Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (334)

Search Parameters:
Keywords = radiant systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2263 KiB  
Article
Optimizing the Sampling Strategy for Future Libera Radiance to Irradiance Conversions
by Mathew van den Heever, Jake J. Gristey and Peter Pilewskie
Remote Sens. 2025, 17(15), 2540; https://doi.org/10.3390/rs17152540 - 22 Jul 2025
Viewed by 249
Abstract
The Earth Radiation Budget (ERB), a measure of the difference between incoming solar irradiance and outgoing reflected and emitted radiant energy, is a fundamental property of Earth’s climate system. The Libera satellite mission will measure the ERB’s outgoing components to continue the long-term [...] Read more.
The Earth Radiation Budget (ERB), a measure of the difference between incoming solar irradiance and outgoing reflected and emitted radiant energy, is a fundamental property of Earth’s climate system. The Libera satellite mission will measure the ERB’s outgoing components to continue the long-term climate data record established by NASA’s Clouds and the Earth’s Radiant Energy System (CERES) mission. In addition to ensuring data continuity, Libera will introduce a novel split-shortwave spectral channel to quantify the partitioning of the outgoing reflected solar component into visible and near-infrared sub-components. However, converting these split-shortwave radiances into the ERB-relevant irradiances requires the development of split-shortwave Angular Distribution Models (ADMs), which demand extensive angular sampling. Here, we show how Rotating Azimuthal Plane Scan (RAPS) parameters—specifically operational cadence and azimuthal scan rate—affect the observational coverage of a defined scene and angular space. Our results show that for a fixed number of azimuthal rotations, a relatively slow azimuthal scan rate of 0.5° per second, combined with more time spent in the RAPS observational mode, provides a more comprehensive sampling of the desired scene and angular space. We also show that operating the Libera instrument in RAPS mode at a cadence between every fifth day and every other day for the first year of space-based operations will provide sufficient scene and angular sampling for the observations to achieve radiance convergence for the scenes that comprise more than half of the expected Libera observations. Obtaining radiance convergence is necessary for accurate ADMs. Full article
Show Figures

Graphical abstract

39 pages, 5325 KiB  
Review
Mechanical Ventilation Strategies in Buildings: A Comprehensive Review of Climate Management, Indoor Air Quality, and Energy Efficiency
by Farhan Lafta Rashid, Mudhar A. Al-Obaidi, Najah M. L. Al Maimuri, Arman Ameen, Ephraim Bonah Agyekum, Atef Chibani and Mohamed Kezzar
Buildings 2025, 15(14), 2579; https://doi.org/10.3390/buildings15142579 - 21 Jul 2025
Viewed by 669
Abstract
As the demand for energy-efficient homes continues to rise, the importance of advanced mechanical ventilation systems in maintaining indoor air quality (IAQ) has become increasingly evident. However, challenges related to energy balance, IAQ, and occupant thermal comfort persist. This review examines the performance [...] Read more.
As the demand for energy-efficient homes continues to rise, the importance of advanced mechanical ventilation systems in maintaining indoor air quality (IAQ) has become increasingly evident. However, challenges related to energy balance, IAQ, and occupant thermal comfort persist. This review examines the performance of mechanical ventilation systems in regulating indoor climate, improving air quality, and minimising energy consumption. The findings indicate that demand-controlled ventilation (DCV) can enhance energy efficiency by up to 88% while maintaining CO2 concentrations below 1000 ppm during 76% of the occupancy period. Heat recovery systems achieve efficiencies of nearly 90%, leading to a reduction in heating energy consumption by approximately 19%. Studies also show that employing mechanical rather than natural ventilation in schools lowers CO2 levels by 20–30%. Nevertheless, occupant misuse or poorly designed systems can result in CO2 concentrations exceeding 1600 ppm in residential environments. Hybrid ventilation systems have demonstrated improved thermal comfort, with predicted mean vote (PMV) values ranging from –0.41 to 0.37 when radiant heating is utilized. Despite ongoing technological advancements, issues such as system durability, user acceptance, and adaptability across climate zones remain. Smart, personalized ventilation strategies supported by modern control algorithms and continuous monitoring are essential for the development of resilient and health-promoting buildings. Future research should prioritize the integration of renewable energy sources and adaptive ventilation controls to further optimise system performance. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

