Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (157)

Search Parameters:
Keywords = radio frequency heating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2050 KB  
Article
Thermal Management with AlN Passivation in AlGaN/GaN HEMTs with an Air Gap Gate for Improved RF Performance: A Simulation Study
by Young-Hyun Won, Tae-Sung Kim, Jae-Hun Lee, Chae-Yun Lim, Byoung-Gue Min, Dong-Min Kang and Hyun-Seok Kim
Micromachines 2026, 17(1), 92; https://doi.org/10.3390/mi17010092 (registering DOI) - 10 Jan 2026
Abstract
This study introduces an air gap gate with AlN passivation to enhance the radio frequency (RF) performance of AlGaN/GaN high-electron-mobility transistors (HEMTs) while addressing thermal challenges. The air gap gate improves RF performance by reducing gate capacitance, resulting in a 23.9% increase in [...] Read more.
This study introduces an air gap gate with AlN passivation to enhance the radio frequency (RF) performance of AlGaN/GaN high-electron-mobility transistors (HEMTs) while addressing thermal challenges. The air gap gate improves RF performance by reducing gate capacitance, resulting in a 23.9% increase in cutoff frequency (35.82 GHz) and enhancing saturation drain current and maximum transconductance by 3.7% and 10.27%, respectively, compared to a 0.15 μm planar gate baseline. However, reduced heat dissipation degrades thermal performance, as reflected in higher thermal resistance and temperature gradients. Incorporating high thermal conductivity AlN passivation mitigates these drawbacks, lowering operating temperatures and improving heat distribution, while maintaining a 17.5% cutoff frequency improvement over the baseline. These results demonstrate that the air gap gate with AlN passivation provides an effective strategy for achieving reliable, high-performance AlGaN/GaN HEMTs under high-frequency and high-power operations. Full article
21 pages, 4500 KB  
Article
Spectroscopic Ellipsometry and Luminescence Properties of Low Temperature Sputter-Deposited Zinc Oxide Thin Films: Cryogenic Self-Stress-Induced Crystallization
by M. A. Ebdah, M. E. Kordesch, W. Yuan, W. M. Jadwisienczak, S. Kaya, M. D. Nazzal, A. Ibdah and K. S. Al-iqdah
Crystals 2025, 15(12), 1031; https://doi.org/10.3390/cryst15121031 - 2 Dec 2025
Viewed by 357
Abstract
Zinc oxide (ZnO) thin films were deposited by radio-frequency reactive magnetron sputtering at a cryogenic substrate temperature of −78 °C to explore a novel low-thermal-budget route for semiconductor growth. Despite the extremely low temperature, X-ray diffraction revealed spontaneous partial crystallization of wurtzite ZnO [...] Read more.
Zinc oxide (ZnO) thin films were deposited by radio-frequency reactive magnetron sputtering at a cryogenic substrate temperature of −78 °C to explore a novel low-thermal-budget route for semiconductor growth. Despite the extremely low temperature, X-ray diffraction revealed spontaneous partial crystallization of wurtzite ZnO upon warming to room temperature, driven by strain relaxation and stress coupling at the ZnO/SiO2 interface. Atomic-force and scanning-electron microscopies confirmed nanoscale hillock and ridge morphologies that correlate with in-plane compressive stress and out-of-plane tensile strain. Spectroscopic ellipsometry, modeled using a general oscillator (GO) mathematical model approach, determined a film thickness of 60.81 nm, surface roughness of 3.75 nm, and a direct optical bandgap of 3.40 eV. Photoluminescence spectra exhibited strong near-band-edge emission modulated with LO-phonon replicas at 300 K, indicating robust exciton–phonon coupling. This study demonstrates that ZnO films grown at cryogenic conditions can undergo substrate-induced self-crystallize upon warming, which eliminates the need for thermal annealing. The introduced cryogenic self-crystallization regime offers a new pathway for depositing crystalline semiconductors on thermally sensitive or flexible substrates where heating is undesirable, enabling future optoelectronic and photonic device fabrication under ultra-low thermal-budget conditions. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

