Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (142)

Search Parameters:
Keywords = radiated electromagnetic emissions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 9544 KiB  
Article
Electromagnetic Interference Effect of Portable Electronic Device with Satellite Communication to GPS Antenna
by Zhenyang Ma, Sijia Zhang, Zhaobin Duan and Yicheng Li
Sensors 2025, 25(14), 4438; https://doi.org/10.3390/s25144438 - 16 Jul 2025
Viewed by 264
Abstract
Recent technological advancements have resulted in the emergence of portable electronic devices (PEDs), including mobile phones equipped with satellite communication capabilities. These devices generally emit higher power, which can potentially cause electromagnetic interference to GPS antennas. This study uses both simulation and experimental [...] Read more.
Recent technological advancements have resulted in the emergence of portable electronic devices (PEDs), including mobile phones equipped with satellite communication capabilities. These devices generally emit higher power, which can potentially cause electromagnetic interference to GPS antennas. This study uses both simulation and experimental methods to evaluate the interference path loss (IPL) between PEDs located inside an A320 aircraft and an external GPS antenna. The effects of PED location, antenna polarization, and frequency bands on IPL were simulated and analyzed. Additionally, measurement experiments were conducted on an A320 aircraft, and statistical methods were used to compare the experimental data with the simulation results. Considering the front-door coupling of both spurious and intentional radiated emissions, the measured IPL is up to 15 ± 3 dB lower than the IPLtarget. This result should be interpreted with caution. This issue offers new insights into the potential risks of electromagnetic interference in aviation environments. The findings help quantify the probability of interference with GPS antennas. Furthermore, the modeling simplification method used in this study may be applicable to the analysis of other large and complex structures. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

26 pages, 2868 KiB  
Article
Resonant Oscillations of Ion-Stabilized Nanobubbles in Water as a Possible Source of Electromagnetic Radiation in the Gigahertz Range
by Nikolai F. Bunkin, Yulia V. Novakovskaya, Rostislav Y. Gerasimov, Barry W. Ninham, Sergey A. Tarasov, Natalia N. Rodionova and German O. Stepanov
Int. J. Mol. Sci. 2025, 26(14), 6811; https://doi.org/10.3390/ijms26146811 - 16 Jul 2025
Viewed by 216
Abstract
It is well known that aqueous solutions can emit electromagnetic waves in the radio frequency range. However, the physical nature of this process is not yet fully understood. In this work, the possible role of gas nanobubbles formed in the bulk liquid is [...] Read more.
It is well known that aqueous solutions can emit electromagnetic waves in the radio frequency range. However, the physical nature of this process is not yet fully understood. In this work, the possible role of gas nanobubbles formed in the bulk liquid is considered. We develop a theoretical model based on the concept of gas bubbles stabilized by ions, or “bubstons”. The role of bicarbonate and hydronium ions in the formation and stabilization of bubstons is explained through the use of quantum chemical simulations. A new model of oscillating bubstons, which takes into account the double electric layer formed around their gas core, is proposed. Theoretical estimates of the frequencies and intensities of oscillations of such compound species are obtained. It was determined that oscillations of negatively charged bubstons can occur in the GHz frequency range, and should be accompanied by the emission of electromagnetic waves. To validate the theoretical assumptions, we used dynamic light scattering (DLS) and showed that, after subjecting aqueous solutions to vigorous shaking with a force of 4 or 8 N (kg·m/s2) and a frequency of 4–5 Hz, the volume number density of bubstons increased by about two orders of magnitude. Radiometric measurements in the frequency range of 50 MHz to 3.5 GHz revealed an increase in the intensity of radiation emitted by water samples upon the vibrational treatment. It is argued that, according to our new theoretical model, this radiation can be caused by oscillating bubstons. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

