Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = radiation-induced tumorigenesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2646 KiB  
Article
Radiation Quality-Dependent Progressive Increase in Oxidative DNA Damage and Intestinal Tumorigenesis in Apc1638N/+ Mice
by Kamendra Kumar, Santosh Kumar, Jerry Angdisen, Kamal Datta, Albert J. Fornace and Shubhankar Suman
Curr. Oncol. 2025, 32(7), 382; https://doi.org/10.3390/curroncol32070382 - 1 Jul 2025
Viewed by 406
Abstract
Exposure to high-linear energy transfer (LET) heavy ions, such as 28Si, poses a significant cancer risk for astronauts. While previous studies have linked high-LET radiation exposure to persistent oxidative stress and dysregulated stress responses in intestinal crypt cells with an increased risk [...] Read more.
Exposure to high-linear energy transfer (LET) heavy ions, such as 28Si, poses a significant cancer risk for astronauts. While previous studies have linked high-LET radiation exposure to persistent oxidative stress and dysregulated stress responses in intestinal crypt cells with an increased risk of tumorigenesis, the relationship between IR-induced oxidative DNA damage and intestinal cancer risk remains incompletely understood. Here, we investigated the time-dependent effects of 28Si-ion radiation on intestinal tumorigenesis and oxidative DNA damage in Apc1638N/+ mice, a model for human intestinal cancer predisposition. Male Apc1638N/+ mice were exposed to 10 cGy of either γ-rays (low-LET) or 28Si-ions (high-LET), and intestinal tumor burden was assessed at 60 and 150 days post-irradiation. While both radiation groups showed modest, non-significant tumor increases at 60 days, 28Si-irradiated mice exhibited an approximately 2.5-fold increase in tumor incidence by 150 days, with a higher incidence of invasive carcinomas compared to γ and sham groups. Serum 8-OxodG levels, a marker of systemic oxidative stress, were significantly elevated in the 28Si-ion group, correlating with increased intestinal 8-OxodG staining. Additionally, assessment of the proliferation marker Cyclin D1 and metaplasia marker Guanylyl Cyclase C (GUCY2C) also revealed significant crypt cell hyperproliferation accompanied by increased metaplasia in 28Si-exposed mouse intestines. Positive correlations between serum 8-OxodG and tumor-associated endpoints provide compelling evidence that exposure to 28Si-ions induces progressive intestinal tumorigenesis through sustained oxidative DNA damage, crypt cell hyperproliferation, and metaplastic transformation. This study provides evidence in support of the radiation quality-dependent progressive increase in systemic and intestinal levels of 8-OxodG during intestinal carcinogenesis. Moreover, the progressive increase in oxidative DNA damage and simultaneous increase in oncogenic events after 28Si exposure also suggest that non-targeted effects might be a significant player in space radiation-induced intestinal cancer development. The correlation between serum 8-OxodG and oncogenic endpoints supports its potential utility as a predictive biomarker of high-LET IR-induced intestinal carcinogenesis, with implications for astronaut health risk monitoring during long-duration space missions. Full article
(This article belongs to the Section Gastrointestinal Oncology)
Show Figures

Graphical abstract

31 pages, 2104 KiB  
Review
Balancing Regeneration and Resistance: Targeting DCLK1 to Mitigate Gastrointestinal Radiation Injury and Oncogenesis
by Landon L. Moore, Jerry Jaboin, Milton L. Brown and Courtney W. Houchen
Cancers 2025, 17(12), 2050; https://doi.org/10.3390/cancers17122050 - 19 Jun 2025
Viewed by 788
Abstract
Ionizing radiation (IR) poses a dual challenge in medicine; while essential for cancer therapy, it inflicts collateral damage to normal tissues, particularly the gastrointestinal (GI) tract. High-dose IR triggers acute radiation syndrome (ARS), characterized by crypt stem cell depletion, mucosal barrier disruption, inflammation, [...] Read more.
Ionizing radiation (IR) poses a dual challenge in medicine; while essential for cancer therapy, it inflicts collateral damage to normal tissues, particularly the gastrointestinal (GI) tract. High-dose IR triggers acute radiation syndrome (ARS), characterized by crypt stem cell depletion, mucosal barrier disruption, inflammation, and potential progression to fibrosis and secondary malignancy. Emerging evidence identifies the epithelial kinase doublecortin-like kinase 1 (DCLK1)—highly expressed in GI tuft cells and cancer stem-like cells—as a master regulator of post-IR responses. DCLK1 integrates DNA repair (via p53/ATM), and survival signaling (via NF-κB, TGF-β, and MAPK) to promote epithelial regeneration, yet these same mechanisms contribute to therapy resistance and oncogenesis. DCLK1 further modulates the immune microenvironment by skewing macrophages toward an immunosuppressive M2 phenotype, enhancing tissue remodeling, angiogenesis, and immune evasion. Preclinical studies demonstrate that DCLK1 inhibition sensitizes tumors to radiotherapy while preserving mucosal repair. Therapeutic strategies targeting DCLK1, alongside radioprotective agents, immunomodulators, and senolytics, may enhance regeneration, limit fibrosis, and eradicate therapy-resistant cancer stem cells. This review highlights DCLK1’s dual role in regeneration and tumorigenesis and evaluates its potential as a therapeutic target and biomarker in IR-induced GI damage. Full article
(This article belongs to the Section Cancer Biomarkers)
Show Figures

