Recent Clinical and Molecular Advances in the Management of Thymic Carcinoids: A Comprehensive Review
Simple Summary
Abstract
1. Introduction
2. Definition and Classification
- •
- Typical carcinoid (TC; well-differentiated, low-grade)—a well-differentiated neoplasm characterized by low histological aggressiveness (usually <2 mitoses per 2 mm2 and absence of necrosis);
- •
- Atypical carcinoid (AC; intermediate-grade)—a tumor of intermediate malignancy, displaying features of histological atypia, such as foci of necrosis and/or increased mitotic activity (2–10 mitoses per 2 mm2);
- •
- Large-cell neuroendocrine carcinoma (LCNEC; high-grade)—a poorly differentiated neoplasm composed of large cells, with a high mitotic rate (>10 mitoses per 2 mm2) and areas of necrosis, but lacking the morphological features of small-cell carcinoma;
- •
- Small-cell carcinoma (SCC; high-grade)—a highly aggressive, poorly differentiated neuroendocrine tumor with characteristic small-cell morphology.
3. Epidemiology
4. Clinical Presentation
5. Diagnostics
6. Molecular Profiling and Emerging Genomic Insights
7. Treatment
7.1. Surgical Treatment
7.2. Radiotherapy
7.3. Systemic Therapy
7.3.1. Chemotherapy
7.3.2. Somatostatin Analogs
7.3.3. Targeted Therapy
7.3.4. Peptide Receptor Radionuclide Therapy (PRRT)
7.3.5. Immunotherapy
8. Prognosis
9. New Research Directions and Experimental Therapies
- •
- Improved molecular and imaging diagnostics:
- •
- Targeted therapy:
- •
- Immunotherapy and combination strategies:
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gaur, P.; Leary, C.; Yao, J.C. Thymic neuroendocrine tumors: A SEER database analysis of 160 patients. Ann. Surg. 2010, 251, 1117–1121. [Google Scholar] [CrossRef] [PubMed]
- Jia, R.; Sulentic, P.; Xu, J.M.; Grossman, A.B. Thymic Neuroendocrine Neoplasms: Biological Behaviour and Therapy. Neuroendocrinology 2017, 105, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Travis, W.D.; Brambilla, E.; Nicholson, A.G.; Yatabe, Y.; Austin, J.H.M.; Beasley, M.B.; Chirieac, L.R.; Dacic, S.; Duhig, E.; Flieder, D.B.; et al. The 2015 World Health Organization Classification of Lung Tumors: Impact of Genetic, Clinical and Radiologic Advances Since the 2004 Classification. J. Thorac. Oncol. 2015, 10, 1243–1260. [Google Scholar] [CrossRef]
- Barone, P.D.; Zhang, C. Neuroendocrine neoplasms of the thymus. Front. Immunol. 2024, 15, 1465775. [Google Scholar] [CrossRef]
- Baudin, E.; Caplin, M.; Garcia-Carbonero, R.; Fazio, N.; Ferolla, P.; Filosso, P.L.; Frilling, A.; de Herder, W.W.; Horsch, D.; Knigge, U.; et al. Lung and thymic carcinoids: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up☆. Ann. Oncol. 2021, 32, 439–451. [Google Scholar] [CrossRef]
- Bohnenberger, H.; Dinter, H.; Konig, A.; Strobel, P. Neuroendocrine tumors of the thymus and mediastinum. J. Thorac. Dis. 2017, 9, S1448–S1457. [Google Scholar] [CrossRef]
- Yliaska, I.; Tokola, H.; Ebeling, T.; Kuismin, O.; Ukkola, O.; Koivikko, M.L.; Lesonen, T.; Rimpilainen, J.; Felin, T.; Ryhanen, E.; et al. Thymic neuroendocrine tumors in patients with multiple endocrine neoplasia type 1. Endocrine 2022, 77, 527–537. [Google Scholar] [CrossRef]