17 pages, 3923 KiB  
Article
The Parametrization of Electromagnetic Emissions and Hazards from a Wearable Device for Wireless Information Transfer with a 2.45 GHz ISM Band Antenna
by Patryk Zradziński, Jolanta Karpowicz and Krzysztof Gryz
Appl. Sci. 2025, 15(12), 6602; https://doi.org/10.3390/app15126602 - 12 Jun 2025
Viewed by 342
Abstract
The parameters of electromagnetic emissions from the antenna of a wearable radio communication module (parameterizing device functionality) were investigated at different positions near the body where an antenna is located. The specific absorption rate (SAR) coefficient was also investigated as a way of [...] Read more.
The parameters of electromagnetic emissions from the antenna of a wearable radio communication module (parameterizing device functionality) were investigated at different positions near the body where an antenna is located. The specific absorption rate (SAR) coefficient was also investigated as a way of parameterizing the absorption of electromagnetic radiation in the user’s body adjacent to the antenna in various locations. The modeled exposure scenarios concerned a body-worn device with a 2.45 GHz ISM band antenna (used, e.g., for Wi-Fi 2G/Bluetooth applications). The antennas were modeled as follows: (1) located directly on the body (considered to be a model of a disposable, adhesive device) or (2) next to the body (considered to be a model of a classic, reusable, wearable electronic device located inside a plastic housing). Several body sections adjacent to the antenna were considered: head, arm, forearm, and chest (simplified and anatomical body models were used). The numerical models of the exposure scenarios were verified by relevant laboratory tests using physical models. It was found that the use of simplified models of the human body (numerical or physical) may be sufficient when analyzing antenna performance and SAR in a user’s body, such as in studies regarding microwave imaging and sensing, wireless implantable devices, wireless body-area networks or SAR estimation. Full article
(This article belongs to the Special Issue Antennas for Next-Generation Electromagnetic Applications)
Show Figures

Figure 1

17 pages, 2086 KiB  
Article
Seismogenic Effects in Variation of the ULF/VLF Emission in a Complex Study of the Lithosphere–Ionosphere Coupling Before an M6.1 Earthquake in the Region of Northern Tien Shan
by Nazyf Salikhov, Alexander Shepetov, Galina Pak, Serik Nurakynov, Vladimir Ryabov and Valery Zhukov
Geosciences 2025, 15(6), 203; https://doi.org/10.3390/geosciences15060203 - 1 Jun 2025
Viewed by 394
Abstract
A complex study was performed of the disturbances in geophysics parameters that were observed during a short-term period of earthquake preparation. On 4 March 2024, an M6.1 earthquake (N 42.93, E 76.966) occurred with the epicenter 12.2 km apart from the complex [...] Read more.
A complex study was performed of the disturbances in geophysics parameters that were observed during a short-term period of earthquake preparation. On 4 March 2024, an M6.1 earthquake (N 42.93, E 76.966) occurred with the epicenter 12.2 km apart from the complex of geophysical monitoring. Preparation of the earthquake we detected in real time, 8 days prior to the main shock, when a characteristic cove-like decrease appeared in the gamma-ray flux measured 100 m below the surface of the ground, which observation indicated an approaching earthquake with high probability. Besides the gamma-ray flux, anomalies connected with the earthquake preparation were studied in the variation of the Earth’s natural pulsed electromagnetic field (ENPEMF) at very low frequencies (VLF) f=7.5 kHz and f=10.0 kHz and at ultra-low frequency (ULF) in the range of 0.001–20 Hz, as well as in the shift of Doppler frequency (DFS) of the ionospheric signal. A drop detected in DFS agrees well with the decrease in gamma radiation background. A sequence of disturbance appearance was revealed, first in the variations of ENPEMF in the VLF band and of the subsurface gamma-ray flux, both of which reflect the activation dynamic of tectonic processes in the lithosphere, and next in the variation of DFS. Two types of earthquake-connected effects may be responsible for the transmission of the perturbation from the lithosphere into the ionosphere: the ionizing gamma-ray flux and the ULF/VLF emission, as direct radiation from the nearby earthquake source. In the article, we emphasize the role of medium ionization in the propagation of seismogenic effects as a channel for realizing the lithosphere–ionosphere coupling. Full article
(This article belongs to the Special Issue Precursory Phenomena Prior to Earthquakes (2nd Edition))
Show Figures