Figure 1

13 pages, 3212 KiB  
Case Report
Radiation-Induced Synchronous Parathyroid Carcinoma and Papillary Thyroid Carcinoma: Clinical, Morphological, and Genetic Insights
by Gábor Iványi, Alexandros Christofi, Gábor Sipka, Tamás Zombori, Levente Kuthi, Andrea Simon, Deján Dobi, György Lázár, Zsuzsanna Valkusz and Béla Iványi
Int. J. Mol. Sci. 2025, 26(9), 4441; https://doi.org/10.3390/ijms26094441 - 7 May 2025
Viewed by 847
Abstract
The clinicopathological and molecular features of synchronous parathyroid carcinoma (PC) and thyroid carcinoma in a male patient are presented. At 11, he received mantle field radiotherapy for Hodgkin lymphoma. He had a 26-year adulthood history of recurrent nephrolithiasis treated five times with lithotripsy. [...] Read more.
The clinicopathological and molecular features of synchronous parathyroid carcinoma (PC) and thyroid carcinoma in a male patient are presented. At 11, he received mantle field radiotherapy for Hodgkin lymphoma. He had a 26-year adulthood history of recurrent nephrolithiasis treated five times with lithotripsy. At 52, he was referred to our clinic for hypercalcemia. Primary hyperparathyroidism was diagnosed (calcium: 3.46 mmol/L, parathormone: 150 pmol/L, preserved renal function, nephrolithiasis, and osteoporosis). Neck ultrasound revealed a 41 × 31 × 37 mm nodule in the left thyroid and smaller nodules in the right thyroid. Enlarged cervical lymph nodes were not observed. The large nodule was interpreted as parathyroid adenoma on 99Tc-pertechnetate scintigraphy/99Tc-MIBI scintigraphy with SPECT/CT. Total left-sided and subtotal right-sided thyroidectomy were performed. Histopathology confirmed locally invasive, low-grade PC (pT2; positive for parafibromin and E-cadherin, negative for galectin-3 and PGP9.5; wild-type expression for p53 and retinoblastoma protein; Ki-67 index 10%) and incidental papillary thyroid carcinoma (pT1b). Genetic profiling revealed no loss in CDC73, MEN1, CCND1, PIK3CA, CDH1, RB1, and TP53 genes. Deletions in CDKN2A, LATS1, ARID1A, ARID1B, RAD54L, and MUTYH genes and monosomies in nine chromosomes were identified. The tumor mutational burden and genomic instability score were low, and the tumor was microsatellite-stable. The thyroid carcinoma exhibited a TRIM24::BRAF fusion. Following surgery, the parathormone and calcium levels had normalized, and the patient underwent radioiodine treatment for thyroid cancer. The follow-up of 14 months was eventless. In summary, the clinical, laboratory, and imaging features of hyperparathyroidism taken together could have suggested malignancy, then confirmed histologically. The synchronous carcinomas were most likely caused by irradiation treatment diagnosed 41 years after exposure. It seems that the radiation injury initially induced parathyroid adenoma in young adulthood, which underwent a malignant transformation around age fifty. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

