Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (374)

Search Parameters:
Keywords = radionuclide imaging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3765 KiB  
Article
PSMA-Targeted Radiolabeled Peptide for Imaging and Therapy in Prostate Cancer: Preclinical Evaluation of Biodistribution and Therapeutic Efficacy
by Ming-Wei Chen, Yuan-Ruei Huang, Wei-Lin Lo, Shih-Ying Lee, Sheng-Nan Lo, Shih-Ming Wang and Kang-Wei Chang
Int. J. Mol. Sci. 2025, 26(15), 7580; https://doi.org/10.3390/ijms26157580 - 5 Aug 2025
Abstract
Albumin-binding agents enhance tumor uptake of radiopharmaceuticals targeting prostate-specific membrane antigens (PSMAs) in radiotherapy. We synthesized PSMA-NARI-56, a molecule with both PSMA targeting activity and albumin-binding moiety, labeled with 177Lu as the therapeutic agent. The aim of this study was to determine [...] Read more.
Albumin-binding agents enhance tumor uptake of radiopharmaceuticals targeting prostate-specific membrane antigens (PSMAs) in radiotherapy. We synthesized PSMA-NARI-56, a molecule with both PSMA targeting activity and albumin-binding moiety, labeled with 177Lu as the therapeutic agent. The aim of this study was to determine the specific binding of 177Lu-PSMA-NARI-56 towards PSMA, assess its biodistribution, and evaluate therapeutic effectiveness by tumor-bearing mice. The effect of 177Lu-PSMA-NARI-56 viability of PSMA-positive cell (LNCaP) was evaluated. Biodistribution and endoradiotherapy studies were utilized to determine the distribution, targeting, and anti-tumor efficacy by tumor-bearing mice identified by 111In-PSMA-NARI-56. 177Lu-PSMA-NARI-56 exhibited a significant impact on the viability of the LNCaP cell. Biodistribution results revealed the maximum tumor uptake of 177Lu-PSMA-NARI-56 occurring within 24 h, reaching 40.56 ± 10.01%ID/g. In radionuclide therapy, at 58 days post-injection (p.i.), 177Lu-PSMA-NARI-56 demonstrated superior tumor inhibition (98%) compared to 177Lu-PSMA-617 (58%), and the mouse survival rate after 90 days of radiotherapy (90%) was also higher than that of 177Lu-PSMA-617 (30%) in LNCaP tumor-bearing mice. In the PSMA-positive animal model, 177Lu-PSMA-NARI-56 shows higher potential radiotheranostic and prolonged accumulation (identify by 111In-PSMA-NARI-56/nanoSPECT/CT image), offering the potential for improved treatment effectiveness and increased survival rates when compared to 177Lu-PSMA-617. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

20 pages, 2382 KiB  
Article
The Impact of the Injected Mass of the Gastrin-Releasing Peptide Receptor Antagonist on Uptake in Breast Cancer: Lessons from a Phase I Trial of [99mTc]Tc-DB8
by Olga Bragina, Vladimir Chernov, Mariia Larkina, Ruslan Varvashenya, Roman Zelchan, Anna Medvedeva, Anastasiya Ivanova, Liubov Tashireva, Theodosia Maina, Berthold A. Nock, Panagiotis Kanellopoulos, Jens Sörensen, Anna Orlova and Vladimir Tolmachev
Pharmaceutics 2025, 17(8), 1000; https://doi.org/10.3390/pharmaceutics17081000 - 31 Jul 2025
Viewed by 491
Abstract
Background/Objectives: Gastrin-releasing peptide receptor (GRPR) is overexpressed in breast cancer and might be used as a theranostics target. The expression of GRPR strongly correlates with estrogen receptor (ER) expression. Visualization of GRPR-expressing breast tumors might help to select the optimal treatment. Developing GRPR-specific [...] Read more.
Background/Objectives: Gastrin-releasing peptide receptor (GRPR) is overexpressed in breast cancer and might be used as a theranostics target. The expression of GRPR strongly correlates with estrogen receptor (ER) expression. Visualization of GRPR-expressing breast tumors might help to select the optimal treatment. Developing GRPR-specific probes for SPECT would permit imaging-guided therapy in regions with restricted access to PET facilities. In this first-in-human study, we evaluated the safety, biodistribution, and dosimetry of the [99mTc]Tc-DB8 GRPR-antagonistic peptide. We also addressed the important issue of finding the optimal injected peptide mass. Methods: Fifteen female patients with ER-positive primary breast cancer were enrolled and divided into three cohorts receiving [99mTc]Tc-DB8 (corresponding to three distinct doses of 40, 80, or 120 µg DB8) comprising five patients each. Additionally, four patients with ER-negative primary tumors were injected with 80 µg [99mTc]Tc-DB8. The injected activity was 360 ± 70 MBq. Planar scintigraphy was performed after 2, 4, 6, and 24 h, and SPECT/CT scans followed planar imaging 2, 4, and 6 h after injection. Results: No adverse events were associated with [99mTc]Tc-DB8 injections. The effective dose was 0.009–0.014 mSv/MBq. Primary tumors and all known lymph node metastases were visualized irrespective of injected peptide mass. The highest uptake in the ER-positive tumors was 2 h after injection of [99mTc]Tc-DB8 at a 80 µg DB8 dose (SUVmax 5.3 ± 1.2). Injection of [99mTc]Tc-DB8 with 80 µg DB8 provided significantly (p < 0.01) higher uptake in primary ER-positive breast cancer lesions than injection with 40 µg DB8 (SUVmax 2.0 ± 0.3) or 120 µg (SUVmax 3.2 ± 1.4). Tumor-to-contralateral breast ratio after injection of 80 μg was also significantly (p < 0.01, ANOVA test) higher than ratios after injection of other peptide masses. The uptake in ER-negative lesions was significantly lower (SUVmax 2.0 ± 0.3) than in ER-positive tumors. Conclusions: Imaging using [99mTc]Tc-DB8 is safe, tolerable, and associated with low absorbed doses. The tumor uptake is dependent on the injected peptide mass. The injection of an optimal mass (80 µg) provides the highest uptake in ER-positive tumors. At optimal dosing, the uptake was significantly higher in ER-positive than in ER-negative lesions. Full article
Show Figures