19 pages, 3999 KB  
Review
A Review of Whistler Wave Propagation and Interaction Experiments at Arecibo Observatory, Puerto Rico
by Min-Chang Lee
Physics 2025, 7(4), 62; https://doi.org/10.3390/physics7040062 - 1 Dec 2025
Viewed by 733
Abstract
BU–MIT whistler wave injection experiments, which were conducted at Arecibo Observatory, started with the joint US–USSR Active Space Plasma Program Experiment on 24 December 1989. In this experiment, a satellite-borne VLF transmitter injected radio waves at the frequency and power of 10 kHz [...] Read more.
BU–MIT whistler wave injection experiments, which were conducted at Arecibo Observatory, started with the joint US–USSR Active Space Plasma Program Experiment on 24 December 1989. In this experiment, a satellite-borne VLF transmitter injected radio waves at the frequency and power of 10 kHz and 10 kW. A series of controlled whistler wave experiments with the Arecibo HF heater were subsequently carried out during 1990–1998 until the HF heater was damaged by Hurricane Georges in 1998. In these ionospheric HF heating experiments, 28.5 kHz whistler waves were launched from the nearby naval transmitter (code-named NAU) located at Aguadilla, Puerto Rico. HF heater waves were used to create ionospheric ducts (in the form of parallel-plate waveguides) to facilitate the entry of NAU whistler waves from the neutral atmosphere into the ionosphere. Conjugate whistler wave propagation experiments were conducted between Arecibo, Puerto Rico and Trelew, Argentina in 1997. After 1999, whistler wave experiments in the absence of an HF heater had been conducted. Naturally-occurring large-scale ionospheric irregularities due to spread F or Traveling Ionospheric Disturbances (TIDs) were relied on to guide NAU launched 40.75 kHz whistler waves to propagate from the ionosphere further into the radiation belts, to cause 390 keV charged-particle precipitation. A train of TIDs, resulting from the 9.2 Mw earthquake off the west coast of Sumatra, Indonesia, was observed in our 26 December 2004 Arecibo experiments, about a day after the earthquake-launched tsunami waves traveled across the Indian Ocean, then into remote parts of the Atlantic Ocean. The author’s recent research efforts, motivated by Arecibo experiments, focus on Solar Powered Microwave Transmitting Systems, to simulate Solar Energy Harvesting via Solar Power Satellite (SPS) (also known as Space Based Solar Power (SBSP)) These experiments involved a large number of the author’s BU and MIT students working on theses and participating in the Undergraduate Research Opportunities Program (UROP), in collaboration with other colleagues at several universities and national laboratories. Full article
Show Figures

Graphical abstract

13 pages, 5787 KB  
Article
Enhancing Quality and Processing Efficiency of Germinated Buckwheat Tea Through Hot Air-Assisted Radio Frequency Roasting
by Hsiang-Yu Lai, Jui-Min Hsiao and Su-Der Chen
Foods 2025, 14(21), 3596; https://doi.org/10.3390/foods14213596 - 22 Oct 2025
Viewed by 764
Abstract
Buckwheat germination can increase bioactive compounds; however, it also increases moisture content, which then requires drying and roasting. This study focused on applying hot air-assisted radio frequency (HARF) roasting to germinated buckwheat (GB) tea to improve the tea quality and processing efficiency. Seeds [...] Read more.
Buckwheat germination can increase bioactive compounds; however, it also increases moisture content, which then requires drying and roasting. This study focused on applying hot air-assisted radio frequency (HARF) roasting to germinated buckwheat (GB) tea to improve the tea quality and processing efficiency. Seeds were soaked in reverse osmosis water for 6 h, followed by germination at 25 °C for 24 h. HARF roasting (100 °C, 10 kW, 16 cm gap) rapidly heated one bucket (2 kg) and two buckets (2 + 2 kg) of GB to 140 °C in only 22 and 20 min, respectively, to reduce the moisture content from 40% to 5%. HARF roasting could save about 1/5 time and 1/11~1/18 energy compared with a cyclonic oven at 140 °C for 100 min roasting to 120 °C. GC-IMS and sensory evaluation indicated a superior aroma, taste, and higher overall acceptability for HARF-roasted GB tea. These results demonstrate that GB using HARF roasting enhances the functional, sensory, and industrial value of buckwheat tea. Full article
Show Figures