12 pages, 1362 KiB  
Review
Ionizing Radiation May Induce Tumors Partly Through the Alteration or Regulation of Mismatch Repair Genes
by Mingzhu Sun, Kevin Monahan, Jayne Moquet and Stephen Barnard
Cancers 2025, 17(4), 564; https://doi.org/10.3390/cancers17040564 - 7 Feb 2025
Viewed by 1377
Abstract
Ionizing radiation is mutagenic and carcinogenic, and it is reported to induce primary and secondary tumors with intestinal tumors being one of the most commonly observed. However, the pathological and molecular mechanism(s) underlying the radiation-associated tumorigenesis remain unclear. A link between radiation and [...] Read more.
Ionizing radiation is mutagenic and carcinogenic, and it is reported to induce primary and secondary tumors with intestinal tumors being one of the most commonly observed. However, the pathological and molecular mechanism(s) underlying the radiation-associated tumorigenesis remain unclear. A link between radiation and somatic tumorigenesis partly through genetic, epigenetic alteration and/or regulation of mismatch repair (MMR) genes has been hypothesized for the first time within this review. Clinical observations and experimental findings provide significant support for this association including MMR mutations as well as altered MMR RNA and protein expressions that occurred post-exposure, although existing evidence in published literature is sparse in this niche area. Some speculative mechanisms are suggested with this review to inform future research. Further studies are needed to understand the roles of the MMR system in response to radiation and to test this possible connection which could potentially provide useful and urgently needed information for clinical guidance. Full article
(This article belongs to the Special Issue The Future of Radiation Research in Cancers, 2nd Edition)
Show Figures

Figure 1

17 pages, 4481 KiB  
Article
Simulated Galactic Cosmic Radiation Exposure-Induced Mammary Tumorigenesis in ApcMin/+ Mice Coincides with Activation of ERα-ERRα-SPP1 Signaling Axis
by Kamendra Kumar, Jerry Angdisen, Jinwenrui Ma, Kamal Datta, Albert J. Fornace and Shubhankar Suman
Cancers 2024, 16(23), 3954; https://doi.org/10.3390/cancers16233954 - 26 Nov 2024
Cited by 1 | Viewed by 1133
Abstract
Background: Exposure to galactic cosmic radiation (GCR) is a breast cancer risk factor for female astronauts on deep-space missions. However, the specific signaling mechanisms driving GCR-induced breast cancer have not yet been determined. Methods: This study aimed to investigate the role of the [...] Read more.
Background: Exposure to galactic cosmic radiation (GCR) is a breast cancer risk factor for female astronauts on deep-space missions. However, the specific signaling mechanisms driving GCR-induced breast cancer have not yet been determined. Methods: This study aimed to investigate the role of the estrogen-induced ERα-ERRα-SPP1 signaling axis in relation to mammary tumorigenesis in female ApcMin/+ mice exposed to simulated GCR (GCRsim) at 100–110 days post-exposure. Results: In GCRsim-exposed mice, we observed marked elevations in serum estradiol, increased ductal overgrowth, ERα activation, and upregulation of ERα target genes with pro-tumorigenic functions in mammary tissues that was coupled with a higher mammary tumorigenesis, relative to control. Additionally, the ERα target gene Esrra, which encodes ERRα, was also upregulated along with its oncogenic target gene Spp1, indicating the activation of the ERα-ERRα-SPP1 axis in mouse mammary tissues after GCRsim exposure. Using a human tissue microarray and human breast cancer gene expression analysis, we also highlighted the conserved nature of the ERα-ERRα-SPP1 signaling in human breast cancer development. Conclusions: We identified the ERα-ERRα-SPP1 signaling axis as a potential key mediator in GCR-induced breast cancer with conserved activation in human breast cancer. These findings suggest that targeting this pathway could serve as a potential target for therapeutic intervention to safeguard female astronauts during and after a prolonged outer space mission. Full article
(This article belongs to the Special Issue Radiation Exposure, Inflammation and Cancers)
Show Figures