Graphical abstract

32 pages, 1319 KiB  
Review
Effects of Targeted Radionuclide Therapy on Cancer Cells Beyond the Ablative Radiation Dose
by Guillermina Ferro-Flores, Erika Azorín-Vega, Blanca Ocampo-García, Myrna Luna-Gutiérrez, Pedro Cruz-Nova and Laura Meléndez-Alafort
Int. J. Mol. Sci. 2025, 26(14), 6968; https://doi.org/10.3390/ijms26146968 - 20 Jul 2025
Viewed by 640
Abstract
Targeted radionuclide therapy (TRT) utilizes radiopharmaceuticals to deliver radiation directly to cancer cells while sparing healthy tissues. Beyond the absorbed dose of ablative radiation, TRT induces non-targeted effects (NTEs) that significantly enhance its therapeutic efficacy. These effects include radiation-induced bystander effects (RIBEs), abscopal [...] Read more.
Targeted radionuclide therapy (TRT) utilizes radiopharmaceuticals to deliver radiation directly to cancer cells while sparing healthy tissues. Beyond the absorbed dose of ablative radiation, TRT induces non-targeted effects (NTEs) that significantly enhance its therapeutic efficacy. These effects include radiation-induced bystander effects (RIBEs), abscopal effects (AEs), radiation-induced genomic instability (RIGI), and adaptive responses, which collectively influence the behavior of cancer cells and the tumor microenvironment (TME). TRT also modulates immune responses, promoting immune-mediated cell death and enhancing the efficacy of combination therapies, such as the use of immune checkpoint inhibitors. The molecular mechanisms underlying TRT involve DNA damage, oxidative stress, and apoptosis, with repair pathways like homologous recombination (HR) and non-homologous end joining (NHEJ) playing critical roles. However, challenges such as tumor heterogeneity, hypoxia, and radioresistance limit the effectiveness of this approach. Advances in theranostics, which integrate diagnostic imaging with TRT, have enabled personalized treatment approaches, while artificial intelligence and improved dosimetry offer potential for treatment optimization. Despite the significant survival benefits of TRT in prostate cancer and neuroendocrine tumors, 30–40% of patients remain unresponsive, which highlights the need for further research into molecular pathways, long-term effects, and combined therapies. This review outlines the dual mechanisms of TRT, direct toxicity and NTEs, and discusses strategies to enhance its efficacy and expand its use in oncology. Full article
(This article belongs to the Special Issue Targeted Therapy of Cancer: Innovative Drugs and Molecular Tools)
Show Figures