28 pages, 1140 KiB  
Article
Hybrid Metaheuristic Optimization of HVAC Energy Consumption and Thermal Comfort in an Office Building Using EnergyPlus
by Reza Akraminejad, Tianyi Zhao, Yacine Rezgui, Ali Ghoroghi and Yousef Shahbazi Razlighi
Buildings 2025, 15(14), 2568; https://doi.org/10.3390/buildings15142568 - 21 Jul 2025
Viewed by 257
Abstract
Energy is a critical resource, and its optimization is central to sustainable building design. Occupant comfort, significantly influenced by factors, including mean radiant temperature (MRT), alongside air temperature, velocity, and humidity, is another key consideration. This paper introduces a hybrid crow search optimization [...] Read more.
Energy is a critical resource, and its optimization is central to sustainable building design. Occupant comfort, significantly influenced by factors, including mean radiant temperature (MRT), alongside air temperature, velocity, and humidity, is another key consideration. This paper introduces a hybrid crow search optimization (CSA) and penguin search optimization algorithm (PeSOA), termed (HCRPN), designed to simultaneously optimize building energy consumption and achieve MRT levels conducive to thermal comfort by adjusting HVAC system parameters. We first validate HCRPN using ZDT-1 and Shaffer N1 multi-objective benchmarks. Subsequently, we employ EnergyPlus simulations, utilizing a single-objective Particle Swarm Optimization (PSO) for initial parameter analysis to generate a dataset. Following correlation analyses to understand parameter relationships, we implement our hybrid multi-objective approach. Comparative evaluations against state-of-the-art algorithms, including MoPso, NSGA-II, hybrid Nsga2/MOEAD, and Mo-CSA, validated the effectiveness of HCRPN. Our findings demonstrate an average 7% reduction in energy consumption and a 3% improvement in MRT-based comfort relative to existing methods. While seemingly small, even minor enhancements in MRT can have a noticeable positive impact on well-being, particularly in large, high-occupancy buildings. Full article
Show Figures

Figure 1

35 pages, 2895 KiB  
Review
Ventilated Facades for Low-Carbon Buildings: A Review
by Pinar Mert Cuce and Erdem Cuce
Processes 2025, 13(7), 2275; https://doi.org/10.3390/pr13072275 - 17 Jul 2025
Viewed by 643
Abstract
The construction sector presently consumes about 40% of global energy and generates 36% of CO2 emissions, making facade retrofits a priority for decarbonising buildings. This review clarifies how ventilated facades (VFs), wall assemblies that interpose a ventilated air cavity between outer cladding [...] Read more.
The construction sector presently consumes about 40% of global energy and generates 36% of CO2 emissions, making facade retrofits a priority for decarbonising buildings. This review clarifies how ventilated facades (VFs), wall assemblies that interpose a ventilated air cavity between outer cladding and the insulated structure, address that challenge. First, the paper categorises VFs by structural configuration, ventilation strategy and functional control into four principal families: double-skin, rainscreen, hybrid/adaptive and active–passive systems, with further extensions such as BIPV, PCM and green-wall integrations that couple energy generation or storage with envelope performance. Heat-transfer analysis shows that the cavity interrupts conductive paths, promotes buoyancy- or wind-driven convection, and curtails radiative exchange. Key design parameters, including cavity depth, vent-area ratio, airflow velocity and surface emissivity, govern this balance, while hybrid ventilation offers the most excellent peak-load mitigation with modest energy input. A synthesis of simulation and field studies indicates that properly detailed VFs reduce envelope cooling loads by 20–55% across diverse climates and cut winter heating demand by 10–20% when vents are seasonally managed or coupled with heat-recovery devices. These thermal benefits translate into steadier interior surface temperatures, lower radiant asymmetry and fewer drafts, thereby expanding the hours occupants remain within comfort bands without mechanical conditioning. Climate-responsive guidance emerges in tropical and arid regions, favouring highly ventilated, low-absorptance cladding; temperate and continental zones gain from adaptive vents, movable insulation or PCM layers; multi-skin adaptive facades promise balanced year-round savings by re-configuring in real time. Overall, the review demonstrates that VFs constitute a versatile, passive-plus platform for low-carbon buildings, simultaneously enhancing energy efficiency, durability and indoor comfort. Future advances in smart controls, bio-based materials and integrated energy-recovery systems are poised to unlock further performance gains and accelerate the sector’s transition to net-zero. Emerging multifunctional materials such as phase-change composites, nanostructured coatings, and perovskite-integrated systems also show promise in enhancing facade adaptability and energy responsiveness. Full article
(This article belongs to the Special Issue Sustainable Development of Energy and Environment in Buildings)
Show Figures