Figure 1

19 pages, 8477 KiB  
Article
Wideband Dual-Polarized PRGW Antenna Array with High Isolation for Millimeter-Wave IoT Applications
by Zahra Mousavirazi, Mohamed Mamdouh M. Ali, Abdel R. Sebak and Tayeb A. Denidni
Sensors 2025, 25(11), 3387; https://doi.org/10.3390/s25113387 - 28 May 2025
Viewed by 647
Abstract
This work presents a novel dual-polarized antenna array tailored for Internet of Things (IoT) applications, specifically designed to operate in the millimeter-wave (mm-wave) spectrum within the frequency range of 30–60 GHz. Leveraging printed ridge gap waveguide (PRGW) technology, the antenna ensures robust performance [...] Read more.
This work presents a novel dual-polarized antenna array tailored for Internet of Things (IoT) applications, specifically designed to operate in the millimeter-wave (mm-wave) spectrum within the frequency range of 30–60 GHz. Leveraging printed ridge gap waveguide (PRGW) technology, the antenna ensures robust performance by eliminating parasitic radiation from the feed network, thus significantly enhancing the reliability and efficiency required by IoT communication systems, particularly for smart cities, autonomous vehicles, and high-speed sensor networks. The proposed antenna achieves superior radiation characteristics through a cross-shaped magneto-electric (ME) dipole backed by an artificial magnetic conductor (AMC) cavity and electromagnetic bandgap (EBG) structures. These features suppress surface waves, reduce edge diffraction, and minimize back-lobe emissions, enabling stable, high-quality IoT connectivity. The antenna demonstrates a wide impedance bandwidth of 24% centered at 30 GHz and exceptional isolation exceeding 40 dB, ensuring interference-free dual-polarized operation crucial for densely populated IoT environments. Fabrication and testing validate the design, consistently achieving a gain of approximately 13.88 dBi across the operational bandwidth. The antenna’s performance effectively addresses the critical requirements of emerging IoT systems, including ultra-high data throughput, reduced latency, and robust wireless connectivity, essential for real-time applications such as healthcare monitoring, vehicular communication, and smart infrastructure. Full article
(This article belongs to the Special Issue Design and Measurement of Millimeter-Wave Antennas)
Show Figures

Figure 1

10 pages, 2124 KiB  
Article
Multifunctional Hierarchical Metamaterials: Synergizing Visible-Laser-Infrared Camouflage with Thermal Management
by Shenglan Wu, Hao Huang, Zhenyong Huang, Chunhui Tian, Lina Guo, Yong Liu and Shuang Liu
Photonics 2025, 12(4), 387; https://doi.org/10.3390/photonics12040387 - 16 Apr 2025
Viewed by 644
Abstract
With the rapid development of multispectral detection technology, realizing the synergistic camouflage and thermal management of materials in multi-band has become a major challenge. In this paper, a multifunctional radiation-selective hierarchical metamaterial (RSHM) is designed to realize the modulation of optical properties in [...] Read more.
With the rapid development of multispectral detection technology, realizing the synergistic camouflage and thermal management of materials in multi-band has become a major challenge. In this paper, a multifunctional radiation-selective hierarchical metamaterial (RSHM) is designed to realize the modulation of optical properties in a wide spectral range through the delicate design of microstructures and nanostructures. In the atmospheric windows of 3–5 μm and 8–14 μm, the emissivity of the material is as low as 0.14 and 0.25, which can effectively suppress the radiation characteristics of the target in the infrared band, thus realizing efficient infrared stealth. Simultaneously, it exhibits high emissivity in the 2.5–3 μm (up to 0.80) and 5–8 μm (up to 0.98) bands, significantly improving thermal radiation efficiency and enabling active thermal management. Notably, RSHM achieves low reflectivity at 1.06 μm (0.13) and 1.55 μm (0.005) laser wavelengths, as well as in the 8–14 μm (0.06) band, substantially improving laser stealth performances. Additionally, it maintains high transmittance in the visible light range, ensuring excellent visual camouflage effects. Furthermore, the RSHM demonstrates exceptional incident angle and polarization stability, maintaining robust performances even under complex detection conditions. This design is easy to expand relative to other frequency bands of the electromagnetic spectrum and holds significant potential for applications in military camouflage, energy-efficient buildings, and optical devices. Full article
Show Figures