Figure 1

17 pages, 2829 KiB  
Article
Apparatus and Experiments Towards Fully Automated Medical Isotope Production Using an Ion Beam Accelerator
by Abdulaziz Yahya M. Hussain, Aliaksandr Baidak, Ananya Choudhury, Andy Smith, Carl Andrews, Eliza Wojcik, Liam Brown, Matthew Nancekievill, Samir De Moraes Shubeita, Tim A. D. Smith, Volkan Yasakci and Frederick Currell
Instruments 2025, 9(3), 18; https://doi.org/10.3390/instruments9030018 - 18 Jul 2025
Viewed by 256
Abstract
Zirconium-89 (89Zr) is a widely used radionuclide in immune-PET imaging due to its physical decay characteristics. Despite its importance, the production of 89Zr radiopharmaceuticals remains largely manual, with limited cost-effective automation solutions available. To address this, we developed an automated [...] Read more.
Zirconium-89 (89Zr) is a widely used radionuclide in immune-PET imaging due to its physical decay characteristics. Despite its importance, the production of 89Zr radiopharmaceuticals remains largely manual, with limited cost-effective automation solutions available. To address this, we developed an automated system for the agile and reliable production of radiopharmaceuticals. The system performs transmutations, dissolution, and separation for a range of radioisotopes. Steps in the production of 89Zr-oxalate are used as an exemplar to illustrate its use. Three-dimensional (3D) printing was exploited to design and manufacture a target holder able to include solid targets, in this case an 89Y foil. Spot welding was used to attach 89Y to a refractory tantalum (Ta) substrate. A commercially available CPU chiller was repurposed to efficiently cool the metal target. Furthermore, a commercial resin (ZR Resin) and compact peristaltic pumps were employed in a compact (10 × 10 × 10 cm3) chemical separation unit that operates automatically via computer-controlled software. Additionally, a standalone 3D-printed unit was designed with three automated functionalities: photolabelling, vortex mixing, and controlled heating. All components of the assembly, except for the target holder, are housed inside a commercially available hot cell, ensuring safe and efficient operation in a controlled environment. This paper details the design, construction, and modelling of the entire assembly, emphasising its innovative integration and operational efficiency for widespread radiopharmaceutical automation. Full article
Show Figures

Figure 1

34 pages, 4581 KiB  
Review
Nanoradiopharmaceuticals: Design Principles, Radiolabeling Strategies, and Biomedicine Applications
by Andrés Núñez-Salinas, Cristian Parra-Garretón, Daniel Acuña, Sofía Peñaloza, Germán Günther, Soledad Bollo, Francisco Arriagada and Javier Morales
Pharmaceutics 2025, 17(7), 912; https://doi.org/10.3390/pharmaceutics17070912 - 14 Jul 2025
Viewed by 594
Abstract
Nanoradiopharmaceuticals integrate nanotechnology with nuclear medicine to enhance the precision and effectiveness of radiopharmaceuticals used in diagnostic imaging and targeted therapies. Nanomaterials offer improved targeting capabilities and greater stability, helping to overcome several limitations. This review presents a comprehensive overview of the fundamental [...] Read more.
Nanoradiopharmaceuticals integrate nanotechnology with nuclear medicine to enhance the precision and effectiveness of radiopharmaceuticals used in diagnostic imaging and targeted therapies. Nanomaterials offer improved targeting capabilities and greater stability, helping to overcome several limitations. This review presents a comprehensive overview of the fundamental design principles, radiolabeling techniques, and biomedical applications of nanoradiopharmaceuticals, with a particular focus on their expanding role in precision oncology. It explores key areas, including single- and multi-modal imaging modalities (SPECT, PET), radionuclide therapies involving beta, alpha, and Auger emitters, and integrated theranostic systems. A diverse array of nanocarriers is examined, including liposomes, micelles, albumin nanoparticles, PLGA, dendrimers, and gold, iron oxide, and silica-based platforms, with an assessment of both preclinical and clinical research outcomes. Theranostic nanoplatforms, which integrate diagnostic and therapeutic functions within a single system, enable real-time monitoring and personalized dose optimization. Although some of these systems have progressed to clinical trials, several obstacles remain, including formulation stability, scalable manufacturing, regulatory compliance, and long-term safety considerations. In summary, nanoradiopharmaceuticals represent a promising frontier in personalized medicine, particularly in oncology. By combining diagnostic and therapeutic capabilities within a single nanosystem, they facilitate more individualized and adaptive treatment approaches. Continued innovation in formulation, radiochemistry, and regulatory harmonization will be crucial to their successful routine clinical use. Full article
(This article belongs to the Special Issue Nanosystems for Advanced Diagnostics and Therapy)
Show Figures