Figure 1

16 pages, 1062 KiB  
Article
Effects of Thermostat Control on Energy Use and Thermal Comfort in Office Rooms Under Different Glazing Ratio
by Haiying Wang, Rongfu Hou, Bjarne W. Olesen, Ongun B. Kazanci and Huxiang Lin
Buildings 2025, 15(14), 2422; https://doi.org/10.3390/buildings15142422 - 10 Jul 2025
Viewed by 259
Abstract
Thermal comfort of occupants is characterized by operative temperature (Top), while thermal environment is usually controlled by air temperature (Ta). For perimeter areas in buildings, the use of Ta in the control may lead to uncomfortable conditions. In this paper, thermostat controls based [...] Read more.
Thermal comfort of occupants is characterized by operative temperature (Top), while thermal environment is usually controlled by air temperature (Ta). For perimeter areas in buildings, the use of Ta in the control may lead to uncomfortable conditions. In this paper, thermostat controls based on air (TC-Ta) and Top (TC-Top) were compared in an office module based on different glazing ratio (GR) and indoor units. The results showed that, for a fan–coil system, with TC-Top, thermal comfort can be better, while for a ceiling panel system thermal comfort was similar with both controls. For fan coils, with TC-Top, Ta in offices became higher in the winter and lower in the summer, which improved thermal comfort along with increased energy use. For both GR conditions, the radiant panel could compensate for the presence of cold/warm surfaces, and it decreased the differences between the two controls, especially during cooling, which made the radiant system more suitable in large GR condition. With TC-Top, for the ceiling panel system, the increment of energy use was quite small. According to the results, under large GR, TC-Top was better for the fan–coil system to assure thermal comfort, and both control methods could be used in ceiling panel system. This study presents a comprehensive comparison of the two control strategies for both convective and radiant systems, highlighting their performance under varying GR conditions. The results also provide guidance for the optimal control of different indoor units under different GR conditions. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