Figure 1

14 pages, 2338 KB  
Article
Dielectric Properties and Heating Rates of Egg Components Associated with Radio Frequency and Microwave Pasteurization
by Feixue Yang, Jianhang Hu, Huijia Li, Xinyu Tang, Qisen Xiang, Xiangyu Guan, Wenhao Sun, Ping Li, Haiyan Zhang and Teng Cheng
Foods 2025, 14(19), 3287; https://doi.org/10.3390/foods14193287 - 23 Sep 2025
Viewed by 1033
Abstract
Salmonella spp. outbreaks associated with eggs have attracted widespread concerns about food safety. To provide necessary information for further pasteurization processes and computer simulations induced by radio frequency (RF) and microwave (MW) energy, the dielectric properties, penetration depth, and heating rates of egg [...] Read more.
Salmonella spp. outbreaks associated with eggs have attracted widespread concerns about food safety. To provide necessary information for further pasteurization processes and computer simulations induced by radio frequency (RF) and microwave (MW) energy, the dielectric properties, penetration depth, and heating rates of egg white, yolk, and eggshell were measured, calculated, or fitted by regression models. The results demonstrated that both the dielectric constant and dielectric loss factor of egg white and yolk decreased dramatically with raised frequency within the RF range from 10 to 300 MHz, and then reduced slightly within the MW range from 300 to 3000 MHz. Dielectric constant, and loss factor of egg white, yolk, and eggshell increased with raised temperature. The penetration depth of egg white, yolk, and eggshell decreased with increasing of frequency. RF waves had a deeper penetration depth than that of MW waves at the same temperature. The fourth-order polynomial models provided a good fit to the experimental data with large coefficients of determination (R2 > 0.902). The heating rate of the egg samples increased with increasing RF voltage and microwave power, and the heating rate of yolk was higher than that of egg white or eggshell at the same conditions. This study offers essential data and effective guidance in developing and optimizing RF and MW pasteurization techniques for ensuring the microbial safety of eggs, using both experiments and mathematical simulations. Full article
Show Figures

Figure 1

21 pages, 11260 KB  
Article
GaN HEMT Oscillators with Buffers
by Sheng-Lyang Jang, Ching-Yen Huang, Tzu Chin Yang and Chien-Tang Lu
Micromachines 2025, 16(8), 869; https://doi.org/10.3390/mi16080869 - 28 Jul 2025
Viewed by 809
Abstract
With their superior switching speed, GaN high-electron-mobility transistors (HEMTs) enable high power density, reduce energy losses, and increase power efficiency in a wide range of applications, such as power electronics, due to their high breakdown voltage. GaN-HEMT devices are subject to long-term reliability [...] Read more.
With their superior switching speed, GaN high-electron-mobility transistors (HEMTs) enable high power density, reduce energy losses, and increase power efficiency in a wide range of applications, such as power electronics, due to their high breakdown voltage. GaN-HEMT devices are subject to long-term reliability due to the self-heating effect and lattice mismatch between the SiC substrate and the GaN. Depletion-mode GaN HEMTs are utilized for radio frequency applications, and this work investigates three wide-bandgap (WBG) GaN HEMT fixed-frequency oscillators with output buffers. The first GaN-on-SiC HEMT oscillator consists of an HEMT amplifier with an LC feedback network. With the supply voltage of 0.8 V, the single-ended GaN oscillator can generate a signal at 8.85 GHz, and it also supplies output power of 2.4 dBm with a buffer supply of 3.0 V. At 1 MHz frequency offset from the carrier, the phase noise is −124.8 dBc/Hz, and the figure of merit (FOM) of the oscillator is −199.8 dBc/Hz. After the previous study, the hot-carrier stressed RF performance of the GaN oscillator is studied, and the oscillator was subject to a drain supply of 8 V for a stressing step time equal to 30 min and measured at the supply voltage of 0.8 V after the step operation for performance benchmark. Stress study indicates the power oscillator with buffer is a good structure for a reliable structure by operating the oscillator core at low supply and the buffer at high supply. The second balanced oscillator can generate a differential signal. The feedback filter consists of a left-handed transmission-line LC network by cascading three unit cells. At a 1 MHz frequency offset from the carrier of 3.818 GHz, the phase noise is −131.73 dBc/Hz, and the FOM of the 2nd oscillator is −188.4 dBc/Hz. High supply voltage operation shows phase noise degradation. The third GaN cross-coupled VCO uses 8-shaped inductors. The VCO uses a pair of drain inductors to improve the Q-factor of the LC tank, and it uses 8-shaped inductors for magnetic coupling noise suppression. At the VCO-core supply of 1.3 V and high buffer supply, the FOM at 6.397 GHz is −190.09 dBc/Hz. This work enhances the design techniques for reliable GaN HEMT oscillators and knowledge to design high-performance circuits. Full article
(This article belongs to the Special Issue Research Trends of RF Power Devices)
Show Figures