Figure 1

17 pages, 1966 KiB  
Article
Development of INER-PP-F11N as the Peptide-Radionuclide Conjugate Drug Against CCK2 Receptor-Overexpressing Tumors
by Ming-Cheng Chang, Chun-Tang Chen, Ping-Fang Chiang, I-Chung Tang, Cheng-Liang Peng, Yuh-Feng Wang, Yi-Jou Tai and Ying-Cheng Chiang
Int. J. Mol. Sci. 2025, 26(14), 6565; https://doi.org/10.3390/ijms26146565 - 8 Jul 2025
Viewed by 423
Abstract
This work aimed to evaluate two albumin affinity structure-containing peptide-radionuclide conjugate drugs, INER-PP-F11N-1 and INER-PP-F11N-2, for the diagnosis/treatment of cholecystokinin receptor subtype 2 (CCK2R)-overexpressing cancers. We developed In-111- and Lu-177-labeled INER-PP-F11N radiopharmaceuticals and compared them with the current PP-F11N to investigate metabolic stability, [...] Read more.
This work aimed to evaluate two albumin affinity structure-containing peptide-radionuclide conjugate drugs, INER-PP-F11N-1 and INER-PP-F11N-2, for the diagnosis/treatment of cholecystokinin receptor subtype 2 (CCK2R)-overexpressing cancers. We developed In-111- and Lu-177-labeled INER-PP-F11N radiopharmaceuticals and compared them with the current PP-F11N to investigate metabolic stability, biodistribution, SPECT/CT imaging, and therapeutic responses in CCK2R-expressing tumor xenograft mice. The metabolic stability of [111In]In/[177Lu]Lu-INER-PP-F11N remained above 90% for up to 144 h after labeling, indicating that the compound is highly stable under in vitro conditions. INER-PP-F11N showed 27% and 11% higher cellular uptake and internalization than PP-F11N, respectively. In vivo SPECT/CT imaging confirmed that INER-PP-F11N could accumulate at the tumor site of mice 24 h after receiving the two radiopharmaceutical agents. Biodistribution analysis revealed a significantly greater tumor uptake and reduced accumulation of INER-PP-F11N in the kidneys compared with PP-F11N. Furthermore, INER-PP-F11N significantly inhibited the growth of the CCK2R-overexpressing tumors in mice. The INER-PP-F11N radiopharmaceutical was superior as a theragnostic agent compared with the current PP-F11N. Our study suggests that INER-PP-F11N may be an innovative radiopharmaceutical agent for CCK2R-overexpressing tumors. Full article
Show Figures

Graphical abstract

19 pages, 588 KiB  
Review
Targeting Glypican-3 in Liver Cancer: Groundbreaking Preclinical and Clinical Insights
by Luca Filippi, Viviana Frantellizzi, Luca Urso, Giuseppe De Vincentis and Nicoletta Urbano
Biomedicines 2025, 13(7), 1570; https://doi.org/10.3390/biomedicines13071570 - 26 Jun 2025
Viewed by 878
Abstract
Positron emission tomography (PET) imaging targeting glypican-3 (GPC3) holds promise for improving the detection and characterization of hepatocellular carcinoma (HCC). Preclinical and early clinical studies have largely utilized high-molecular-weight antibodies radiolabeled with isotopes such as 89Zr and 124I, demonstrating high affinity [...] Read more.
Positron emission tomography (PET) imaging targeting glypican-3 (GPC3) holds promise for improving the detection and characterization of hepatocellular carcinoma (HCC). Preclinical and early clinical studies have largely utilized high-molecular-weight antibodies radiolabeled with isotopes such as 89Zr and 124I, demonstrating high affinity and tumor uptake but suffering from prolonged circulation times and suboptimal signal-to-background ratios. To address these limitations, interest has shifted toward low-molecular-weight vectors—synthetic peptides and small antibody fragments—labeled with shorter-lived radionuclides (e.g., 68Ga and 18F) to enable rapid pharmacokinetics and same-day imaging protocols. Emerging platforms such as affibodies and aptamers offer further advantages in target affinity and reduced immunogenicity. However, clinical translation requires rigorous validation: larger, histologically confirmed cohorts, head-to-head comparison with CT/MRI, and correlation with hard clinical endpoints. Moreover, leveraging GPC3 expression as a biomarker could guarantee a deeper knowledge of tumor biology—differentiation grade and vascular invasion risk—and guide theranostic strategies. While β-emitters (90Y, 177Lu) have been explored for GPC3-directed therapy, their efficacy is influenced by oxygenation and cell-cycle status, whereas α-emitters (225Ac) may overcome these constraints, albeit with challenges in radionuclide selection and daughter nuclide management. Finally, dual-targeting probes combining GPC3 and prostate-specific membrane antigen (PSMA) have demonstrated superior uptake and retention in murine models, suggesting a versatile approach for future clinical diagnostics and therapy planning. Full article
Show Figures