Figure 1

17 pages, 6815 KiB  
Article
Effects of High-Linear-Energy-Transfer Heavy Ion Radiation on Intestinal Stem Cells: Implications for Gut Health and Tumorigenesis
by Santosh Kumar, Shubhankar Suman, Jerry Angdisen, Bo-Hyun Moon, Bhaskar V. S. Kallakury, Kamal Datta and Albert J. Fornace
Cancers 2024, 16(19), 3392; https://doi.org/10.3390/cancers16193392 - 4 Oct 2024
Viewed by 2114
Abstract
Heavy ion radiation, prevalent in outer space and relevant for radiotherapy, is densely ionizing and poses a risk to intestinal stem cells (ISCs), which are vital for maintaining intestinal homeostasis. Earlier studies have shown that heavy-ion radiation can cause chronic oxidative stress, persistent [...] Read more.
Heavy ion radiation, prevalent in outer space and relevant for radiotherapy, is densely ionizing and poses a risk to intestinal stem cells (ISCs), which are vital for maintaining intestinal homeostasis. Earlier studies have shown that heavy-ion radiation can cause chronic oxidative stress, persistent DNA damage, cellular senescence, and the development of a senescence-associated secretory phenotype (SASP) in mouse intestinal mucosa. However, the specific impact on different cell types, particularly Lgr5+ intestinal stem cells (ISCs), which are crucial for maintaining cellular homeostasis, GI function, and tumor initiation under genomic stress, remains understudied. Using an ISCs-relevant mouse model (Lgr5+ mice) and its GI tumor surrogate (Lgr5+Apc1638N/+ mice), we investigated ISCs-specific molecular alterations after high-LET radiation exposure. Tissue sections were assessed for senescence and SASP signaling at 2, 5 and 12 months post-exposure. Lgr5+ cells exhibited significantly greater oxidative stress following 28Si irradiation compared to γ-ray or controls. Both Lgr5+ cells and Paneth cells showed signs of senescence and developed a senescence-associated secretory phenotype (SASP) after 28Si exposure. Moreover, gene expression of pro-inflammatory and pro-growth SASP factors remained persistently elevated for up to a year post-28Si irradiation. Additionally, p38 MAPK and NF-κB signaling pathways, which are critical for stress responses and inflammation, were also upregulated after 28Si radiation. Transcripts involved in nutrient absorption and barrier function were also altered following irradiation. In Lgr5+Apc1638N/+ mice, tumor incidence was significantly higher in those exposed to 28Si radiation compared to the spontaneous tumorigenesis observed in control mice. Our results indicate that high-LET 28Si exposure induces persistent DNA damage, oxidative stress, senescence, and SASP in Lgr5+ ISCs, potentially predisposing astronauts to altered nutrient absorption, barrier function, and GI carcinogenesis during and after a long-duration outer space mission. Full article
(This article belongs to the Special Issue Radiation Exposure, Inflammation and Cancers)
Show Figures

Figure 1

12 pages, 1677 KiB  
Communication
Comparative Single Vesicle Analysis of Aqueous Humor Extracellular Vesicles before and after Radiation in Uveal Melanoma Eyes
by Shreya Sirivolu, Chen-Ching Peng, Paolo Neviani, Benjamin Y. Xu, Jesse L. Berry and Liya Xu
Int. J. Mol. Sci. 2024, 25(11), 6035; https://doi.org/10.3390/ijms25116035 - 30 May 2024
Cited by 2 | Viewed by 1469
Abstract
Small extracellular vesicles (sEVs) have been shown to promote tumorigenesis, treatment resistance, and metastasis in multiple cancer types; however, sEVs in the aqueous humor (AH) of uveal melanoma (UM) patients have never previously been profiled. In this study, we used single particle analysis [...] Read more.
Small extracellular vesicles (sEVs) have been shown to promote tumorigenesis, treatment resistance, and metastasis in multiple cancer types; however, sEVs in the aqueous humor (AH) of uveal melanoma (UM) patients have never previously been profiled. In this study, we used single particle analysis to characterize sEV subpopulations in the AH of UM patients by quantifying their size, concentration, and phenotypes based on cell surface markers, specifically the tetraspanin co-expression patterns of CD9, CD63, and CD81. sEVs were analyzed from paired pre- and post-treatment (brachytherapy, a form of radiation) AH samples collected from 19 UM patients. In post-brachytherapy samples, two subpopulations, CD63/81+ and CD9/63/81+ sEVs, were significantly increased. These trends existed even when stratified by tumor location and GEP class 1 and class 2 (albeit not significant for GEP class 2). In this initial report of single vesicle profiling of sEVs in the AH of UM patients, we demonstrated that sEVs can be detected in the AH. We further identified two subpopulations that were increased post-brachytherapy, which may suggest radiation-induced release of these particles, potentially from tumor cells. Further study of the cargo carried by these sEV subpopulations may uncover important biomarkers and insights into tumorigenesis for UM. Full article
(This article belongs to the Special Issue Advances in Rare Diseases Biomarkers)
Show Figures

