Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (418)

Search Parameters:
Keywords = radial basis function (RBF) network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1669 KiB  
Article
Predefined-Time Adaptive Neural Control with Event-Triggering for Robust Trajectory Tracking of Underactuated Marine Vessels
by Hui An, Zhanyang Yu, Jianhua Zhang, Xinxin Wang and Cheng Siong Chin
Processes 2025, 13(8), 2443; https://doi.org/10.3390/pr13082443 (registering DOI) - 1 Aug 2025
Abstract
This paper addresses the trajectory tracking control problem of underactuated ships in ocean engineering, which faces the dual challenges of tracking error time–performance regulation and robustness design due to the system’s underactuated characteristics, model uncertainties, and external disturbances. Aiming to address the issues [...] Read more.
This paper addresses the trajectory tracking control problem of underactuated ships in ocean engineering, which faces the dual challenges of tracking error time–performance regulation and robustness design due to the system’s underactuated characteristics, model uncertainties, and external disturbances. Aiming to address the issues of traditional finite-time control (convergence time dependent on initial states) and fixed-time control (control chattering and parameter conservativeness), this paper proposes a predefined-time adaptive control framework that integrates an event-triggered mechanism and neural networks. By constructing a Lyapunov function with time-varying weights and designing non-periodic dynamically updated dual triggering conditions, the convergence process of tracking errors is strictly constrained within a user-prespecified time window without relying on initial states or introducing non-smooth terms. An adaptive approximator based on radial basis function neural networks (RBF-NNs) is employed to compensate for unknown nonlinear dynamics and external disturbances in real-time. Combined with the event-triggered mechanism, it dynamically adjusts the update instances of control inputs, ensuring prespecified tracking accuracy while significantly reducing computational resource consumption. Theoretical analysis shows that all signals in the closed-loop system are uniformly ultimately bounded, tracking errors converge to a neighborhood of the origin within the predefined-time, and the update frequency of control inputs exhibits a linear relationship with the predefined-time, avoiding Zeno behavior. Simulation results verify the effectiveness of the proposed method in complex marine environments. Compared with traditional control strategies, it achieves more accurate trajectory tracking, faster response, and a substantial reduction in control input update frequency, providing an efficient solution for the engineering implementation of embedded control systems in unmanned ships. Full article
(This article belongs to the Special Issue Design and Analysis of Adaptive Identification and Control)
29 pages, 6397 KiB  
Article
Task Travel Time Prediction Method Based on IMA-SURBF for Task Dispatching of Heterogeneous AGV System
by Jingjing Zhai, Xing Wu, Qiang Fu, Ya Hu, Peihuang Lou and Haining Xiao
Biomimetics 2025, 10(8), 500; https://doi.org/10.3390/biomimetics10080500 (registering DOI) - 1 Aug 2025
Abstract
The heterogeneous automatic guided vehicle (AGV) system, composed of several AGVs with different load capability and handling function, has good flexibility and agility to operational requirements. Accurate task travel time prediction (T3P) is vital for the efficient operation of heterogeneous AGV systems. However, [...] Read more.
The heterogeneous automatic guided vehicle (AGV) system, composed of several AGVs with different load capability and handling function, has good flexibility and agility to operational requirements. Accurate task travel time prediction (T3P) is vital for the efficient operation of heterogeneous AGV systems. However, T3P remains a challenging problem due to individual task correlations and dynamic changes in model input/output dimensions. To address these challenges, a biomimetics-inspired learning framework based on a radial basis function (RBF) neural network with an improved mayfly algorithm and a selective update strategy (IMA-SURBF) is proposed. Firstly, a T3P model is constructed by using travel-influencing factors as input and task travel time as output of the RBF neural network, where the input/output dimension is determined dynamically. Secondly, the improved mayfly algorithm (IMA), a biomimetic metaheuristic method, is adopted to optimize the initial parameters of the RBF neural network, while a selective update strategy is designed for parameter updates. Finally, simulation experiments on model design, parameter initialization, and comparison with deep learning-based models are conducted in a complex assembly line scenario to validate the accuracy and efficiency of the proposed method. Full article
(This article belongs to the Section Biological Optimisation and Management)
Show Figures