Figure 1

16 pages, 267 KiB  
Review
Neuroendocrine Neoplasms in Pregnancy: A Narrative Review of Clinical Challenges and Therapeutic Limitations in the Absence of Established Safe Treatments
by Mauro Daniel Spina Donadio, Maria Cecília Mathias-Machado, Danielly Scaranello Nunes Santana and Renata D’Alpino Peixoto
J. Pers. Med. 2025, 15(7), 272; https://doi.org/10.3390/jpm15070272 - 25 Jun 2025
Viewed by 368
Abstract
Cancer during pregnancy is a rare but complex clinical scenario that affects approximately 0.1% of pregnant individuals and is associated with increased maternal morbidity. With the trend of delayed childbearing, the incidence of pregnancy-associated cancers is expected to rise. Neuroendocrine neoplasms (NENs), although [...] Read more.
Cancer during pregnancy is a rare but complex clinical scenario that affects approximately 0.1% of pregnant individuals and is associated with increased maternal morbidity. With the trend of delayed childbearing, the incidence of pregnancy-associated cancers is expected to rise. Neuroendocrine neoplasms (NENs), although rare in pregnancy, present unique diagnostic and therapeutic challenges due to their hormonal activity, histological diversity, and limited data on management in the gestational context. Objectives: This manuscript reviews the current evidence on the diagnosis, staging, and management of NENs during pregnancy, focusing on maternal–fetal safety, therapeutic limitations, and multidisciplinary care strategies. Methods: A comprehensive narrative review was conducted using relevant case reports, retrospective studies, clinical guidelines, and expert consensus documents addressing cancer in pregnancy and NEN-specific management. Results: Pregnancy complicates the evaluation and treatment of NENs due to overlapping symptoms, contraindications to standard imaging and systemic therapies, and unreliable biomarkers such as chromogranin A and 5-HIAA. Most systemic therapies for NENs, including somatostatin analogs, tyrosine kinase inhibitors, and peptide receptor radionuclide therapy, are contraindicated or lack safety data in pregnancy. Surgical interventions and supportive care require careful planning. Decisions regarding pregnancy continuation or termination must be individualized and supported by a multidisciplinary team. Conclusions: The management of NENs during pregnancy demands a highly individualized approach, coordinated among oncology, maternal–fetal medicine, and supportive care teams. Given the paucity of robust data, future research is essential to establish evidence-based guidelines and improve outcomes for both mother and fetus. Full article
(This article belongs to the Section Evidence Based Medicine)
19 pages, 6583 KiB  
Case Report
New Horizons: The Evolution of Nuclear Medicine in the Diagnosis and Treatment of Pancreatic Neuroendocrine Tumors—A Case Report
by Annamária Bakos, László Libor, Béla Vasas, Kristóf Apró, Gábor Sipka, László Pávics, Zsuzsanna Valkusz, Anikó Maráz and Zsuzsanna Besenyi
J. Clin. Med. 2025, 14(13), 4432; https://doi.org/10.3390/jcm14134432 - 22 Jun 2025
Viewed by 532
Abstract
Background: Pancreatic neuroendocrine tumors (PanNETs) are relatively rare neoplasms with heterogeneous behavior, ranging from indolent to aggressive disease. The evolution of nuclear medicine has allowed the development of an efficient and advanced toolkit for the diagnosis and treatment of PanNETs. Case: [...] Read more.
Background: Pancreatic neuroendocrine tumors (PanNETs) are relatively rare neoplasms with heterogeneous behavior, ranging from indolent to aggressive disease. The evolution of nuclear medicine has allowed the development of an efficient and advanced toolkit for the diagnosis and treatment of PanNETs. Case: A 45-year-old woman was diagnosed with a grade 1 PanNET and multiple liver metastases. She underwent distal pancreatectomy with splenectomy, extended liver resection, and radiofrequency ablation (RFA). Surgical planning was guided by [99mTc]Tc-EDDA/HYNIC-TOC SPECT/CT (single-photon emission computed tomography/computed tomography) and preoperative [99mTc]Tc-mebrofenin-based functional liver volumetry. Functional liver volumetry based on dynamic [99mTc]Tc-mebrofenin SPECT/CT facilitated precise surgical planning and reliable assessment of the efficacy of parenchymal modulation, thereby aiding in the prevention of post-hepatectomy liver failure. Liver fibrosis was non-invasively evaluated using two-dimensional shear wave elastography (2D-SWE). Tumor progression was monitored using somatostatin receptor scintigraphy, chromogranin A, and contrast-enhanced CT. Recurrent disease was treated with somatostatin analogues (SSAs) and [177Lu]Lu-DOTA-TATE peptide receptor radionuclide therapy (PRRT). Despite progression to grade 3 disease (Ki-67 from 1% to 30%), the patient remains alive 53 months post-diagnosis, in complete remission, with an ECOG (Eastern Cooperative Oncology Group) status of 0. Conclusions: Functional imaging played a pivotal role in guiding therapeutic decisions throughout the disease course. This case not only underscores the clinical utility of advanced nuclear imaging but also illustrates the dynamic nature of pancreatic neuroendocrine tumors. The transition from low-grade to high-grade disease highlights the need for further studies on tumor progression mechanisms and the potential role of adjuvant therapies in managing PanNETs. Full article
Show Figures