- Litvak, A.; Pietanza, M.C. Bronchial and Thymic Carcinoid Tumors. Hematol. Oncol. Clin. N. Am. 2016, 30, 83–102. [Google Scholar] [CrossRef]
- Guerrero-Perez, F.; Peiro, I.; Marengo, A.P.; Teule, A.; Ruffinelli, J.C.; Llatjos, R.; Serrano, T.; Macia, I.; Vilarrasa, N.; Iglesias, P.; et al. Ectopic Cushing’s syndrome due to thymic neuroendocrine tumours: A systematic review. Rev. Endocr. Metab. Disord. 2021, 22, 1041–1056. [Google Scholar] [CrossRef]
- Teh, B.T.; Zedenius, J.; Kytola, S.; Skogseid, B.; Trotter, J.; Choplin, H.; Twigg, S.; Farnebo, F.; Giraud, S.; Cameron, D.; et al. Thymic carcinoids in multiple endocrine neoplasia type 1. Ann. Surg. 1998, 228, 99–105. [Google Scholar] [CrossRef]
- Ferolla, P.; Falchetti, A.; Filosso, P.; Tomassetti, P.; Tamburrano, G.; Avenia, N.; Daddi, G.; Puma, F.; Ribacchi, R.; Santeusanio, F.; et al. Thymic neuroendocrine carcinoma (carcinoid) in multiple endocrine neoplasia type 1 syndrome: The Italian series. J. Clin. Endocrinol. Metab. 2005, 90, 2603–2609. [Google Scholar] [CrossRef] [PubMed]
- Gibril, F.; Chen, Y.J.; Schrump, D.S.; Vortmeyer, A.; Zhuang, Z.; Lubensky, I.A.; Reynolds, J.C.; Louie, A.; Entsuah, L.K.; Huang, K.; et al. Prospective study of thymic carcinoids in patients with multiple endocrine neoplasia type 1. J. Clin. Endocrinol. Metab. 2003, 88, 1066–1081. [Google Scholar] [CrossRef] [PubMed]
- Teh, B.T.; McArdle, J.; Chan, S.P.; Menon, J.; Hartley, L.; Pullan, P.; Ho, J.; Khir, A.; Wilkinson, S.; Larsson, C.; et al. Clinicopathologic studies of thymic carcinoids in multiple endocrine neoplasia type 1. Medicine 1997, 76, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Thakker, R.V.; Newey, P.J.; Walls, G.V.; Bilezikian, J.; Dralle, H.; Ebeling, P.R.; Melmed, S.; Sakurai, A.; Tonelli, F.; Brandi, M.L.; et al. Clinical practice guidelines for multiple endocrine neoplasia type 1 (MEN1). J. Clin. Endocrinol. Metab. 2012, 97, 2990–3011. [Google Scholar] [CrossRef]
- Rieker, R.J.; Aulmann, S.; Penzel, R.; Schnabel, P.A.; Blaeker, H.; Esposito, I.; Morresi-Hauf, A.; Otto, H.F.; Hecker, E.; Dienemann, H.; et al. Chromosomal imbalances in sporadic neuroendocrine tumours of the thymus. Cancer Lett. 2005, 223, 169–174. [Google Scholar] [CrossRef]
- Ferolla, P.; Urbani, M.; Ascani, S.; Puma, F.; Ribacchi, R.; Battista Bolis, G.; Santeusanio, F.; Daddi, G.; Angeletti, G.; Avenia, N. [Prevalence of the neuroendocrine phenotype in thymus neoplasms]. Chir. Ital. 2002, 54, 351–354. [Google Scholar]
- Lausi, P.O.; Refai, M.; Filosso, P.L.; Ruffini, E.; Oliaro, A.; Guerrera, F.; Brunelli, A. Thymic neuroendocrine tumors. Thorac. Surg. Clin. 2014, 24, 327–332. [Google Scholar] [CrossRef]
- Zhai, Y.; Zeng, Q.; Bi, N.; Zhou, Z.; Xiao, Z.; Hui, Z.; Chen, D.; Wang, L.; Wang, J.; Liu, W.; et al. A Single Center Analysis of Thymic Neuroendocrine Tumors. Cancers 2022, 14, 4944. [Google Scholar] [CrossRef]