Figure 1

17 pages, 7744 KiB  
Article
An Equivalent Modeling Method for Electromagnetic Radiation of PWM Fans with Multiple Radiation Sources
by Jinsheng Yang, Xuan Zhao, Jingxuan Xia, Wei Zhang, Pingan Du and Baolin Nie
Appl. Sci. 2025, 15(6), 2887; https://doi.org/10.3390/app15062887 - 7 Mar 2025
Cited by 1 | Viewed by 718
Abstract
Axial flow fans, used for heat dissipation in electronic equipment, may generate significant electromagnetic interference during PWM speed regulation. Due to its multiple radiation sources and relatively smaller size compared to the equipment, the radiation prediction model for equipment-level EMC analysis often involves [...] Read more.
Axial flow fans, used for heat dissipation in electronic equipment, may generate significant electromagnetic interference during PWM speed regulation. Due to its multiple radiation sources and relatively smaller size compared to the equipment, the radiation prediction model for equipment-level EMC analysis often involves a huge number of grids, which leads to computational difficulties and inefficiencies, and thus an equivalent modeling method for the electromagnetic radiation of PWM fan is presented. First, a detailed field-circuit coupling model of the radiation from winding and driving circuits is established using the time-domain finite-integral method with non-uniform grids. Then, a near-field hexahedron is defined to surround the fan, and the electromagnetic field of all its surfaces is derived based on the Huygens principle and calculated. Finally, the hexahedron encapsulating all radiation sources within the fan can be used in a higher level simulation as replicable and reusable equivalent sources. The proposed method is validated by a numerical example and actual measurements and applied to predict the radiation emissions within an electronic enclosure. The results show that the equivalent model can reduce 81.4% computation time and maintain good consistency in comparison to the detailed field-circuit coupling model. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

22 pages, 2790 KiB  
Review
Eco-Management of Wireless Electromagnetic Fields Involved in Smart Cities Regarding Healthcare and Mobility
by Adel Razek
Telecom 2025, 6(1), 16; https://doi.org/10.3390/telecom6010016 - 3 Mar 2025
Viewed by 1405
Abstract
The everyday comfort and security of the present society are intimately associated with the assistance of different tools that function by means of diverse sources linked to the transfer and conversion of electromagnetic (EM) energy. The use of these devices exhibits expected outcomes, [...] Read more.
The everyday comfort and security of the present society are intimately associated with the assistance of different tools that function by means of diverse sources linked to the transfer and conversion of electromagnetic (EM) energy. The use of these devices exhibits expected outcomes, which are regularly coexistent with unwanted side effects. A laudable intention of an administration is to strengthen the anticipated results and lessen the unsolicited effects. This paper’s goal, in the framework of such an organization, is to evaluate the significance of the methodologies of responsible attitude (RA) and one health (OH) in the everyday exercise of the involved wireless EM energy tools in the environment of a smart city (SC). The approach of RA is linked to a tool’s eco-design, while the concept of OH is linked to the protection of an SC’s biodiversity and ecosystem. The unwanted side effects of these wireless devices could be implicated as occurrences of straying or radiated EM fields on devices or living tissues. The investigation intends to assess the enhancement of projected outcomes and the reduction of unwanted effects in the quotidian exercise of wireless EM energy transfer and transmission tools in the SC environment. The challenges are associated with the sources and the emissions of wireless EM technologies available today, and their impacts on the health of living tissues, biodiversity, and the ecosystem. The paper centered particularly on two cases engaged in the SC environment. The first involves the disrupting effects of EM exposure of onboard or near-living tissues from sensing and assistance medical tools. The second is linked to the adverse biological effects resulting from wireless inductive power transfer used for charging the batteries inside electric vehicles while motionless or running in SCs. The inquiries followed in the paper are supported by instances in the literature. Full article
Show Figures