Figure 1

26 pages, 10667 KB  
Article
Influence of Nitrogen and Hydrogen Addition on Composition, Morphology, Adhesion, and Wear Resistance of Amorphous Carbon Coatings Produced by RFCVD Method on Surface-Hardened Ultra-Fine Grained Bainitic 30HGSNA Steel
by Karol Wunsch, Tomasz Borowski, Emilia Skołek, Agata Roguska, Rafał Chodun, Michał Urbańczyk, Krzysztof Kulikowski, Maciej Spychalski, Andrzej Wieczorek and Jerzy Robert Sobiecki
Coatings 2025, 15(8), 877; https://doi.org/10.3390/coatings15080877 - 26 Jul 2025
Cited by 1 | Viewed by 2779
Abstract
Ultra-fine-grained bainitic (UFGB) steels offer excellent mechanical properties, which can be further improved by applying diamond-like carbon (DLC) coatings. However, poor adhesion between the coating and substrate remains a key limitation. Since the steel’s microstructure degrades at high temperatures, enhancing adhesion without heating [...] Read more.
Ultra-fine-grained bainitic (UFGB) steels offer excellent mechanical properties, which can be further improved by applying diamond-like carbon (DLC) coatings. However, poor adhesion between the coating and substrate remains a key limitation. Since the steel’s microstructure degrades at high temperatures, enhancing adhesion without heating the substrate is essential. This study investigates surface hardening combined with simultaneous nitrogen and hydrogen doping during the Radio Frequency Chemical Vapor Deposition (RFCVD) process to improve coating performance. Varying gas compositions were tested to assess their effects on coating properties. Nitrogen incorporation decreased hardness from 12 GPa to 9 GPa but improved adhesion, while hydrogen limited damage after coating failure. Optimizing the gas mixture led to enhanced adhesion and wear resistance. Raman and X-ray photoelectron spectroscopy (XPS) analyses confirmed that the optimized coatings had the highest sp3 bond content and elevated nitrogen levels. While both hardness and adhesion contributed to wear resistance, no direct link to coating thickness was found. Overall, co-doping with nitrogen and hydrogen is an effective approach to improve adhesion and wear resistance without requiring high processing temperatures or complex equipment. Full article
(This article belongs to the Special Issue Recent Advances in Surface Functionalisation, 2nd Edition)
Show Figures