- Filosso, P.L.; Yao, X.; Ahmad, U.; Zhan, Y.; Huang, J.; Ruffini, E.; Travis, W.; Lucchi, M.; Rimner, A.; Antonicelli, A.; et al. Outcome of primary neuroendocrine tumors of the thymus: A joint analysis of the International Thymic Malignancy Interest Group and the European Society of Thoracic Surgeons databases. J. Thorac. Cardiovasc. Surg. 2015, 149, 103–109. [Google Scholar] [CrossRef]
- Cardillo, G.; Treggiari, S.; Paul, M.A.; Carleo, F.; De Massimi, A.R.; Remotti, D.; Graziano, P.; Martelli, M. Primary neuroendocrine tumours of the thymus: A clinicopathologic and prognostic study in 19 patients. Eur. J. Cardiothorac. Surg. 2010, 37, 814–818. [Google Scholar] [CrossRef]
- Ramage, J.K.; Ahmed, A.; Ardill, J.; Bax, N.; Breen, D.J.; Caplin, M.E.; Corrie, P.; Davar, J.; Davies, A.H.; Lewington, V.; et al. Guidelines for the management of gastroenteropancreatic neuroendocrine (including carcinoid) tumours (NETs). Gut 2012, 61, 6–32. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, W.; Haruki, T.; Kidokoro, Y.; Ohno, T.; Yurugi, Y.; Miwa, K.; Taniguchi, Y.; Nakamura, H. Cushing’s syndrome caused by ACTH-producing thymic typical carcinoid with local invasion and regional lymph node metastasis: A case report. Surg. Case Rep. 2018, 4, 55. [Google Scholar] [CrossRef]
- Young, J.; Haissaguerre, M.; Viera-Pinto, O.; Chabre, O.; Baudin, E.; Tabarin, A. MANAGEMENT OF ENDOCRINE DISEASE: Cushing’s syndrome due to ectopic ACTH secretion: An expert operational opinion. Eur. J. Endocrinol. 2020, 182, R29–R58. [Google Scholar] [CrossRef]
- Ejaz, S.; Vassilopoulou-Sellin, R.; Busaidy, N.L.; Hu, M.I.; Waguespack, S.G.; Jimenez, C.; Ying, A.K.; Cabanillas, M.; Abbara, M.; Habra, M.A. Cushing syndrome secondary to ectopic adrenocorticotropic hormone secretion: The University of Texas MD Anderson Cancer Center Experience. Cancer 2011, 117, 4381–4389. [Google Scholar] [CrossRef] [PubMed]
- Ilias, I.; Torpy, D.J.; Pacak, K.; Mullen, N.; Wesley, R.A.; Nieman, L.K. Cushing’s syndrome due to ectopic corticotropin secretion: Twenty years’ experience at the National Institutes of Health. J. Clin. Endocrinol. Metab. 2005, 90, 4955–4962. [Google Scholar] [CrossRef] [PubMed]
- Salgado, L.R.; Fragoso, M.C.; Knoepfelmacher, M.; Machado, M.C.; Domenice, S.; Pereira, M.A.; de Mendonca, B.B. Ectopic ACTH syndrome: Our experience with 25 cases. Eur. J. Endocrinol. 2006, 155, 725–733. [Google Scholar] [CrossRef]
- Kamp, K.; Alwani, R.A.; Korpershoek, E.; Franssen, G.J.; de Herder, W.W.; Feelders, R.A. Prevalence and clinical features of the ectopic ACTH syndrome in patients with gastroenteropancreatic and thoracic neuroendocrine tumors. Eur. J. Endocrinol. 2016, 174, 271–280. [Google Scholar] [CrossRef]
- Shimamoto, A.; Ashizawa, K.; Kido, Y.; Hayashi, H.; Nagayasu, T.; Kawakami, A.; Mukae, H.; Hayashi, T.; Ohtsubo, M.; Shigematsu, K.; et al. CT and MRI findings of thymic carcinoid. Br. J. Radiol. 2017, 90, 20150341. [Google Scholar] [CrossRef]
- Hope, T.A.; Bergsland, E.K.; Bozkurt, M.F.; Graham, M.; Heaney, A.P.; Herrmann, K.; Howe, J.R.; Kulke, M.H.; Kunz, P.L.; Mailman, J.; et al. Appropriate Use Criteria for Somatostatin Receptor PET Imaging in Neuroendocrine Tumors. J. Nucl. Med. 2018, 59, 66–74. [Google Scholar] [CrossRef]