Figure 1

12 pages, 6214 KiB  
Article
An Investigation of Operational Challenges in MHz Power Converters
by Aqarib Hussain, Andrew Boland, Regan Varner, David Matolak and Kristen Booth
Energies 2025, 18(4), 835; https://doi.org/10.3390/en18040835 - 11 Feb 2025
Viewed by 1416
Abstract
Megahertz switching frequencies in converters significantly reduce the size of passive components, enabling high power density. However, these frequencies also introduce operational challenges, such as the semiconductor device reliability, thermal management, magnetic design and electromagnetic interference. This paper discusses a dc-dc converter operating [...] Read more.
Megahertz switching frequencies in converters significantly reduce the size of passive components, enabling high power density. However, these frequencies also introduce operational challenges, such as the semiconductor device reliability, thermal management, magnetic design and electromagnetic interference. This paper discusses a dc-dc converter operating at 1 MHz and its associated design challenges. The relationship between a GaN device on-resistance, junction temperature and losses in scenarios where the converter operates beyond its nominal design specifications is analyzed. Additionally, a PCB-based inductor is fully characterized and the parasitic effects of PCB traces are examined for a 1-MHz, 1-kW application. Finally, the conducted and radiated emissions of the converter are addressed, supported by simulation and hardware experimental measurements. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering: 3rd Edition)
Show Figures

Figure 1

15 pages, 8790 KiB  
Article
A Graphene/MXene-Modified Flexible Fabric for Infrared Camouflage, Electrothermal, and Electromagnetic Interference Shielding
by Xianguang Hou, Ziyi Zang, Yaxin Meng, Tian Wang, Shuai Gao, Qingman Liu, Lijun Qu and Xiansheng Zhang
Nanomaterials 2025, 15(2), 98; https://doi.org/10.3390/nano15020098 - 9 Jan 2025
Cited by 2 | Viewed by 2092
Abstract
Although materials with infrared camouflage capabilities are increasingly being produced, few applications exist in clothing fabrics. Here, graphene/MXene-modified fabric with superior infrared camouflage, Joule heating, and electromagnetic shielding capabilities all in one was prepared by simply scraping a graphene slurry onto alkali-treated cotton [...] Read more.
Although materials with infrared camouflage capabilities are increasingly being produced, few applications exist in clothing fabrics. Here, graphene/MXene-modified fabric with superior infrared camouflage, Joule heating, and electromagnetic shielding capabilities all in one was prepared by simply scraping a graphene slurry onto alkali-treated cotton fabrics, followed by spraying MXene. The functionality of the modified fabrics after different treatment times was then tested and analyzed. The results indicate that the mid-infrared emissivity of the modified fabric decreases with an increase in the coating times of graphene and MXene. When the graphene/MXene-modified fabrics are prepared at loads of 5 and 1.2 mg/cm2, respectively, the modified fabrics have very low infrared emissivity in the 3–5 and 8–14 μm bands, and the surface temperature can be reduced by 53.1 °C when placed on a heater with a temperature of 100 °C (surface radiation temperature of 95 °C). The modified fabric also demonstrates excellent Joule heating capabilities; at 4 V of power, a temperature of 91.7 °C may be reached in 30 s. In addition, customized materials exhibit strong electromagnetic shielding performance. By simply folding the cloth, the electromagnetic interference shield effect can be increased to 64.3 dB. With their superior infrared camouflage, thermal management, and electromagnetic shielding performance, graphene/MXene-modified fabrics have found extensive use in intelligent wearables and military applications. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

15 pages, 12141 KiB  
Article
Black Body-Inspired Chemically Oxidized Nanostructures with Varied Perforations: A New Frontier in Solar Desalination
by Ajay Kumar Kaviti, Shaik Afzal Mohiuddin and Vineet Singh Sikarwar
Water 2024, 16(23), 3444; https://doi.org/10.3390/w16233444 - 29 Nov 2024
Viewed by 895
Abstract
Ideal black bodies absorb all electromagnetic energy without reflecting it. As it does not reflect or transmit light, it appears black when cold. Heated black bodies emit black body radiation, a temperature-dependent spectrum. This idea helps scientists and engineers comprehend heat radiation and [...] Read more.
Ideal black bodies absorb all electromagnetic energy without reflecting it. As it does not reflect or transmit light, it appears black when cold. Heated black bodies emit black body radiation, a temperature-dependent spectrum. This idea helps scientists and engineers comprehend heat radiation and design efficient solar desalination absorbers. This work uses the black body concept to create three non-contact nanostructured single-slope solar stills (NCNSSSs) with varied perforation diameters (2.4 mm, 3.2 mm, and 3.8 mm). The chemical oxidation of mirror-polished perforated stainless steel 304 sheets resulted in highly absorptive top surfaces with 90% absorptivity. The structures’ bottom surfaces were coated with a commercial high-emissivity coating to make them 85% emissive. The developed non-contact nanostructures absorbed maximum solar light and converted it into infrared radiation using a highly emissive bottom coating and a very absorptive top coating. Water, an excellent absorber of infrared (IR) radiation, readily absorbs the IR radiations and evaporates through the perforations, thus producing a desalination effect. Experiments were conducted parallelly in three NCNSSSs under the same weather conditions at three water depths. It was observed that non-contact nanostructure perforation diameters affected solar still performance. The NCNSSS-3 (3.8 mm) achieved a 9.89% and 13.47% higher productivity than the NCNSSS-2 (3.2 mm) and NCNSSS-1 (2.4 mm) at a 5 mm water depth. Additionally, fouling studies, expedited corrosion studies, and water quality assessments (TDS, salinity, fluoride, chlorides, nitrates, sodium) were performed. Water eminence examinations confirmed that the collected freshwater was bacteria-free and safe to drink. Full article
(This article belongs to the Special Issue Water Treatment Technology for Emerging Contaminants)
Show Figures