Figure 1

17 pages, 1353 KiB  
Review
The Causes and Consequences of DNA Damage and Chromosomal Instability Induced by Human Papillomavirus
by Kathryn M. Jones, Ava Bryan, Emily McCunn, Pate E. Lantz, Hunter Blalock, Isabel C. Ojeda, Kavi Mehta and Pippa F. Cosper
Cancers 2024, 16(9), 1662; https://doi.org/10.3390/cancers16091662 - 25 Apr 2024
Cited by 7 | Viewed by 2674
Abstract
High-risk human papillomaviruses (HPVs) are the main cause of cervical, oropharyngeal, and anogenital cancers, which are all treated with definitive chemoradiation therapy when locally advanced. HPV proteins are known to exploit the host DNA damage response to enable viral replication and the epithelial [...] Read more.
High-risk human papillomaviruses (HPVs) are the main cause of cervical, oropharyngeal, and anogenital cancers, which are all treated with definitive chemoradiation therapy when locally advanced. HPV proteins are known to exploit the host DNA damage response to enable viral replication and the epithelial differentiation protocol. This has far-reaching consequences for the host genome, as the DNA damage response is critical for the maintenance of genomic stability. HPV+ cells therefore have increased DNA damage, leading to widespread genomic instability, a hallmark of cancer, which can contribute to tumorigenesis. Following transformation, high-risk HPV oncoproteins induce chromosomal instability, or chromosome missegregation during mitosis, which is associated with a further increase in DNA damage, particularly due to micronuclei and double-strand break formation. Thus, HPV induces significant DNA damage and activation of the DNA damage response in multiple contexts, which likely affects radiation sensitivity and efficacy. Here, we review how HPV activates the DNA damage response, how it induces chromosome missegregation and micronuclei formation, and discuss how these factors may affect radiation response. Understanding how HPV affects the DNA damage response in the context of radiation therapy may help determine potential mechanisms to improve therapeutic response. Full article
Show Figures

Figure 1

12 pages, 2968 KiB  
Article
Expression of Stem Cell Markers in High-LET Space Radiation-Induced Intestinal Tumors in Apc1638N/+ Mouse Intestine
by Elaina Kwiatkowski, Shubhankar Suman, Bhaskar V. S. Kallakury, Kamal Datta, Albert J. Fornace and Santosh Kumar
Cancers 2023, 15(17), 4240; https://doi.org/10.3390/cancers15174240 - 24 Aug 2023
Cited by 4 | Viewed by 1739
Abstract
Estimation of cancer risk among astronauts planning to undertake future deep-space missions requires understanding the quantitative and qualitative differences in radiogenic cancers after low- and high-LET radiation exposures. Previously, we reported a multifold higher RBE for high-LET radiation-induced gastrointestinal (GI) tumorigenesis in Apc [...] Read more.
Estimation of cancer risk among astronauts planning to undertake future deep-space missions requires understanding the quantitative and qualitative differences in radiogenic cancers after low- and high-LET radiation exposures. Previously, we reported a multifold higher RBE for high-LET radiation-induced gastrointestinal (GI) tumorigenesis in Apc1638N/+ mice. Using the same model system, i.e., Apc1638N/+ mice, here, we report qualitative differences in the cellular phenotype of low- and high-LET radiation-induced GI tumors. Stem cell (SC) phenotypes were identified using BMI1, ALDH1, CD133, DCLK1, MSI1, and LGR5 markers in low (γ-rays)- and high (56Fe)-LET radiation-induced and spontaneous tumors. We also assessed the expression of these markers in the adjacent normal mucosa. All six of these putative SC markers were shown to be overexpressed in tumors compared to the adjacent normal intestinal tissue. A differential SC phenotype for spontaneous and radiogenic intestinal tumors in Apc1638N/+ mice was observed, where the ALDH1, BMI1, CD133, MSI1, and DCLK1 expressing cells were increased, while LGR5 expressing cells were decreased in 56Fe-induced tumors compared to γ-ray-induced and spontaneous tumors. Furthermore, higher β-catenin activation (marked by nuclear localization) was observed in 56Fe-induced tumors compared to γ and spontaneous tumors. Since differential tumor cell phenotype along with activated β-catenin may very well affect malignant progression, our findings are relevant to understanding the higher carcinogenic risk of high-LET radiation. This study has implications for the assessment of GI-cancer risk among astronauts, as well as for the estimation of secondary cancer risk among patients receiving hadron therapy, considering that our results indicate increased stemness properties after radiation. Full article
Show Figures