21 pages, 3617 KiB  
Article
Numerical and Experimental Study of Enhanced Heat Dissipation Performance of Graphene-Coated Heating Cables
by Zhenzhen Chen, Chenchen Xu, Feilong Zhang and Tao Sun
Coatings 2025, 15(7), 777; https://doi.org/10.3390/coatings15070777 - 30 Jun 2025
Viewed by 324
Abstract
Low-temperature radiant heating systems utilizing heating cables face challenges including low heat dissipation efficiency and high energy consumption, hindering widespread application. Graphene coatings, characterized by high thermal conductivity and far-infrared radiation properties, offer a novel approach to enhance cable heat dissipation efficiency. This [...] Read more.
Low-temperature radiant heating systems utilizing heating cables face challenges including low heat dissipation efficiency and high energy consumption, hindering widespread application. Graphene coatings, characterized by high thermal conductivity and far-infrared radiation properties, offer a novel approach to enhance cable heat dissipation efficiency. This study systematically investigates the effects of coating position, thickness, and ambient temperature on cable heat dissipation using numerical simulations and experiments. A three-dimensional heat transfer model of the heating cable was established using Fluent software (2022R1). The radiation heat transfer equation was solved using the Discrete Ordinates (DO) model, and the coating position and thickness parameters were optimized. The reliability of the simulation results was validated using a temperature-rise experimental platform. The results indicate that graphene coatings significantly improve the heat dissipation performance of cables. Under optimal parameters (coating thickness: 100 μm, coating position: aluminum fin surface, initial temperature: 5 °C), the heat flux increased by approximately 26%, aluminum fin surface temperature decreased to 41.5 °C, and experimental temperature-rise efficiency improved by nearly 50%. The discrepancy between simulated and experimental results was within 8.5%. However, when coating thickness exceeded 100 μm, interfacial thermal resistance increased, reducing heat dissipation efficiency. Additionally, higher ambient temperatures suppressed heat dissipation. These findings provide a theoretical basis for optimizing the energy efficiency of low-temperature radiant heating systems. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

20 pages, 2551 KiB  
Article
Theoretical Study on Impact of Solar Radiation Heat Gain on Thermal Comfort and Energy Efficiency in Glass Curtain Wall Buildings Based on PMV Index
by Haoyu Chen, Jinzhe Nie, Yuzhe Liu and Yuelin Li
Buildings 2025, 15(13), 2228; https://doi.org/10.3390/buildings15132228 - 25 Jun 2025
Viewed by 564
Abstract
With rapid global urbanization, glass curtain wall buildings have been widely adopted due to aesthetics and natural lighting. However, during summer time, intense solar radiation leads to significant indoor heat gain, which adversely affect thermal comfort and energy efficiency. The conventional air conditioning [...] Read more.
With rapid global urbanization, glass curtain wall buildings have been widely adopted due to aesthetics and natural lighting. However, during summer time, intense solar radiation leads to significant indoor heat gain, which adversely affect thermal comfort and energy efficiency. The conventional air conditioning systems are typically equipped with a cooling capacity sufficient to maintain an indoor air temperature at the design values specified in the Design standard for energy efficiency of public buildings, which fails to account for the effects of radiation temperature, potentially resulting in reduced thermal comfort and energy inefficiency. By integrating the Thermal Comfort Tool to calculate the PMV index, this study evaluates the affection of solar heat gain on indoor occupants’ thermal comfort and proposes an optimized air temperature control strategy to realize thermal comfort. Based on the dynamic air temperature strategy, an energy consumption model is developed to evaluate the affection of solar radiation on energy consumption for glass curtain wall buildings based on the PMV index. The synergistic effects of shading measures are then evaluated. This study conducts simulation analysis using an office building with a glass curtain wall located in Beijing as a case study. When accounting for radiant heat gain, a significant portion of the time (53.89%) fall outside the thermal comfort range, even when the air conditioning is set to the designated temperature. To maintain thermal comfort, the air conditioning temperature must be lowered by 1.4–3.5 °C, resulting in a 28.08% increase in energy consumption. To address this issue, this study finds that installing interior shading can reduce radiant heat gain. Under the same thermal comfort conditions, the required air temperature reduction is only 0.8–2.1 °C, leading to a 24.26% reduction in energy consumption compared to the case without interior shading. Full article
Show Figures