Figure 1

27 pages, 539 KiB  
Article
Modification of Premises for the Black Hole Information Paradox Caused by Topological Constraints in the Event Horizon Vicinity
by Janusz Edward Jacak
Entropy 2024, 26(12), 1035; https://doi.org/10.3390/e26121035 - 29 Nov 2024
Cited by 1 | Viewed by 1297
Abstract
We demonstrate that at the rim of the photon sphere of a black hole, the quantum statistics transition takes place in any multi-particle system of indistinguishable particles, which passes through this rim to the inside. The related local departure from Pauli exclusion principle [...] Read more.
We demonstrate that at the rim of the photon sphere of a black hole, the quantum statistics transition takes place in any multi-particle system of indistinguishable particles, which passes through this rim to the inside. The related local departure from Pauli exclusion principle restriction causes a decay of the internal structure of collective fermionic systems, including the collapse of Fermi spheres in compressed matter. The Fermi sphere decay is associated with the emission of electromagnetic radiation, taking away the energy and entropy of the falling matter without unitarity violation. The spectrum and timing of the related e-m radiation agree with some observed short giant gamma-ray bursts and X-ray components of the luminosity of quasars and of short transients powered by black holes. The release of energy and entropy when passing the photon sphere rim of a black hole significantly modifies the premises of the information paradox at the falling of matter into a black hole. Full article
(This article belongs to the Special Issue The Black Hole Information Problem)
Show Figures

Figure 1

17 pages, 11146 KiB  
Review
Overview of Key Techniques for In Situ Tests of Electromagnetic Radiation Emission Characteristics
by Zhonghao Lu, Yan Chen and Yunxiao Xue
Sensors 2024, 24(23), 7515; https://doi.org/10.3390/s24237515 - 25 Nov 2024
Viewed by 1241
Abstract
With the growing number of electronic devices loaded and increasing influence from electromagnetic interference, large-scale systems or platforms are confronted with increasingly severe electromagnetic compatibility challenges. Due to the vast size of these systems and the multitude of electronic devices they contain, standard [...] Read more.
With the growing number of electronic devices loaded and increasing influence from electromagnetic interference, large-scale systems or platforms are confronted with increasingly severe electromagnetic compatibility challenges. Due to the vast size of these systems and the multitude of electronic devices they contain, standard laboratory environments are often inadequate for meeting test requirements. This paper reviews the state-of-art in the area of field measurement techniques related to the checking of electromagnetic compatibility, and the key technologies of electromagnetic interference filtering and wide-bandwidth, large-dynamic, and rapidly transient signal extraction in the measurement field are analyzed. The research status of electromagnetic interference suppression, transient and broadband measurement, and environmental interference suppression combined with time-domain fast measurement and other technologies are summarized and analyzed. Based on a comparative analysis of the aforementioned technologies, the future development trends of field measurement technology are also discussed. Full article
Show Figures