Figure 1

18 pages, 1962 KiB  
Review
High-LET-Radiation-Induced Persistent DNA Damage Response Signaling and Gastrointestinal Cancer Development
by Kamendra Kumar, Santosh Kumar, Kamal Datta, Albert J. Fornace and Shubhankar Suman
Curr. Oncol. 2023, 30(6), 5497-5514; https://doi.org/10.3390/curroncol30060416 - 7 Jun 2023
Cited by 17 | Viewed by 5448
Abstract
Ionizing radiation (IR) dose, dose rate, and linear energy transfer (LET) determine cellular DNA damage quality and quantity. High-LET heavy ions are prevalent in the deep space environment and can deposit a much greater fraction of total energy in a shorter distance within [...] Read more.
Ionizing radiation (IR) dose, dose rate, and linear energy transfer (LET) determine cellular DNA damage quality and quantity. High-LET heavy ions are prevalent in the deep space environment and can deposit a much greater fraction of total energy in a shorter distance within a cell, causing extensive DNA damage relative to the same dose of low-LET photon radiation. Based on the DNA damage tolerance of a cell, cellular responses are initiated for recovery, cell death, senescence, or proliferation, which are determined through a concerted action of signaling networks classified as DNA damage response (DDR) signaling. The IR-induced DDR initiates cell cycle arrest to repair damaged DNA. When DNA damage is beyond the cellular repair capacity, the DDR for cell death is initiated. An alternative DDR-associated anti-proliferative pathway is the onset of cellular senescence with persistent cell cycle arrest, which is primarily a defense mechanism against oncogenesis. Ongoing DNA damage accumulation below the cell death threshold but above the senescence threshold, along with persistent SASP signaling after chronic exposure to space radiation, pose an increased risk of tumorigenesis in the proliferative gastrointestinal (GI) epithelium, where a subset of IR-induced senescent cells can acquire a senescence-associated secretory phenotype (SASP) and potentially drive oncogenic signaling in nearby bystander cells. Moreover, DDR alterations could result in both somatic gene mutations as well as activation of the pro-inflammatory, pro-oncogenic SASP signaling known to accelerate adenoma-to-carcinoma progression during radiation-induced GI cancer development. In this review, we describe the complex interplay between persistent DNA damage, DDR, cellular senescence, and SASP-associated pro-inflammatory oncogenic signaling in the context of GI carcinogenesis. Full article
(This article belongs to the Section Gastrointestinal Oncology)
Show Figures

Figure 1

19 pages, 1354 KiB  
Review
DNA Damage and Its Role in Cancer Therapeutics
by Jaeyoung Moon, Ichiwa Kitty, Kusuma Renata, Sisi Qin, Fei Zhao and Wootae Kim
Int. J. Mol. Sci. 2023, 24(5), 4741; https://doi.org/10.3390/ijms24054741 - 1 Mar 2023
Cited by 45 | Viewed by 19715
Abstract
DNA damage is a double-edged sword in cancer cells. On the one hand, DNA damage exacerbates gene mutation frequency and cancer risk. Mutations in key DNA repair genes, such as breast cancer 1 (BRCA1) and/or breast cancer 2 (BRCA2), [...] Read more.
DNA damage is a double-edged sword in cancer cells. On the one hand, DNA damage exacerbates gene mutation frequency and cancer risk. Mutations in key DNA repair genes, such as breast cancer 1 (BRCA1) and/or breast cancer 2 (BRCA2), induce genomic instability and promote tumorigenesis. On the other hand, the induction of DNA damage using chemical reagents or radiation kills cancer cells effectively. Cancer-burdening mutations in key DNA repair-related genes imply relatively high sensitivity to chemotherapy or radiotherapy because of reduced DNA repair efficiency. Therefore, designing specific inhibitors targeting key enzymes in the DNA repair pathway is an effective way to induce synthetic lethality with chemotherapy or radiotherapy in cancer therapeutics. This study reviews the general pathways involved in DNA repair in cancer cells and the potential proteins that could be targeted for cancer therapeutics. Full article
(This article belongs to the Special Issue DNA Damage, Repair, and Cancer Metabolism)
Show Figures