Figure 1

27 pages, 12164 KiB  
Article
Neural Network Adaptive Attitude Control of Full-States Quad Tiltrotor UAV
by Jiong He, Binwu Ren, Yousong Xu, Qijun Zhao, Siliang Du and Bo Wang
Aerospace 2025, 12(8), 684; https://doi.org/10.3390/aerospace12080684 - 30 Jul 2025
Viewed by 161
Abstract
The control stability and accuracy of quad tiltrotor UAVs is improved when encountering external disturbances during automatic flight by an active disturbance rejection control (ADRC) parameter self-tuning control strategy based on a radial basis function (RBF) neural network. Firstly, a nonlinear flight dynamics [...] Read more.
The control stability and accuracy of quad tiltrotor UAVs is improved when encountering external disturbances during automatic flight by an active disturbance rejection control (ADRC) parameter self-tuning control strategy based on a radial basis function (RBF) neural network. Firstly, a nonlinear flight dynamics model of the quad tiltrotor UAV is established based on the approach of component-based mechanistic modeling. Secondly, the effects of internal uncertainties and external disturbances on the model are eliminated, whilst the online adaptive parameter tuning problem for the nonlinear active disturbance rejection controller is addressed. The superior nonlinear function approximation capability of the RBF neural network is then utilized by taking both the control inputs computed by the controller and the system outputs of the quad tiltrotor model as neural network inputs to implement adaptive parameter adjustments for the Extended State Observer (ESO) component responsible for disturbance estimation and the Nonlinear State Error Feedback (NLSEF) control law of the active disturbance rejection controller. Finally, an adaptive attitude control system for the quad tiltrotor UAV is constructed, centered on the ADRC-RBF controller. Subsequently, the efficacy of the attitude control system is validated through simulation, encompassing a range of flight conditions. The simulation results demonstrate that the Integral of Absolute Error (IAE) of the pitch angle response controlled by the ADRC-RBF controller is reduced to 37.4° in comparison to the ADRC controller in the absence of external disturbance in the full-states mode state of the quad tiltrotor UAV, and the oscillation amplitude of the pitch angle response controlled by the ADRC-RBF controller is generally reduced by approximately 50% in comparison to the ADRC controller in the presence of external disturbance. In comparison with the conventional ADRC controller, the proposed ADRC-RBF controller demonstrates superior performance with regard to anti-disturbance capability, adaptability, and tracking accuracy. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