Figure 1

19 pages, 1971 KB  
Article
Safety of Simultaneous Scalp and Intracranial EEG and fMRI: Evaluation of RF-Induced Heating
by Hassan B. Hawsawi, Anastasia Papadaki, Vejay N. Vakharia, John S. Thornton, David W. Carmichael, Suchit Kumar and Louis Lemieux
Bioengineering 2025, 12(6), 564; https://doi.org/10.3390/bioengineering12060564 - 24 May 2025
Viewed by 1929
Abstract
The acquisition of electroencephalography (EEG) concurrently with functional magnetic resonance imaging (fMRI) requires a careful consideration of the health hazards resulting from interactions between the scanner’s electromagnetic fields and EEG recording equipment. The primary safety concern is excessive RF-induced heating of the tissue [...] Read more.
The acquisition of electroencephalography (EEG) concurrently with functional magnetic resonance imaging (fMRI) requires a careful consideration of the health hazards resulting from interactions between the scanner’s electromagnetic fields and EEG recording equipment. The primary safety concern is excessive RF-induced heating of the tissue in the vicinity of electrodes. We have previously demonstrated that concurrent intracranial EEG (icEEG) and fMRI data acquisitions (icEEG-fMRI) can be performed with acceptable risk in specific conditions using a head RF transmit coil. Here, we estimate the potential additional heating associated with the addition of scalp EEG electrodes using a body transmit RF coil. In this study, electrodes were placed in clinically realistic positions on a phantom in two configurations: (1) icEEG electrodes only, and (2) following the addition of subdermal scalp electrodes. Heating was measured during MRI scans using a body transmit coil with a high specific absorption rate (SAR), TSE (turbo spin echo), and low SAR gradient-echo EPI (echo-planar imaging) sequences. During the application of the high-SAR sequence, the maximum temperature change for the intracranial electrodes was +2.8 °C. The addition of the subdural scalp EEG electrodes resulted in a maximum temperature change for the intracranial electrodes of 2.1 °C and +0.6 °C across the scalp electrodes. For the low-SAR sequence, the maximum temperature increase across all intracranial and scalp electrodes was +0.7 °C; in this condition, the temperature increases around the intracranial electrodes were below the detection level. Therefore, in the experimental conditions (MRI scanner, electrode, and wire configurations) used at our centre for icEEG-fMRI, adding six scalp EEG electrodes did not result in significant additional localised RF-induced heating compared to the model using icEEG electrodes only. Full article
(This article belongs to the Special Issue Multimodal Neuroimaging Techniques: Progress and Application)
Show Figures

Figure 1

13 pages, 8736 KB  
Article
Software-Defined Optical Coherence Measurement of Seawater Refractive Index Variations
by Jiaxin Zhao, Xinyi Zhang, Qi Wang, Liyan Li, Songtao Fan, Yongjie Wang and Yan Zhou
Sensors 2025, 25(10), 3119; https://doi.org/10.3390/s25103119 - 15 May 2025
Cited by 1 | Viewed by 770
Abstract
The seawater refractive index is an important parameter in marine environments, with its variations depending on the specific environmental conditions. During practical applications, modulation parameters such as the sampling rate, bandwidth, and filters directly affect the signal-to-noise ratio (SNR) and need to be [...] Read more.
The seawater refractive index is an important parameter in marine environments, with its variations depending on the specific environmental conditions. During practical applications, modulation parameters such as the sampling rate, bandwidth, and filters directly affect the signal-to-noise ratio (SNR) and need to be adjusted in real-time according to the characteristics of the target signal. Low-cost software-defined radio (SDR) offers significant advantages in this regard. This paper proposes an optical coherence measurement method for seawater refractive index changes based on orthogonal demodulation using SDR along with simulation calculations, and the results demonstrate that the resolution of the refractive index change rate is 3.165×109 RIU/s, corresponding to a refractive index change resolution of 1010 RIU (frequency range 1 Hz–100 Hz, measurement range 0.1 m). By adopting SDR as the implementation platform for the demodulation algorithm and using a radio-frequency source to simulate interference signals for demodulating the refractive index variation, the results show that the relative error of the SDR demodulation results is below 0.3%. Additionally, this study developed a software-defined optical coherence measurement system for the seawater refractive index and measured the refractive index changes in deionized water during heating. The experimental results showed that the root mean square error (RMSE) of the refractive index changes obtained through SDR demodulation was 5.68×106 RIU. This research provides a novel demodulation method for high-precision measurements of seawater refractive index changes under different marine environments. Full article
(This article belongs to the Special Issue Advances in Optical Sensing, Instrumentation and Systems: 2nd Edition)
Show Figures

