversity was assessed using 16S rDNA amplicon sequencing. The results indicated that the gut microbiota produced a substantial amount of SCFA within 48 h of fermentation, with a right-skewed distribution across all groups. The addition of both digestates enhanced Firmicutes diversity, while Bacteroidetes and Proteobacteria diversity remained stable between the control and fresh sprout groups. The 30 s steam treatment group showed an increase in Bacteroidetes and a decrease in Proteobacteria diversity. The abundance of Bacilli, Bacillaceae, and Bacillus was significantly higher in both the fresh and steam-treated groups compared to the control. Both fresh and steam-treated radish sprout digestates enriched gut microbiota diversity, with steam treatment showing superior effects. These findings suggest that radish sprout consumption may positively influence gut microbiota, with steam treatment potentially enhancing these benefits. Full article
Show Figures

Graphical abstract

20 pages, 8130 KB  
Article
The Performance of Growing-Media-Shaped Microgreens: The Growth, Yield, and Nutrient Profiles of Broccoli, Red Beet, and Black Radish
by Sibel Balik, Hayriye Yildiz Dasgan, Boran Ikiz and Nazim S. Gruda
Horticulturae 2024, 10(12), 1289; https://doi.org/10.3390/horticulturae10121289 - 4 Dec 2024
Cited by 12 | Viewed by 5061
Abstract
Sprouts, microgreens, and baby leaves are plant-based functional foods that have recently gained popularity for use in human diets as novel foods due to their high nutraceutical value. Microgreens, harvested shortly after germination with one true leaf, include vitamins and minerals with potential [...] Read more.
Sprouts, microgreens, and baby leaves are plant-based functional foods that have recently gained popularity for use in human diets as novel foods due to their high nutraceutical value. Microgreens, harvested shortly after germination with one true leaf, include vitamins and minerals with potential health benefits. Achieving high yields, robust growth, and maximum nutrient accumulation requires optimal cultivation, especially when selecting the appropriate growing medium. This study assessed the effectiveness of six different growing media for the cultivation of microgreens, specifically black radish (Raphanus sativus L. var. niger), broccoli (Brassica oleracea var. italica), and red beet (Beta vulgaris L.). The growing media tested included vermiculite, perlite, a peat-based medium, filter paper, cotton textile, and agril. The results revealed that vermiculite and the peat-based medium led to the highest yields. The phenolic content ranged from 110.77 mg GA·100 g−1 FW in red beet to 169.96 mg GA·100 g−1 FW in broccoli. The flavonoid content varied between 17.99 mg RU·100 g−1 FW in black radish and 120.36 mg RU·100 g−1 FW in red beet. Agril and filter paper media yielded the highest SPAD–chlorophyll values (47.34 and 44.36, respectively). The protein content peaked at 3.03 g·100 g−1 FW in black radish grown on filter paper, while the vitamin C content reached a maximum of 29.75 mg·100 g−1 FW in black radish grown in agril. The findings suggest that while the optimal conditions vary by species, the choice of growing medium plays a crucial role in determining microgreens’ quality and nutrient content. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

23 pages, 2873 KB  
Article
Effect of Different Colours of Light on Chosen Aspects of Metabolism of Radish Sprouts with Phosphoromic Approach
by Anna Kafka, Jacek Lipok, Beata Żyszka-Haberecht and Dorota Wieczorek
Molecules 2024, 29(23), 5528; https://doi.org/10.3390/molecules29235528 - 22 Nov 2024
Cited by 2 | Viewed by 2908
Abstract
Among various environmental factors, light is a crucial parameter necessary for the germination of some seeds. Seed germination is an important phase in the plant life cycle, when metabolic activity is resumed and reserves are mobilized to support initial plant development. Although all [...] Read more.
Among various environmental factors, light is a crucial parameter necessary for the germination of some seeds. Seed germination is an important phase in the plant life cycle, when metabolic activity is resumed and reserves are mobilized to support initial plant development. Although all nutrients are extremely important for proper physiological and biochemical development of plants, phosphorus (P) seems to play a special role, as it is an essential component of all important structural and functional substances which compose the cells of plants. We believe that transformations of the forms of phosphorus accompanying metabolic activity of germinating seeds determine the efficiency of this process, and thus the seedling’s metabolic status. Therefore, we decided to study the changes in the major phosphorus-containing substances in radish sprouts during the first phase of growth. The effect of different colours of light on the quality parameters in radish, as a model plant, during germination, was evaluated. Contents of Pi, adenylates, antioxidants, pigments, phytase activity, and 31P NMR phosphorus profile were investigated. Based on the results of our study, we may propose the phosphoromic approach as an important metabolic parameter determining the physiological status of the plant. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Figure 1