Figure 1

17 pages, 3375 KiB  
Article
Influence of Clouds and Aerosols on Solar Irradiance and Application of Climate Indices in Its Monthly Forecast over China
by Shuting Zhang and Xiaochun Wang
Atmosphere 2025, 16(6), 730; https://doi.org/10.3390/atmos16060730 - 16 Jun 2025
Viewed by 299
Abstract
Based on the Clouds and the Earth’s Radiant Energy System (CERES) satellite data from 2001 to 2023 and the climate indices from the National Oceanic and Atmospheric Administration (NOAA), this study analyzes the solar irradiance over mainland China and the impacts of clouds [...] Read more.
Based on the Clouds and the Earth’s Radiant Energy System (CERES) satellite data from 2001 to 2023 and the climate indices from the National Oceanic and Atmospheric Administration (NOAA), this study analyzes the solar irradiance over mainland China and the impacts of clouds and aerosols on it and constructs monthly forecasting models to analyze the influence of climate indices on irradiance forecasts. The irradiance over mainland China shows a spatial distribution of being higher in the west and lower in the east. The influence of clouds on irradiance decreases from south to north, and the influence of aerosols is prominent in the east. The average explained variance of clouds on irradiance is 86.72%, which is much higher than that of aerosols on irradiance, 15.62%. Singular Value Decomposition (SVD) analysis shows a high correlation between the respective time series of irradiance and cloud influence, with the two fields having similar spatial patterns of opposite signs. The variation in solar irradiance can be attributed mainly to the influence of clouds. Empirical Orthogonal Function (EOF) analysis indicates that the variation in the first mode of irradiance is consistent in most parts of China, and its time coefficient is selected for monthly forecasting. Both the traditional multiple linear regression method and the Long Short-Term Memory (LSTM) network are used to construct monthly forecast models, with the preceding time coefficient of the first EOF mode and different climate indices as input. Compared with the multiple linear regression method, LSTM has a better forecasting skill. When the input length increases, the forecasting skill decreases. The inclusion of climate indices, such as the Indian Ocean Basin (IOB), El Nino–Southern Oscillation (ENSO), and Indian Ocean Dipole (IOD), can enhance the forecasting skill. Among these three indices, IOB has the most significant improvement effect. The research provides a basis for accurate forecasting of solar irradiance over China on monthly time scale. Full article
Show Figures

Figure 1

18 pages, 5887 KiB  
Article
Experimental Evaluation of a Radiant Panel System for Enhancing Sleep Thermal Comfort and Energy Efficiency
by Wanfu Xiang, Wenzhi Cui, Yongwei Li and Xiang Wu
Energies 2025, 18(11), 2724; https://doi.org/10.3390/en18112724 - 23 May 2025
Viewed by 482
Abstract
This study aims to experimentally evaluate a personal comfort system based on a radiant panel (R-PCS) that can regulate the thermal environment of the sleep zone during summer, with a focus on improving both the thermal comfort and energy efficiency of this system. [...] Read more.
This study aims to experimentally evaluate a personal comfort system based on a radiant panel (R-PCS) that can regulate the thermal environment of the sleep zone during summer, with a focus on improving both the thermal comfort and energy efficiency of this system. To investigate thermal comfort under the coupling effect of different covering conditions and operating parameters of the R-PCS, the changing pattern of thermal environment parameters in the berth area and human skin temperature are analyzed. Then, the Predicted Mean Vote (PMV) -Predicted Percent Dissatisfied (PPD) index is employed for assessing the thermal comfort of the human body and energy-saving efficiency of the system. The results show that this system can satisfy the thermal comfort requirements of the human body in the berth area. Meanwhile, the corresponding cooling energy consumption of the R-PCS is significantly lower than that of the traditional HVAC system, indicating that the developed system has significant energy-saving potential in building design. Full article
Show Figures