- Kong, G.; Hicks, R.J. Peptide Receptor Radiotherapy: Current Approaches and Future Directions. Curr. Treat. Options Oncol. 2019, 20, 77. [Google Scholar] [CrossRef]
- Filosso, P.L.; Actis Dato, G.M.; Ruffini, E.; Bretti, S.; Ozzello, F.; Mancuso, M. Multidisciplinary treatment of advanced thymic neuroendocrine carcinoma (carcinoid): Report of a successful case and review of the literature. J. Thorac. Cardiovasc. Surg. 2004, 127, 1215–1219. [Google Scholar] [CrossRef]
- Sakane, T.; Sakamoto, Y.; Masaki, A.; Murase, T.; Okuda, K.; Nakanishi, R.; Inagaki, H. Mutation Profile of Thymic Carcinoma and Thymic Neuroendocrine Tumor by Targeted Next-generation Sequencing. Clin. Lung Cancer 2021, 22, 92–99. [Google Scholar] [CrossRef]
- Strobel, P.; Zettl, A.; Shilo, K.; Chuang, W.Y.; Nicholson, A.G.; Matsuno, Y.; Gal, A.; Laeng, R.H.; Engel, P.; Capella, C.; et al. Tumor genetics and survival of thymic neuroendocrine neoplasms: A multi-institutional clinicopathologic study. Genes Chromosomes Cancer 2014, 53, 738–749. [Google Scholar] [CrossRef]
- Granberg, D.; Juhlin, C.C.; Falhammar, H.; Hedayati, E. Lung Carcinoids: A Comprehensive Review for Clinicians. Cancers 2023, 15, 5440. [Google Scholar] [CrossRef]
- Li, Y.; Peng, Y.; Jiang, X.; Cheng, Y.; Zhou, W.; Su, T.; Xie, J.; Zhong, X.; Song, D.; Wu, L.; et al. Whole exome sequencing of thymic neuroendocrine tumor with ectopic ACTH syndrome. Eur. J. Endocrinol. 2017, 176, 187–194. [Google Scholar] [CrossRef]
- Volante, M.; Mete, O.; Pelosi, G.; Roden, A.C.; Speel, E.J.M.; Uccella, S. Molecular Pathology of Well-Differentiated Pulmonary and Thymic Neuroendocrine Tumors: What Do Pathologists Need to Know? Endocr. Pathol. 2021, 32, 154–168. [Google Scholar] [CrossRef]
- Liu, M.; Hu, W.; Zhang, Y.; Zhang, N.; Chen, L.; Lin, Y.; Wang, Y.; Luo, Y.; Guo, Y.; Chen, M.; et al. Clinical implications of immune checkpoint markers and immune infiltrates in patients with thymic neuroendocrine neoplasms. Front. Oncol. 2022, 12, 917743. [Google Scholar] [CrossRef]
- Yao, J.C.; Fazio, N.; Singh, S.; Buzzoni, R.; Carnaghi, C.; Wolin, E.; Tomasek, J.; Raderer, M.; Lahner, H.; Voi, M.; et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): A randomised, placebo-controlled, phase 3 study. Lancet 2016, 387, 968–977. [Google Scholar] [CrossRef]
- Sakane, T.; Nakano, T.; Hagui, E.; Haneda, H.; Okuda, K. Everolimus in combination with octreotide LAR in thymic atypical carcinoid. Thorac. Cancer 2023, 14, 1404–1407. [Google Scholar] [CrossRef]
- Grande, E.; Capdevila, J.; Castellano, D.; Teule, A.; Duran, I.; Fuster, J.; Sevilla, I.; Escudero, P.; Sastre, J.; Garcia-Donas, J.; et al. Pazopanib in pretreated advanced neuroendocrine tumors: A phase II, open-label trial of the Spanish Task Force Group for Neuroendocrine Tumors (GETNE). Ann. Oncol. 2015, 26, 1987–1993. [Google Scholar] [CrossRef]