24 pages, 2843 KB  
Article
Phytochemical Composition and Functional Properties of Brassicaceae Microgreens: Impact of In Vitro Digestion
by Ivana Šola, Valerija Vujčić Bok, Maja Popović and Sanja Gagić
Int. J. Mol. Sci. 2024, 25(21), 11831; https://doi.org/10.3390/ijms252111831 - 4 Nov 2024
Cited by 10 | Viewed by 3358
Abstract
The aim of this study was to compare the concentration of phenolic compounds, glucosinolates, proteins, sugars and vitamin C between kohlrabi (Brassica oleracea var. acephala gongylodes), Savoy cabbage (B. oleracea sabauda), Brussels sprouts (B. oleracea gemmifera), cauliflower ( [...] Read more.
The aim of this study was to compare the concentration of phenolic compounds, glucosinolates, proteins, sugars and vitamin C between kohlrabi (Brassica oleracea var. acephala gongylodes), Savoy cabbage (B. oleracea sabauda), Brussels sprouts (B. oleracea gemmifera), cauliflower (B. oleracea botrytis), radish (Raphanus sativus) and garden cress (Lepidium sativum) microgreens for their antioxidant and hypoglycemic potential. In addition, we applied an in vitro-simulated system of human digestion in order to track the bioaccessibility of the selected phenolic representatives, and the stability of the microgreens’ antioxidant and hypoglycemic potential in terms of α-amylase and α-glucosidase inhibition after each digestion phase. Using spectrophotometric and RP-HPLC methods with statistical analyses, we found that garden cress had the lowest soluble sugar content, while Savoy cabbage and Brussels sprouts had the highest glucosinolate levels (76.21 ± 4.17 mg SinE/g dm and 77.73 ± 3.33 mg SinE/g dm, respectively). Brussels sprouts were the most effective at inhibiting protein glycation (37.98 ± 2.30% inhibition). A very high positive correlation (r = 0.830) between antiglycation potential and conjugated sinapic acid was recorded. For the first time, the antidiabetic potential of microgreens after in vitro digestion was studied. Kohlrabi microgreens best inhibited α-amylase in both initial and intestinal digestion (60.51 ± 3.65% inhibition and 62.96 ± 3.39% inhibition, respectively), and also showed the strongest inhibition of α-glucosidase post-digestion (19.22 ± 0.08% inhibition). Brussels sprouts, cauliflower, and radish had less stable α-glucosidase than α-amylase inhibitors during digestion. Kohlrabi, Savoy cabbage, and garden cress retained inhibition of both enzymes after digestion. Kohlrabi antioxidant capacity remained unchanged after digestion. The greatest variability was seen in the original samples, while the intestinal phase resulted in the most convergence, indicating that digestion reduced differences between the samples. In conclusion, this study highlights the potential of various microgreens as sources of bioactive compounds with antidiabetic and antiglycation properties. Notably, kohlrabi microgreens demonstrated significant enzyme inhibition after digestion, suggesting their promise in managing carbohydrate metabolism and supporting metabolic health. Full article
Show Figures

Graphical abstract

13 pages, 1504 KB  
Article
Impact of Ozone Exposure on the Biochemical Composition of Wheat, Broccoli, Alfalfa, and Radish Seeds During Germination
by Ilze Bernate, Tatjana Kince, Vitalijs Radenkovs, Karina Juhnevica-Radenkova, Ingmars Cinkmanis, Juris Bruveris and Martins Sabovics
Agronomy 2024, 14(11), 2571; https://doi.org/10.3390/agronomy14112571 - 1 Nov 2024
Cited by 4 | Viewed by 1996
Abstract
In recent years, there has been an increasing interest in the use of gaseous ozone (O3) to promote the germination of edible seeds. While its ability to improve seedling vigor and stimulate germination is acknowledged, there has been limited research on [...] Read more.
In recent years, there has been an increasing interest in the use of gaseous ozone (O3) to promote the germination of edible seeds. While its ability to improve seedling vigor and stimulate germination is acknowledged, there has been limited research on the impact of gaseous O3 on the biochemical profile, including phenolic compounds (TPC) and antioxidant activity, of cereals, seeds, and their sprouts. The lack of information has led to the initiation of this study, which aims to assess the impact of ozone treatment duration at a concentration of 50 ppm 1 L min−1, ranging from 1 to 5 h, on the biochemical attributes of broccoli (Brassica oleracea), radish (Raphanus sativus), alfalfa (Medicago sativa) seeds, and sprouts, as well as wheat (Triticum aestivum) grains and sprouts. By optimizing O3 exposure parameters, including duration, this approach has the potential to serve as a valuable tool for enhancing the microbiological and nutritional quality of seeds and cereals. The findings revealed that O3 treatment generally had an adverse impact on TPC in seeds, cereals, and sprouts, resulting in a significant reduction in TPC post O3 treatment. Wheat grains, in particular, displayed the lowest TPC following ozone exposure, with an average decrease of 39.4% compared to the untreated sample. However, it is noteworthy that alfalfa seeds exhibited a positive response to 4 and 5 h O3 treatment, manifesting an average increase in TPC of 13.0% and 27.7%, respectively. In turn, broccoli, radish, and wheat sprouts displayed the lowest TPC, with values of 47.7%, 20.2%, and 18.0% lower than the control samples, respectively. This study revealed that plant responses to O3 exposure varied, and the effects of O3 treatment on TPC levels depended on O3 exposure time. Furthermore, the effect of O3 on the sugar content of the seeds, cereals, and sprouts varied among different plant types, with some showing an increase in content and others showing no substantial changes. This suggests that, depending on the type of seed, O3 may have both positive and neutral effects. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