Figure 1

29 pages, 2457 KiB  
Article
Energy and Exergy Analysis of a Photovoltaic-Thermal Geothermal Heat Pump Coupled with Radiant Ceiling and Fresh Air System
by Yaolin Lin, Zhenyan Bu, Wei Yang, Melissa Chan, Lin Tian and Mingqi Dai
Energies 2025, 18(11), 2715; https://doi.org/10.3390/en18112715 - 23 May 2025
Viewed by 382
Abstract
This paper presents energy and exergy studies on a photovoltaic-thermal solar-assisted geothermal heat pump coupled with a radiant ceiling system. The system utilizes renewable solar and geothermal energy. It has an independent fresh air unit that provides clean air to the space. The [...] Read more.
This paper presents energy and exergy studies on a photovoltaic-thermal solar-assisted geothermal heat pump coupled with a radiant ceiling system. The system utilizes renewable solar and geothermal energy. It has an independent fresh air unit that provides clean air to the space. The computer model of the system was developed under the TRNSYST environment and validated with experimental results from open literature. Distribution of the energy consumption and exergy loss of the system were analyzed. It was found that the heat pump unit consumes the largest amount of energy while the transmission and distribution system has the highest exergy loss. Under optimized operating conditions, i.e., both demand side circulation flow and source side circulation flow are maintained at 65% of the design flow rate (design loop water temperature difference of 7.0 °C), the average exergy efficiency of the whole system was found to be 37.56%, which achieves an accumulative exergy loss reduction of 16.5% compared with 100% design flow rate condition during cooling season. The optimal bearing load ratio of the ground source heat pump vs. photovoltaic-thermal system in the heating season was found to be 67%. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

26 pages, 8225 KiB  
Article
Dynamic Simulation of Solar-Assisted Medium-Depth Ground Heat Exchanger Direct Heating System
by Le Chang, Lingjun Kong, Yangyang Jing, Wenshuo Zhang, Sifang Fu, Xueming Lu, Haiqing Yao, Xiaona Xie and Ping Cui
Buildings 2025, 15(10), 1690; https://doi.org/10.3390/buildings15101690 - 16 May 2025
Viewed by 310
Abstract
The global challenges of rising energy consumption and carbon emissions underscore the urgent need for efficient and sustainable heating solutions in the building sector. The implementation of high-performance buildings that envelope insulation and the increasing adoption of low-temperature radiant heating systems have significantly [...] Read more.
The global challenges of rising energy consumption and carbon emissions underscore the urgent need for efficient and sustainable heating solutions in the building sector. The implementation of high-performance buildings that envelope insulation and the increasing adoption of low-temperature radiant heating systems have significantly reduced the water temperature required from heat sources, enabling greater compatibility with renewable energy systems. In this study, we propose a renewable energy heating system incorporating a solar-assisted medium-depth ground heat exchanger (MDGHE). A dynamic simulation model of the solar-assisted MDGHE system was developed in TRNSYS, featuring a novel MDGHE module specifically developed to improve simulation accuracy. A case study of a residential building in China was conducted to evaluate the performance of the proposed system. The simulation results demonstrate that while the standalone MDGHE covers 71.9% of the building’s heating demand, integrating solar collectors with the MDGHE can increase this coverage to 99.9%, enabling full compliance with heating requirements without relying on conventional heat pumps. The results revealed that the system’s COP reached 9.26. Compared with the traditional medium-depth ground source heat pump system with the COP of 4.84, the energy efficiency of this system has been enhanced by 47.7%. A static payback period of 7 years has been obtained compared with the cost of central heating service for residential buildings. These findings highlight the potential of solar-geothermal hybrid systems as a sustainable alternative to traditional heating methods. Full article
Show Figures