Figure 1

16 pages, 2512 KB  
Article
Simulation-Based Design and Machine Learning Optimization of a Novel Liquid Cooling System for Radio Frequency Coils in Magnetic Hyperthermia
by Serhat Ilgaz Yöner and Alpay Özcan
Bioengineering 2025, 12(5), 490; https://doi.org/10.3390/bioengineering12050490 - 4 May 2025
Viewed by 1195
Abstract
Magnetic hyperthermia is a promising cancer treatment technique that relies on Néel and Brownian relaxation mechanisms to heat superparamagnetic nanoparticles injected into tumor sites. Under low-frequency magnetic fields, nanoparticles generate localized heat, inducing controlled thermal damage to cancer cells. However, radio frequency coils [...] Read more.
Magnetic hyperthermia is a promising cancer treatment technique that relies on Néel and Brownian relaxation mechanisms to heat superparamagnetic nanoparticles injected into tumor sites. Under low-frequency magnetic fields, nanoparticles generate localized heat, inducing controlled thermal damage to cancer cells. However, radio frequency coils used to generate alternating magnetic fields may suffer from excessive heating, leading to efficiency losses and unintended thermal effects on surrounding healthy tissues. This study proposes novel liquid cooling systems, leveraging the skin effect phenomenon, to improve thermal management and reduce coil size. Finite element method-based simulation studies evaluated coil electrical current and temperature distributions under varying applied frequencies, water flow rates, and cooling microchannel dimensions. A dataset of 300 simulation cases was generated to train a Gaussian Process Regression-based machine learning model. The performance index was also developed and modeled using Gaussian Process Regression, enabling rapid performance prediction without requiring extensive numerical studies. Sensitivity analysis and the ReliefF algorithm were applied for a thorough analysis. Simulation results indicate that the proposed novel liquid cooling system demonstrates higher performance compared to conventional systems that utilize direct liquid cooling, offering a computationally efficient method for pre-manufacturing design optimization of radio frequency coil cooling systems in magnetic hyperthermia applications. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Graphical abstract

14 pages, 12032 KB  
Article
Fabrication of Stainless Steel/Alumina Composite Powders by Spray Granulation and Plasma Spheroidization
by Elodie Cabrol, Sandrine Cottrino, Hocine Si-Mohand and Gilbert Fantozzi
Materials 2025, 18(8), 1872; https://doi.org/10.3390/ma18081872 - 19 Apr 2025
Viewed by 1036
Abstract
This work presents a new approach for the fabrication of 316L/Al2O3 composites, based on a combination of spray granulation, radio frequency (RF) plasma spheroidization and spark plasma sintering (SPS). Initially, a suspension containing 316L and alumina powders is formulated by [...] Read more.
This work presents a new approach for the fabrication of 316L/Al2O3 composites, based on a combination of spray granulation, radio frequency (RF) plasma spheroidization and spark plasma sintering (SPS). Initially, a suspension containing 316L and alumina powders is formulated by precisely adjusting the pH and selecting an appropriate dispersant, thereby ensuring homogeneous dispersion of the constituents. The spray granulation process then produces granules with controlled size and morphology. RF plasma spheroidization, carried out using a TekSphero-40 system, is investigated by varying parameters such as the power, gas flow rates, injection position and feed rate, in order to optimize the formation of spherical and dense particles. The analysis reveals a marked sensitivity to heat transfer from the plasma to the particles, with a tendency for fine particles to segregate, which underscores the necessity for precise control of the processing conditions. Finally, SPS densification, performed under a constant pressure and a rigorously controlled thermal cycle, yields composites with excellent density and hardness characteristics. This study thus demonstrates that the proposed hybrid process offers an optimal synergy between a uniform distribution of alumina and a controlled microstructure, opening up promising avenues for the design of high-performance composite materials for demanding applications. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