Figure 1

14 pages, 383 KiB  
Review
Recent Clinical and Molecular Advances in the Management of Thymic Carcinoids: A Comprehensive Review
by Aleksandra Piórek, Adam Płużański, Dariusz M. Kowalski and Maciej Krzakowski
Cancers 2025, 17(12), 1975; https://doi.org/10.3390/cancers17121975 - 13 Jun 2025
Viewed by 506
Abstract
Background: Thymic carcinoids are rare neuroendocrine tumors arising in the anterior mediastinum, often diagnosed at an advanced stage due to nonspecific clinical manifestations. Their management remains challenging because of the paucity of data, rarity of occurrence, and aggressive biological behavior compared to other [...] Read more.
Background: Thymic carcinoids are rare neuroendocrine tumors arising in the anterior mediastinum, often diagnosed at an advanced stage due to nonspecific clinical manifestations. Their management remains challenging because of the paucity of data, rarity of occurrence, and aggressive biological behavior compared to other well-differentiated neuroendocrine neoplasms. Methods: We conducted a comprehensive review of the current literature focusing on the classification, clinical presentation, diagnostics, treatment options, prognostic factors, and emerging experimental therapies for thymic carcinoids. Emphasis was placed on integrating recent molecular and therapeutic advances into clinical practice. Results: Surgical resection remains the cornerstone of treatment for localized disease, while systemic therapies such as everolimus, somatostatin analogs, platinum-based chemotherapy, and peptide receptor radionuclide therapy (PRRT) are options for advanced cases. Novel diagnostic modalities, including NETest, 64Cu-DOTATATE PET, and 18F-FDOPA PET, offer promise in early detection and disease monitoring. Molecular insights, particularly involving MEN1, ATRX, and DAXX mutations, pave the way for individualized targeted therapies. Immunotherapy and radioimmunotherapy represent emerging, albeit still experimental, approaches. Prognosis largely depends on tumor stage, differentiation, resectability, and functional activity, with a high recurrence rate necessitating prolonged surveillance. Conclusions: Thymic carcinoids pose significant diagnostic and therapeutic challenges. Advances in molecular profiling, novel imaging techniques, and systemic therapies offer hope for improved outcomes. Given the disease rarity, continued collaboration through registries and multicenter studies is essential to refine evidence-based management strategies. Full article
(This article belongs to the Special Issue Recent Advances in Rare Cancers: From Bench to Bedside and Back)
20 pages, 4435 KiB  
Article
89Zr-Radiolabelling of p-NCS-Bz-DFO-Anti-HER2 Affibody Immunoconjugate: Characterization and Assessment of In Vitro Potential in HER2-Positive Breast Cancer Imaging
by Maria-Roxana Tudoroiu-Cornoiu, Radu Marian Șerban, Diana Cocioabă, Dragoș Andrei Niculae, Doina Drăgănescu, Radu Leonte, Alina Catrinel Ion and Dana Niculae
Pharmaceutics 2025, 17(6), 739; https://doi.org/10.3390/pharmaceutics17060739 - 4 Jun 2025
Viewed by 670
Abstract
Background: The 89Zr radioisotope is increasingly vital in positron emission tomography (PET), especially immuno-PET, due to its long half-life of 78.4 h, allowing extended tracking of biological processes. This makes it particularly suitable for researching medicines with slow pharmacokinetics and enhances the [...] Read more.
Background: The 89Zr radioisotope is increasingly vital in positron emission tomography (PET), especially immuno-PET, due to its long half-life of 78.4 h, allowing extended tracking of biological processes. This makes it particularly suitable for researching medicines with slow pharmacokinetics and enhances the precision of molecular imaging, especially in oncology. Despite zirconium’s potential for skeletal accumulation, effective chelation with agents like deferoxamine (DFO) enables high-resolution imaging of antigen-specific tumours, such as HER2-positive breast cancer, offering insights into tumour biology and treatment response. Methods: 89Zr was produced at the ACSI TR-19 cyclotron via 89Y(p,n)89Zr reaction. Natural yttrium foils (250 μm) were irradiated with 12.9 MeV protons on target, with 100 μA·h. An HER2-targeting affibody was synthesized and conjugated with p-NCS-Bz-DFO (1:4 mass ratio) at 37 °C for 60 min (pH 9.2 ± 0.2), then purified on a PD-10 column. Radiolabelling was performed with [89Zr]Zr-oxalate at pH ranging from 7.0 to 9.0, with concentrations from 110 to 460 MBq/mL. Results: Final activity reached 2.95 ± 0.31 GBq/batch (EOB corrected), with ≥ 99.9% radionuclide and ≥95% radiochemical purities. The anti-HER2 affibody was successfully radiolabelled with 89Zr, resulting in a radiochemical purity of over 85% with molar activity of 26.5 ± 4.4 and 11.45 MBq/nmol at pH 7.0–7.5. In vitro tests on BT-474 and MCF-7 cell lines confirmed high uptake in HER2-positive cells, validating specificity and stability. Conclusions: The successful synthesis and labelling of the [89Zr]Zr-p-NCS-Bz-DFO-anti-HER2 affibody are promising achievements for its further application in targeted immuno-PET imaging for HER2-positive malignancies. Further in vivo studies are needed to support its clinical translation. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