Figure 1

21 pages, 9099 KiB  
Article
Transmission and Reflection Properties of Iron Pyrite-Epoxy Resin Composite for Electromagnetic Applications
by Mukilan Poyyamozhi, Balasubramanian Murugesan, Narayanamoorthi Rajamanickam, Devesh Kr Pandey and Ahmed Emara
Materials 2024, 17(22), 5456; https://doi.org/10.3390/ma17225456 - 8 Nov 2024
Viewed by 1219
Abstract
This study examines the electromagnetic properties of a composite material composed of iron pyrite (FeS2) and epoxy resin, mixed in a 3:2 weight ratio to create a 10 cm3 cube. The research analyzes transmission and reflection coefficients and band gap [...] Read more.
This study examines the electromagnetic properties of a composite material composed of iron pyrite (FeS2) and epoxy resin, mixed in a 3:2 weight ratio to create a 10 cm3 cube. The research analyzes transmission and reflection coefficients and band gap parameters to determine its viability as an antenna substrate for electromagnetic wave applications. The composite displays a tunable band gap of 1.3 eV, enabling selective absorption and emission of electromagnetic radiation. The transmission coefficient achieved 90% throughout a frequency range of 1 GHz to 15 GHz, whilst the reflection coefficient was measured at 10%, significantly reducing reflecting losses. The epoxy resin binder was essential for preserving structural integrity and augmenting the dielectric characteristics of the composite, thereby raising transmission efficiency. UV-Vis spectroscopy showed an absorption value of 0.875% at the band gap, indicating efficient interaction with UV energy. The S21 transmission coefficient ranged from −10 dB to −80 dB, with a maximum of −40 dB at 6 GHz, indicating strong energy transfer capability for antenna applications. The S21 values exhibited negligible signal attenuation between 2 GHz and 7 GHz, indicating the material’s exceptional suitability for antenna substrates necessitating dependable transmission. The S11 reflection coefficient varied from −5 dB to −55 dB, with substantial decreases between 4 GHz and 14 GHz, when reflection decreased to −45 dB, signifying little signal reflection at essential frequencies. The results underscore the composite’s appropriateness for applications requiring high transmission efficiency, little reflection, and effective engagement with electromagnetic waves, especially as an antenna substrate. Measurements were performed using a vector network analyzer (VNA) to obtain the S11 and S21 characteristics, underscoring the material’s potential in sophisticated electromagnetic applications. Full article
(This article belongs to the Special Issue Low-Dimensional Electromagnetic Functional Materials)
Show Figures

Figure 1

21 pages, 6516 KiB  
Article
Deep Learning-Based Electric Field Enhancement Imaging Method for Brain Stroke
by Tong Zuo, Lihui Jiang, Yuhan Cheng, Xiaolong Yu, Xiaohui Tao, Yan Zhang and Rui Cao
Sensors 2024, 24(20), 6634; https://doi.org/10.3390/s24206634 - 15 Oct 2024
Viewed by 1637
Abstract
In clinical settings, computed tomography (CT), magnetic resonance imaging (MRI), or positron emission tomography (PET) are commonly employed in brain imaging to assist clinicians in determining the type of stroke in patients. However, these modalities are associated with potential hazards or limitations. In [...] Read more.
In clinical settings, computed tomography (CT), magnetic resonance imaging (MRI), or positron emission tomography (PET) are commonly employed in brain imaging to assist clinicians in determining the type of stroke in patients. However, these modalities are associated with potential hazards or limitations. In contrast, microwave imaging emerges as a promising technique, offering advantages such as non-ionizing radiation, low cost, lightweight, and portability. The primary challenges faced by microwave tomography include the severe ill-posedness of the electromagnetic inverse scattering problem and the time-consuming nature and unsatisfactory resolution of iterative quantitative algorithms. This paper proposes a learning electric field enhancement imaging method (LEFEIM) to achieve quantitative brain imaging based on a microwave tomography system. LEFEIM comprises two cascaded networks. The first, based on a convolutional neural network, utilizes the electric field from the receiving antenna to predict the electric field distribution within the imaging domain. The second network employs the electric field distribution as input to learn the dielectric constant distribution, thereby realizing quantitative brain imaging. Compared to the Born Iterative Method (BIM), LEFEIM significantly improves imaging time, while enhancing imaging quality and goodness-of-fit to a certain extent. Simultaneously, LEFEIM exhibits anti-noise capabilities. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

Back to TopTop