13 pages, 4628 KB  
Article
Effect of Processing Parameters on the Heating Uniformity of Postharvest Tobacco Leaves Subjected to Radio Frequency Disinfestations
by Jinsong Zhang, Yingqi Tian, Xin Ye, Zijun Mo, Rui Li and Shaojin Wang
Insects 2025, 16(2), 228; https://doi.org/10.3390/insects16020228 - 19 Feb 2025
Cited by 3 | Viewed by 1128
Abstract
Uneven heating is the biggest obstacle to the application of radio frequency (RF) technology in insecticidal applications. Since many existing studies have focused on the RF heating uniformity of granular materials, few RF treatment solutions have been reported for leaf materials. To improve [...] Read more.
Uneven heating is the biggest obstacle to the application of radio frequency (RF) technology in insecticidal applications. Since many existing studies have focused on the RF heating uniformity of granular materials, few RF treatment solutions have been reported for leaf materials. To improve the RF heating uniformity of tobacco leaves, a combined RF-hot air treatment method was developed for disinfestation in this study. The experiments were conducted to determine the effects of three process parameters (electrode gap, sample thickness, and hot air temperature) on the RF heating rate and uniformity of tobacco leaves. The results showed that the heating rate of RF-hot air combined treatment increased with decreasing electrode gap but increased with increasing sample thickness and hot air temperature. The RF heating uniformity in tobacco leaves decreased with increasing heating rate but could be significantly improved with the conveyor movement. Considering the heating uniformity and heating rate, the material thickness of 60 mm and electrode gap of 110 mm were selected as optimal process parameters. The results of the study may provide a feasible method to improve the RF heating uniformity in tobacco leaves and potential applications for effective disinfestations. Full article
Show Figures

Graphical abstract

22 pages, 1378 KB  
Article
Microhardness, Young’s and Shear Modulus in Tetrahedrally Bonded Novel II-Oxides and III-Nitrides
by Devki N. Talwar and Piotr Becla
Materials 2025, 18(3), 494; https://doi.org/10.3390/ma18030494 - 22 Jan 2025
Cited by 6 | Viewed by 1504
Abstract
Direct wide-bandgap III-Ns and II-Os have recently gained considerable attention due to their unique electrical and chemical properties. These novel semiconductors are being explored to design short-wavelength light-emitting diodes, sensors/biosensors, photodetectors for integration into flexible transparent nanoelectronics/photonics to achieve high-power radio-frequency modules, and [...] Read more.
Direct wide-bandgap III-Ns and II-Os have recently gained considerable attention due to their unique electrical and chemical properties. These novel semiconductors are being explored to design short-wavelength light-emitting diodes, sensors/biosensors, photodetectors for integration into flexible transparent nanoelectronics/photonics to achieve high-power radio-frequency modules, and heat-resistant optical switches for communication networks. Knowledge of the elastic constants structural and mechanical properties has played crucial roles both in the basic understanding and assessing materials’ use in thermal management applications. In the absence of experimental structural, elastic constants, and mechanical traits, many theoretical simulations have yielded inconsistent results. This work aims to investigate the basic characteristics of tetrahedrally coordinated, partially ionic BeO, MgO, ZnO, and CdO, and partially covalent BN, AlN, GaN, and InN materials. By incorporating a bond-orbital and a valance force field model, we have reported comparative results of our systematic calculations for the bond length d, bond polarity αP, covalency αC, bulk modulus B, elastic stiffness C(=c11c122), bond-stretching α and bond-bending β force constants, Kleinmann’s internal displacement ζ, and Born’s transverse effective charge eT*. Correlations between C/B, β/α, c12c11, ζ, and αC revealed valuable trends of structural, elastic, and bonding characteristics. The study noticed AlN and GaN (MgO and ZnO) showing nearly comparable features, while BN (BeO) is much harder compared to InN (CdO) material, with drastically softer bonding. Calculations of microhardness H, shear modulus G, and Young’s modulus Y have predicted BN (BeO) satisfying a criterion of super hardness. III-Ns (II-Os) could be vital in electronics, aerospace, defense, nuclear reactors, and automotive industries, providing integrity and performance at high temperature in high-power applications, ranging from heat sinks to electronic substrates to insulators in high-power devices. Full article
Show Figures