- Strosberg, J.; Mizuno, N.; Doi, T.; Grande, E.; Delord, J.P.; Shapira-Frommer, R.; Bergsland, E.; Shah, M.; Fakih, M.; Takahashi, S.; et al. Efficacy and Safety of Pembrolizumab in Previously Treated Advanced Neuroendocrine Tumors: Results From the Phase II KEYNOTE-158 Study. Clin. Cancer Res. 2020, 26, 2124–2130. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Torralba, E.; Garcia-Lorenzo, E.; Doger, B.; Spada, F.; Lamarca, A. Immunotherapy in Neuroendocrine Neoplasms: A Diamond to Cut. Cancers 2024, 16, 2530. [Google Scholar] [CrossRef] [PubMed]
Feature | Typical Carcinoid (TC) | Atypical Carcinoid (AC) |
---|---|---|
WHO Grade (2021) | Well-differentiated NET, Grade 1 | Well-differentiated NET, Grade 2 |
Histological atypia | Minimal or absent | Present (e.g., nuclear pleomorphism, nucleoli) |
Mitotic rate | <2 mitoses per 2 mm2 | 2–10 mitoses per 2 mm2 |
Necrosis | Absent | Focal necrosis present |
Ki-67 index (approx.) | <3% | 3–20% (may overlap with Grade 3 in rare cases) |
Clinical behavior | Indolent, slower-growing | More aggressive, faster progression |
Prognosis | Generally favorable (5-year OS > 80%) | Intermediate (5-year OS ~50–70%) |
Tumor Type | Stage | Surgery | RT | CT | Targeted Therapy/SSA | IO |
---|---|---|---|---|---|---|
TC | Localized | Radical resection (preferably thymectomy with lymphadenectomy) | Consider if incomplete resection or risk features | Usually not required | Consider SSA if functioning tumor (e.g., carcinoid syndrome) | No data |
AC | Localized | Radical resection, preferably extended thymectomy with lymphadenectomy | Often recommended postoperatively | Consider in high-risk disease (e.g., >10 mitoses, Ki-67 > 10%) | SSA if somatostatin receptor-positive | Potentially, especially in PD-L1 positive tumors |
TC/AC | Locoregional | If feasible—neoadjuvant chemoradiotherapy → surgery | Yes, mainly in the adjuvant setting | PE or other regimens (e.g., CAPTEM) | SSA, PRRT if SSTR-positive, Everolimus | Considered (no standard of care) |
TC/AC | Advanced | Usually not performed | Palliative | CAPTEM, streptozotocin + 5-FU, cisplatin + etoposide | SSA, PRRT (e.g., 177Lu-DOTATATE) | Investigational, e.g., nivolumab/ipilimumab (for AC) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piórek, A.; Płużański, A.; Kowalski, D.M.; Krzakowski, M. Recent Clinical and Molecular Advances in the Management of Thymic Carcinoids: A Comprehensive Review. Cancers 2025, 17, 1975. https://doi.org/10.3390/cancers17121975
Piórek A, Płużański A, Kowalski DM, Krzakowski M. Recent Clinical and Molecular Advances in the Management of Thymic Carcinoids: A Comprehensive Review. Cancers. 2025; 17(12):1975. https://doi.org/10.3390/cancers17121975
Chicago/Turabian StylePiórek, Aleksandra, Adam Płużański, Dariusz M. Kowalski, and Maciej Krzakowski. 2025. "Recent Clinical and Molecular Advances in the Management of Thymic Carcinoids: A Comprehensive Review" Cancers 17, no. 12: 1975. https://doi.org/10.3390/cancers17121975
APA StylePiórek, A., Płużański, A., Kowalski, D. M., & Krzakowski, M. (2025). Recent Clinical and Molecular Advances in the Management of Thymic Carcinoids: A Comprehensive Review. Cancers, 17(12), 1975. https://doi.org/10.3390/cancers17121975