Figure 1

8 pages, 304 KiB  
Review
Radiation-Induced Esophageal Cancer: Investigating the Pathogenesis, Management, and Prognosis
by Athanasios Syllaios, Michail Vailas, Maria Tolia, Nikolaos Charalampakis, Konstantinos Vlachos, Emmanouil I. Kapetanakis, Periklis I. Tomos and Dimitrios Schizas
Medicina 2022, 58(7), 949; https://doi.org/10.3390/medicina58070949 - 18 Jul 2022
Cited by 6 | Viewed by 3315
Abstract
One of the most serious late side effects of irradiation is the promotion of tumorigenesis. Radiation-induced esophageal cancer (RIEC) can arise in a previously irradiated field, mostly in patients previously irradiated for thoracic malignancies such as breast cancer, Hodgkin and non-Hodgkin lymphomas, head [...] Read more.
One of the most serious late side effects of irradiation is the promotion of tumorigenesis. Radiation-induced esophageal cancer (RIEC) can arise in a previously irradiated field, mostly in patients previously irradiated for thoracic malignancies such as breast cancer, Hodgkin and non-Hodgkin lymphomas, head and neck cancers, lung cancer, or previous esophageal cancer. RIEC is rare and accounts for less than 1% of all carcinomas of the esophagus. There are little data available in the current literature regarding pathogenesis, diagnosis, treatment, and outcome of esophageal cancer developed in a previously irradiated field. RIEC seems to represent a biologically aggressive disease with a poor prognosis. Although it is difficult to perform radical surgery on a previously irradiated field, R0 resection remains the mainstay of treatment. The use of neoadjuvant and adjuvant chemoradiotherapy remains very helpful in RIEC, similarly to conventional esophageal cancer protocols. The aim of this article is to elucidate this rare but challenging entity. Full article
13 pages, 1647 KiB  
Article
Heavy-Ion-Induced Lung Tumors: Dose- & LET-Dependence
by Polly Y. Chang, James Bakke, Chris J. Rosen, Kathleen A. Bjornstad, Jian-Hua Mao and Eleanor A. Blakely
Life 2022, 12(6), 907; https://doi.org/10.3390/life12060907 - 17 Jun 2022
Cited by 2 | Viewed by 2692
Abstract
There is a limited published literature reporting dose-dependent data for in vivo tumorigenesis prevalence in different organs of various rodent models after exposure to low, single doses of charged particle beams. The goal of this study is to reduce uncertainties in estimating particle-radiation-induced [...] Read more.
There is a limited published literature reporting dose-dependent data for in vivo tumorigenesis prevalence in different organs of various rodent models after exposure to low, single doses of charged particle beams. The goal of this study is to reduce uncertainties in estimating particle-radiation-induced risk of lung tumorigenesis for manned travel into deep space by improving our understanding of the high-LET-dependent dose-response from exposure to individual ion beams after low particle doses (0.03–0.80 Gy). Female CB6F1 mice were irradiated with low single doses of either oxygen, silicon, titanium, or iron ions at various energies to cover a range of dose-averaged LET values from 0.2–193 keV/µm, using 137Cs γ-rays as the reference radiation. Sham-treated controls were included in each individual experiment totally 398 animals across the 5 studies reported. Based on power calculations, between 40–156 mice were included in each of the treatment groups. Tumor prevalence at 16 months after radiation exposure was determined and compared to the age-matched, sham-treated animals. Results indicate that lung tumor prevalence is non-linear as a function of dose with suggestions of threshold doses depending on the LET of the beams. Histopathological evaluations of the tumors showed that the majority of tumors were benign bronchioloalveolar adenomas with occasional carcinomas or lymphosarcomas which may have resulted from metastases from other sites. Full article
(This article belongs to the Special Issue Space Radiobiology)
Show Figures