Figure 1

11 pages, 744 KB  
Perspective
Sustainable Agriculture with Self-Powered Wireless Sensing
by Xinqing Xiao
Agriculture 2025, 15(3), 234; https://doi.org/10.3390/agriculture15030234 - 22 Jan 2025
Cited by 4 | Viewed by 2329
Abstract
Agricultural sustainability is becoming more and more important for human health. Wireless sensing technology could provide smart monitoring in real time for different parameters in planting, breeding, and the food supply chain with advanced sensors such as flexible sensors; wireless communication networks such [...] Read more.
Agricultural sustainability is becoming more and more important for human health. Wireless sensing technology could provide smart monitoring in real time for different parameters in planting, breeding, and the food supply chain with advanced sensors such as flexible sensors; wireless communication networks such as third-, fourth-, or fifth-generation (3G, 4G, or 5G) mobile communication technology networks; and artificial intelligence (AI) models. Many sustainable, natural, renewable, and recycled facility energies such as light, wind, water, heat, acoustic, radio frequency (RF), and microbe energies that exist in actual agricultural systems could be harvested by advanced self-powered technologies and devices using solar cells, electromagnetic generators (EMGs), thermoelectric generators (TEGs), piezoelectric generators (PZGs), triboelectric nanogenerators (TENGs), or microbial full cells (MFCs). Sustainable energy harvesting to the maximum extent possible could lead to the creation of sustainable self-powered wireless sensing devices, reduce carbon emissions, and result in the implementation of precision smart monitoring, management, and decision making for agricultural production. Therefore, this article suggests that proposing and developing a self-powered wireless sensing system for sustainable agriculture (SAS) would be an effective way to improve smart agriculture production efficiency while achieving green and sustainable agriculture and, finally, ensuring food quality and safety and human health. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

16 pages, 2648 KB  
Article
Raman Spectroscopy of Graphene/CNT Layers Deposited on Interdigit Sensors for Application in Gas Detection
by Stefan-Marian Iordache, Ana-Maria Iordache, Ana-Maria Florea (Raduta), Stefan Caramizoiu, Catalin Parvulescu, Flaviu Baiasu, Irina Negut and Bogdan Bita
C 2025, 11(1), 9; https://doi.org/10.3390/c11010009 - 20 Jan 2025
Cited by 1 | Viewed by 2317
Abstract
Graphene/CNT layers were deposited onto platinum electrodes of an interdigitated sensor using radio-frequency magnetron sputtering. The graphene/CNTs were synthesized in an Argon atmosphere at a pressure of (2 × 10−2–5 × 10−3) mbar, with the substrate maintained at 300 [...] Read more.
Graphene/CNT layers were deposited onto platinum electrodes of an interdigitated sensor using radio-frequency magnetron sputtering. The graphene/CNTs were synthesized in an Argon atmosphere at a pressure of (2 × 10−2–5 × 10−3) mbar, with the substrate maintained at 300 °C either through continuous heating with an electronically controlled heater or by applying a −200 V bias using a direct current power supply throughout the deposition process. The study compares the surface morphology, carbon atom arrangement within the layer volumes, and electrical properties of the films as influenced by the different methods of substrate heating. X-ray diffraction and Raman spectroscopy confirmed the formation of CNTs within the graphene matrix. Additionally, scanning electron microscopy revealed that the carbon nanotubes are aligned and organized into cluster-like structure. The graphene/CNT layers produced at higher pressures present exponential I–V characteristics that ascertain the semiconducting character of the layers and their suitability for applications in gas sensing. Full article
(This article belongs to the Special Issue New Advances in Graphene Synthesis and Applications)
Show Figures

Graphical abstract

Back to TopTop