17 pages, 2956 KiB  
Article
Design and Evaluation of a Portable Pinhole SPECT System for 177Lu Imaging: Monte Carlo Simulations and Experimental Study
by Georgios Savvidis, Vasileios Eleftheriadis, Valentina Paneta, Eleftherios Fysikopoulos, Maria Georgiou, Efthimis Lamprou, Sofia Lagoumtzi, George Loudos, Paraskevi Katsakiori, George C. Kagadis and Panagiotis Papadimitroulas
Diagnostics 2025, 15(11), 1387; https://doi.org/10.3390/diagnostics15111387 - 30 May 2025
Viewed by 566
Abstract
Background/Objectives: Lutetium-177 is a widely used radioisotope in targeted radionuclide therapy, particularly for treating certain types of cancers relying on beta and low-energy gamma emissions, making it suitable for both therapeutic and post-therapy monitoring purposes. The purpose of this study was [...] Read more.
Background/Objectives: Lutetium-177 is a widely used radioisotope in targeted radionuclide therapy, particularly for treating certain types of cancers relying on beta and low-energy gamma emissions, making it suitable for both therapeutic and post-therapy monitoring purposes. The purpose of this study was to evaluate the technical parameters for developing a prototype portable gamma camera dedicated to 177Lu imaging applications. Methods: The well-validated GATE Monte Carlo toolkit was used to study the characteristics of the system and evaluate its performance in terms of spatial resolution, sensitivity, and image quality. For this purpose, a series of Monte Carlo simulations were executed, modeling a channel-edge aperture pinhole collimator incorporating a variety of computational phantoms. The final configuration of the prototype was standardized, incorporating the crystal size, collimator design, shielding, and the optimal FOV. After the development of the actual prototype camera, the system was also validated experimentally on the same setups as the simulations. Results: The final configuration of the prototype imaging system was standardized based on simulation results and then experimentally validated using physical phantoms under equivalent conditions. A minification of 1:5, spatial resolution of 1.0 cm, and sensitivity of 5.2 Cps/MBq at 10 cm distance source-to-collimator distance were assessed and confirmed. The experimental results agreed within 5% of simulated values. Conclusions: This study establishes the technical feasibility and foundational performance of a portable pinhole imaging system for potential clinical use in 177Lu imaging workflows and thereby improving therapeutic effectiveness. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

27 pages, 5360 KiB  
Review
Positron Emission Tomography Radiotracers for Identification of Site of Recurrence in Prostate Cancer After Primary Treatment Failure
by Ryan Bitar, Pablo Zurita, Lucia Martiniova, Amado J. Zurita and Gregory C. Ravizzini
Cancers 2025, 17(10), 1723; https://doi.org/10.3390/cancers17101723 - 21 May 2025
Viewed by 908
Abstract
Despite substantial improvement in the definitive management of primary prostate cancer, a significant number of patients experience biochemical recurrence—a clinical state in which serum prostate-specific antigen (PSA) levels rise prior to the development of physical signs or symptoms. The early detection and localization [...] Read more.
Despite substantial improvement in the definitive management of primary prostate cancer, a significant number of patients experience biochemical recurrence—a clinical state in which serum prostate-specific antigen (PSA) levels rise prior to the development of physical signs or symptoms. The early detection and localization of biochemical recurrence may confer eligibility for salvage therapy; therefore, imaging techniques that provide accurate disease visualization are imperative. In this review, we discuss various imaging methods for localizing disease in the context of biochemical recurrence in prostate cancer. Particularly, we describe available or investigational positron emission tomography (PET) radiotracers, such as 18F-FDG, 18F-NaF, choline (both 18F and 11C), the 18F-labeled amino acid derivative fluciclovine, prostate-specific membrane antigen (PSMA) radioligands, and the short peptide compound bombesin. Generally, PET radiotracers such as 18F-FDG, 18F-NaF, and 18F/11C choline have fallen out of favor because of their inferior sensitivity and/or specificity in relation to more recently developed radiotracers. 18F-fluciclovine has addressed these shortcomings by exploiting the upregulation of amino acid transporters in tumors; however, PSMA-targeting agents have significantly advanced the management of biochemical recurrence of prostate cancer through their high sensitivity and specificity, enabling the identification of candidates for radionuclide therapy. Investigational agents, such as bombesin-based radiotracers, may address the shortcomings of treating prostate cancer with little to no PSMA expression. Full article
Show Figures