11 pages, 3935 KB  
Article
Study on Selenium Assimilation and Transformation in Radish Sprouts Cultivated Using Maillard Reaction Products
by Xiaoshuang Zou, Ruiqi Sun, Can Wang and Jun Wang
Foods 2024, 13(17), 2761; https://doi.org/10.3390/foods13172761 - 30 Aug 2024
Cited by 3 | Viewed by 1486
Abstract
The organic selenium (Se), particularly in the form of selenoamino acids, in non-edible sections or by-products of Se-enriched plants, has the potential to generate Maillard reaction products (MRPs) during thermal treatment or fermentation. To elucidate the recycling process of organic selenium in foods [...] Read more.
The organic selenium (Se), particularly in the form of selenoamino acids, in non-edible sections or by-products of Se-enriched plants, has the potential to generate Maillard reaction products (MRPs) during thermal treatment or fermentation. To elucidate the recycling process of organic selenium in foods and improve the utilization rate of Se, the biotransformation of organic selenium was studied by the cultivation of edible radish sprouts with Se-MPRs. Maillard reactions were simulated using selenoamino acids (SeAAs; selenomethionine and methylselenocysteine) and reducing sugars (glucose and fructose) for preparing Se-MRPs. The structures of the possible dehydrated Se-MRPs were analyzed using a HPLC-ESI-MS/MS system based on their fragmentation patterns and Se isotopic characteristics. Se absorption by the radish sprouts cultivated using Se-MRPs was estimated by the corresponding Se in the SeAAs and the total Se contents. The capabilities of SeAA transformation and total Se assimilation by the sprouts were related to the substrate composition during the Se-Maillard reaction. A particular Se-MRP (selenomethionine + fructose) increased SeAAs transformation by 33.8% compared to selenomethionine. However, glucose and fructose seemed to inhibit the transformation of the Se-MRPs to SeAAs by 10.0 to 59.1% compared to purified Se-MRPs. These results provide key references for the efficient utilization of organic Se in the cultivation of Se-enriched sprouts. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Graphical abstract

17 pages, 1667 KB  
Article
Genomic Analysis of Cronobacter condimenti s37: Identification of Resistance and Virulence Genes and Comparison with Other Cronobacter and Closely Related Species
by Anna Berthold-Pluta, Ilona Stefańska, Stephen Forsythe, Tamara Aleksandrzak-Piekarczyk, Lidia Stasiak-Różańska and Monika Garbowska
Int. J. Mol. Sci. 2024, 25(16), 8622; https://doi.org/10.3390/ijms25168622 - 7 Aug 2024
Cited by 3 | Viewed by 2487
Abstract
Cronobacter condimenti are environmental commensals that have not been associated with any clinical infections. To date, they are the least understood and described Cronobacter species within the genus. The objective of this study was to use a draft genome sequence (DGS) of the [...] Read more.
Cronobacter condimenti are environmental commensals that have not been associated with any clinical infections. To date, they are the least understood and described Cronobacter species within the genus. The objective of this study was to use a draft genome sequence (DGS) of the Cronobacter condimenti strain s37 to screen for genes encoding for antibiotic resistance, virulence, response to environmental stress, and biofilm formation. The strain was isolated in Poland from commercial small radish sprouts. This is the second genome of this species available in the GenBank database. The comparative genome analysis (cgMLST) of C. condimenti s37 with other Cronobacter spp. including the pathogenic species C. sakazakii and the plant-associated closely related genera Franconibacter and Siccibacter was also performed. The assembled and annotated genome of the C. condimenti s37 genome was 4,590,991 bp in length, with a total gene number of 4384, and a GC content of 55.7%. The s 37 genome encoded for genes associated with resistance to stressful environmental conditions (metal resistance genes: zinc, copper, osmotic regulation, and desiccation stress), 17 antimicrobial resistance genes encoding resistance to various classes of antibiotics and 50 genes encoding for the virulence factors. The latter were mainly genes associated with adhesion, chemotaxis, hemolysis, and biofilm formation. Cg-MLST analysis (3991 genes) revealed a greater similarity of C. condimenti s37 to S. turicensis, F. pulveris, and C. dublinensis than to other species of the genus Cronobacter. Studies on the diversity, pathogenicity, and virulence of Cronobacter species isolated from different sources are still insufficient and should certainly be continued. Especially the analysis of rare strains such as s37 is very important because it provides new information on the evolution of these bacteria. Comparative cgMLST analysis of s37 with other Cronobacter species, as well as closely related genera Franconibacter and Siccibacter, complements the knowledge on their adaptability to specific environments such as desiccation. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

Back to TopTop