Figure 1

15 pages, 5183 KiB  
Article
Integrating Radiant Cooling Ceilings with Ternary PCM Thermal Storage: A Synergistic Approach for Enhanced Energy Efficiency in Photovoltaic-Powered Buildings
by Zhuoyi Ling, Tianhong Zheng, Qinghua Lv, Yuehong Su, Hui Lv and Saffa Riffat
Energies 2025, 18(9), 2237; https://doi.org/10.3390/en18092237 - 28 Apr 2025
Viewed by 511
Abstract
Traditional photovoltaic-powered forced air-cooling systems face significant challenges in balancing energy efficiency and thermal comfort due to temperature sensitivity, mechanical ventilation energy consumption, and spatial constraints. This study aims to enhance building energy efficiency by integrating a radiant cooling ceiling (RCC) with a [...] Read more.
Traditional photovoltaic-powered forced air-cooling systems face significant challenges in balancing energy efficiency and thermal comfort due to temperature sensitivity, mechanical ventilation energy consumption, and spatial constraints. This study aims to enhance building energy efficiency by integrating a radiant cooling ceiling (RCC) with a phase change material (PCM) thermal storage system, addressing the limitations of traditional photovoltaic-powered cooling systems through optimized material design and dynamic energy management. A ternary PCM mixture (glycerol–alcohol–water) was optimized using differential scanning calorimetry (DSC), demonstrating superior latent heat storage (361.66 J/g) and phase transition temperature (1.91 °C) in the selected “Slushy Ice” formulation. A 3D transient thermal model and experimental validation revealed that the RCC system achieved 57% energy savings under quasi-steady operation, with radiative heat transfer contributing 55% of total cooling capacity. The system dynamically stores cold energy during peak photovoltaic generation and releases it via RCC during low-power periods, resolving the “cooling energy consumption paradox”. Key challenges, including PCM cycling stability and thermal response time mismatches, were identified, with future research directions emphasizing multi-scale simulations and intelligent encapsulation. This work provides a viable pathway for improving building energy efficiency while maintaining thermal comfort and for improving building energy efficiency in temperate zones, with future extensions to arid and tropical climates requiring targeted material and system optimizations. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

14 pages, 748 KiB  
Article
Integrating Personalized Thermal Comfort Devices for Energy-Efficient and Occupant-Centric Buildings
by Cihan Turhan and Cristina Carpino
Buildings 2025, 15(9), 1470; https://doi.org/10.3390/buildings15091470 - 26 Apr 2025
Viewed by 712
Abstract
Personalized thermal comfort (PTC) systems aim to satisfy the individual thermal preferences of occupants rather than relying on average comfort indices. With the growing emphasis on sustainability and reducing energy consumption in buildings, energy efficiency has become a critical factor in the design [...] Read more.
Personalized thermal comfort (PTC) systems aim to satisfy the individual thermal preferences of occupants rather than relying on average comfort indices. With the growing emphasis on sustainability and reducing energy consumption in buildings, energy efficiency has become a critical factor in the design and selection of PTC systems. While the development of PTC tools has accelerated in the last decade, selecting the most appropriate system remains a challenge due to the dynamic, uncertain, and multi-dimensional nature of the decision-making process. This study introduces a novel application of the KEMIRA-M multi-criteria decision-making (MCDM) method to identify the optimal PTC system for university office buildings—an area with limited prior investigation. A case study is conducted in a naturally ventilated office space located in a temperate climate zone. Eight distinct PTC alternatives are evaluated, including data-driven HVAC systems, wearable devices, and localized conditioning units. Six key criteria are considered: estimated energy consumption, capital cost, indoor and outdoor space requirements, system complexity, mobility, and energy efficiency. The results indicate that wearable wristbands, which condition the occupant’s carpus area, offer the most balanced performance across criteria, while radiant ceiling/floor systems perform the poorest. Energy efficiency plays a crucial role in this evaluation, as it directly impacts both the operational cost and the environmental footprint of the system. The study’s findings provide a structured and adaptable framework for HVAC engineers and designers to integrate PTC systems into occupant-centric and energy-efficient building designs. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