Figure 1

12 pages, 1361 KiB  
Article
A Unique Spectrum of Spontaneous Tumors in Dino Knockout Mice Identifies Tissue-Specific Requirements for Tumor Suppression
by Christina B. Marney, Erik S. Anderson, Rachel Baum and Adam M. Schmitt
Cells 2022, 11(11), 1818; https://doi.org/10.3390/cells11111818 - 2 Jun 2022
Cited by 5 | Viewed by 2683
Abstract
Here, we report that Dino, a lncRNA required for p53 signaling, suppresses spontaneous tumorigenesis in mice. Dino−/− mice develop significantly more malignant tumors than Dino+/+ littermate controls, consisting predominantly of sarcomas, B cell lymphomas and additional rare tumors. While the prevalence [...] Read more.
Here, we report that Dino, a lncRNA required for p53 signaling, suppresses spontaneous tumorigenesis in mice. Dino−/− mice develop significantly more malignant tumors than Dino+/+ littermate controls, consisting predominantly of sarcomas, B cell lymphomas and additional rare tumors. While the prevalence of lymphomas and sarcomas in Dino−/− mice is similar to that of mice with p53 loss, important distinctions emerged. p53-null mice predominantly develop T cell lymphomas; however, no spontaneous T cell lymphoma was observed in Dino−/− mice. Rather than being a phenocopy of the p53-null tumor spectrum, spontaneous tumors in Dino−/− mice resemble the spectrum of human cancers in which DINO is recurrently silenced by methylation in a manner that is mutually exclusive with TP53 alterations, suggesting that similar tissues in human and mouse require DINO for tumor suppression. Consistent with a tissue-specific role for Dino in tumor suppression, loss of Dino had no impact on the development of radiation-induced T cell lymphoma and oncogene-driven medulloblastoma, tumors that are accelerated by the loss of p53. Taken together, these data indicate that Dino serves as a potent tumor suppressor molecule specific to a select subset of tissues in mice and humans. Full article
(This article belongs to the Special Issue Regulatory Roles of Non-coding RNAs in Cancer)
Show Figures

Figure 1

13 pages, 2502 KiB  
Article
G9a Knockdown Suppresses Cancer Aggressiveness by Facilitating Smad Protein Phosphorylation through Increasing BMP5 Expression in Luminal A Type Breast Cancer
by Yunho Jin, Shinji Park, Soon-Yong Park, Chae-Young Lee, Da-Young Eum, Jae-Woong Shim, Si-Ho Choi, Yoo-Jin Choi, Seong-Joon Park and Kyu Heo
Int. J. Mol. Sci. 2022, 23(2), 589; https://doi.org/10.3390/ijms23020589 - 6 Jan 2022
Cited by 17 | Viewed by 2802
Abstract
Epigenetic abnormalities affect tumor progression, as well as gene expression and function. Among the diverse epigenetic modulators, the histone methyltransferase G9a has been focused on due to its role in accelerating tumorigenesis and metastasis. Although epigenetic dysregulation is closely related to tumor progression, [...] Read more.
Epigenetic abnormalities affect tumor progression, as well as gene expression and function. Among the diverse epigenetic modulators, the histone methyltransferase G9a has been focused on due to its role in accelerating tumorigenesis and metastasis. Although epigenetic dysregulation is closely related to tumor progression, reports regarding the relationship between G9a and its possible downstream factors regulating breast tumor growth are scarce. Therefore, we aimed to verify the role of G9a and its presumable downstream regulators during malignant progression of breast cancer. G9a-depleted MCF7 and T47D breast cancer cells exhibited suppressed motility, including migration and invasion, and an improved response to ionizing radiation. To identify the possible key factors underlying these effects, microarray analysis was performed, and a TGF-β superfamily member, BMP5, was selected as a prominent target gene. It was found that BMP5 expression was markedly increased by G9a knockdown. Moreover, reduction in the migration/invasion ability of MCF7 and T47D breast cancer cells was induced by BMP5. Interestingly, a G9a-depletion-mediated increase in BMP5 expression induced the phosphorylation of Smad proteins, which are the intracellular signaling mediators of BMP5. Accordingly, we concluded that the observed antitumor effects may be based on the G9a-depletion-mediated increase in BMP5 expression and the consequent facilitation of Smad protein phosphorylation. Full article
(This article belongs to the Special Issue Breast Cancer Mechanistic Insights and Targeted Therapies)
Show Figures

Figure 1

Back to TopTop