Figure 1

28 pages, 12562 KiB  
Review
NOTA and NODAGA Radionuclide Complexing Agents: Versatile Approaches for Advancements in Radiochemistry
by Claudia G. Chambers, Jing Wang, Tamer M. Sakr, Yubin Miao and Charles J. Smith
Molecules 2025, 30(10), 2095; https://doi.org/10.3390/molecules30102095 - 8 May 2025
Cited by 1 | Viewed by 877
Abstract
Effective molecular imaging and targeted cancer therapy rely on receptor-specific targeted delivery systems that are both metabolically stable and kinetically inert for optimal in vivo performance. Until now, no single metal complexing agent has demonstrated the versatility to coordinate metals across the periodic [...] Read more.
Effective molecular imaging and targeted cancer therapy rely on receptor-specific targeted delivery systems that are both metabolically stable and kinetically inert for optimal in vivo performance. Until now, no single metal complexing agent has demonstrated the versatility to coordinate metals across the periodic table while maintaining the kinetic inertness required for clinical theranostic applications. Therefore, enhancing the in vivo kinetic stability of radiolabeled, cell-targeting, biologically active compounds remains a critical goal to minimize unintended accumulation of radioactivity in collateral tissues. This review describes the usage of NOTA [NOTA = 1,4,7-triazacyclononane-1,4,7-triacetic acid] and derivatives of NOTA, a metal complexing agent that has been found to have the ability to effectively coordinate with a wide range of radiometals, including metal-radiohalogens, to form stable complexes. This enables the development of new cell-targeting small molecule and peptide conjugates with the potential to resist demetallation in vivo, thereby reducing radionuclide uptake in non-target tissues. Herein, we discuss the design and development of NOTA-based, cell-targeting, small molecules having very high affinity and selectivity for the GRPR (Gastrin-Releasing Peptide Receptor), the SSTR2 (Somatostatin Receptor Subtype 2), and the MC1R (Melanocortin-1) receptors that are present on the surfaces of numerous solid primary human tumors and their metastatic counterparts. Full article
Show Figures

Figure 1

23 pages, 4596 KiB  
Review
Multimodal Imaging in Stem Cell Therapy for Retinal Disease
by Mi Zheng and Yannis M. Paulus
Photonics 2025, 12(5), 413; https://doi.org/10.3390/photonics12050413 - 24 Apr 2025
Viewed by 693
Abstract
Stem cell therapy has emerged as a promising approach for treating various retinal diseases, particularly degenerative retinal diseases such as geographic atrophy in age-related macular degeneration (AMD), retinitis pigmentosa (RP), and Stargardt disease. A wide variety of imaging techniques have been employed in [...] Read more.
Stem cell therapy has emerged as a promising approach for treating various retinal diseases, particularly degenerative retinal diseases such as geographic atrophy in age-related macular degeneration (AMD), retinitis pigmentosa (RP), and Stargardt disease. A wide variety of imaging techniques have been employed in both preclinical and clinical settings to assess the efficacy and safety of stem cell therapy for retinal diseases. These techniques can be classified into two categories: methods for imaging stem cells and those for the overall morphology and function of the retina. The techniques employed for stem cell imaging include optical imaging, magnetic resonance imaging (MRI), and radionuclide imaging. Additional imaging techniques include fundus photography, fluorescein angiography, and fundus autofluorescence. Each technique has its own advantages and disadvantages, and thus, the use of multimodal imaging can help to overcome the shortcomings and achieve a more comprehensive evaluation of stem cell therapy in retinal disease. This review discusses the characteristics of the main techniques and cell-labeling techniques applied in stem cell therapy, with a particular focus on the applications of multimodal imaging. Furthermore, this review discusses the challenges and prospects of multimodal imaging in stem cell therapy for retinal disease. Full article
Show Figures

Graphical abstract

Back to TopTop