23 pages, 7707 KiB  
Article
Unraveling Aerosol and Low-Level Cloud Interactions Under Multi-Factor Constraints at the Semi-Arid Climate and Environment Observatory of Lanzhou University
by Qinghao Li, Jinming Ge, Yize Li, Qingyu Mu, Nan Peng, Jing Su, Bo Wang, Chi Zhang and Bochun Liu
Remote Sens. 2025, 17(9), 1533; https://doi.org/10.3390/rs17091533 - 25 Apr 2025
Viewed by 425
Abstract
The response of low-level cloud properties to aerosol loading remains ambiguous, particularly due to the confounding influence of meteorological factors and water vapor availability. We utilize long-term data from Ka-band Zenith Radar, Clouds and the Earth’s Radiant Energy System, Modern-Era Retrospective analysis for [...] Read more.
The response of low-level cloud properties to aerosol loading remains ambiguous, particularly due to the confounding influence of meteorological factors and water vapor availability. We utilize long-term data from Ka-band Zenith Radar, Clouds and the Earth’s Radiant Energy System, Modern-Era Retrospective analysis for Research and Applications Version 2, and European Centre for Medium-Range Weather Forecasts Reanalysis v5 to evaluate aerosol’s effects on low-level clouds under the constrains of meteorological conditions and liquid water path (LWP) over the Semi-Arid Climate and Environment Observatory of Lanzhou University during 2014–2019. To better constrain meteorological variability, we apply Principal Component Analysis to derive the first principal component (PC1), which strongly correlates with cloud properties, thereby enabling more accurate assessment of aerosol–cloud interaction (ACI) under constrained meteorological conditions delineated by PC1. Analysis suggests that under favorable meteorological conditions for low-level cloud formation (low PC1) and moderate LWP levels (25–150 g/m2), ACI is characterized by a significantly negative ACI index, with the cloud effective radius (CER) increasing in response to rising aerosol concentrations. When constrained by both PC1 and LWP, the relationship between CER and the aerosol optical depth shows a distinct bifurcation into positive and negative correlations. Different aerosol types show contrasting effects: dust aerosols increase CER under favorable meteorological conditions, whereas sulfate, organic carbon, and black carbon aerosols consistently decrease it, even under high-LWP conditions. Full article
Show Figures

Figure 1

17 pages, 14682 KiB  
Article
Research on Space Targets Simulation Modulation Algorithm Combined Global–Local Multi-Spectral Radiation Features
by Yu Zhang, Songzhou Yang, Zhipeng Wei, Jian Zhang, Bin Zhao, Dianwu Ren, Jingrui Sun, Lu Wang, Taiyang Ren, Dongpeng Yang and Guoyu Zhang
Sensors 2025, 25(9), 2702; https://doi.org/10.3390/s25092702 - 24 Apr 2025
Viewed by 364
Abstract
To solve the international problem of global–local radiation features simulation of multi-spectral space targets, this paper proposes a multi-spectral space target simulation modulation algorithm that can combine global–local spectral radiation features. An overall architecture of a series-parallel multi-source information fusion space target simulation [...] Read more.
To solve the international problem of global–local radiation features simulation of multi-spectral space targets, this paper proposes a multi-spectral space target simulation modulation algorithm that can combine global–local spectral radiation features. An overall architecture of a series-parallel multi-source information fusion space target simulation system (MITS) is constructed, and a global–local multi-spectral radiation feature modulation link is built. A multi-spectral feature modulation algorithm consisting of three modules, including optical engine non-uniformity compensation, global spectral radiant energy modulation, and local radiant grayscale modulation, is designed, and an experimental platform is built to verify the correctness and advancement of the proposed algorithm. The results indicate that the non-uniformity is better than 3.78%, the global simulation error is better than −4.56%, and the local simulation error is better than 4.25%. It is one of the few multi-spectral target simulation modulation algorithms worldwide that can combine the global whole and local details. It supports the performance test and technology iteration of multi-spectral optical loads. It helps to supplement the theoretical system of multi-spectral space target simulation and enhance the ground-based semi-physical simulation link of optical loads. Full article
(This article belongs to the Special Issue Advances in Optical Sensing, Instrumentation and Systems: 2nd Edition)
Show Figures

Figure 1

Back to TopTop