27 pages, 6584 KiB  
Article
Evaluating Geostatistical and Statistical Merging Methods for Radar–Gauge Rainfall Integration: A Multi-Method Comparative Study
by Xuan-Hien Le, Naoki Koyama, Kei Kikuchi, Yoshihisa Yamanouchi, Akiyoshi Fukaya and Tadashi Yamada
Remote Sens. 2025, 17(15), 2622; https://doi.org/10.3390/rs17152622 - 28 Jul 2025
Viewed by 214
Abstract
Accurate and spatially consistent rainfall estimation is essential for hydrological modeling and flood risk mitigation, especially in mountainous tropical regions with sparse observational networks and highly heterogeneous rainfall. This study presents a comparative analysis of six radar–gauge merging methods, including three statistical approaches—Quantile [...] Read more.
Accurate and spatially consistent rainfall estimation is essential for hydrological modeling and flood risk mitigation, especially in mountainous tropical regions with sparse observational networks and highly heterogeneous rainfall. This study presents a comparative analysis of six radar–gauge merging methods, including three statistical approaches—Quantile Adaptive Gaussian (QAG), Empirical Quantile Mapping (EQM), and radial basis function (RBF)—and three geostatistical approaches—external drift kriging (EDK), Bayesian Kriging (BAK), and Residual Kriging (REK). The evaluation was conducted over the Huong River Basin in Central Vietnam, a region characterized by steep terrain, monsoonal climate, and frequent hydrometeorological extremes. Two observational scenarios were established: Scenario S1 utilized 13 gauges for merging and 7 for independent validation, while Scenario S2 employed all 20 stations. Hourly radar and gauge data from peak rainy months were used for the evaluation. Each method was assessed using continuous metrics (RMSE, MAE, CC, NSE, and KGE), categorical metrics (POD and CSI), and spatial consistency indicators. Results indicate that all merging methods significantly improved the accuracy of rainfall estimates compared to raw radar data. Among them, RBF consistently achieved the highest accuracy, with the lowest RMSE (1.24 mm/h), highest NSE (0.954), and strongest spatial correlation (CC = 0.978) in Scenario S2. RBF also maintained high classification skills across all rainfall categories, including very heavy rain. EDK and BAK performed better with denser gauge input but required recalibration of variogram parameters. EQM and REK yielded moderate performance and had limitations near basin boundaries where gauge coverage was sparse. The results highlight trade-offs between method complexity, spatial accuracy, and robustness. While complex methods like EDK and BAK offer detailed spatial outputs, they require more calibration. Simpler methods are easier to apply across different conditions. RBF emerged as the most practical and transferable option, offering strong generalization, minimal calibration needs, and computational efficiency. These findings provide useful guidance for integrating radar and gauge data in flood-prone, data-scarce regions. Full article
Show Figures

Figure 1

11 pages, 1539 KiB  
Article
An Optimum Prediction Model for the Strength Index of Unclassified Tailings Filling Body
by Jian Yao, Shenghua Yin, Dongmei Tian, Chen Yi, Jinglin Xu and Leiming Wang
Processes 2025, 13(8), 2395; https://doi.org/10.3390/pr13082395 - 28 Jul 2025
Viewed by 212
Abstract
In order to improve the poor prediction effect of current filling body strength design, a support vector machine (SVM) and Lib Toolbox were used to build an optimal match model or strength index of unclassified tailings filling body. Eight main factors were analyzed [...] Read more.
In order to improve the poor prediction effect of current filling body strength design, a support vector machine (SVM) and Lib Toolbox were used to build an optimal match model or strength index of unclassified tailings filling body. Eight main factors were analyzed and screened as condition attributes, and backfill strength as a decision attribute. Next, we selected 72 groups of training samples and 6 groups of calibration samples. Our model adopts a radial basis function (RBF) as the kernel function and uses a grid search method to optimize parameters; it then tests the combination of optimal parameters by cross-validation. Results show that the mean error of regression prediction and verified predictions made by the SVM match model were 1.01%, which were more accurate than the BP neural network model’s predictions. On the premise that stope stability is ensured, the SVM match model may decrease cement consumption and the cost of backfill more effectively, and improve economic efficiency. Full article
Show Figures

Figure 1

25 pages, 2878 KiB  
Article
A Multi-Faceted Approach to Air Quality: Visibility Prediction and Public Health Risk Assessment Using Machine Learning and Dust Monitoring Data
by Lara Dronjak, Sofian Kanan, Tarig Ali, Reem Assim and Fatin Samara
Sustainability 2025, 17(14), 6581; https://doi.org/10.3390/su17146581 - 18 Jul 2025
Viewed by 439
Abstract
Clean and safe air quality is essential for public health, yet particulate matter (PM) significantly degrades air quality and poses serious health risks. The Gulf Cooperation Council (GCC) countries are particularly vulnerable to frequent and intense dust storms due to their vast desert [...] Read more.
Clean and safe air quality is essential for public health, yet particulate matter (PM) significantly degrades air quality and poses serious health risks. The Gulf Cooperation Council (GCC) countries are particularly vulnerable to frequent and intense dust storms due to their vast desert landscapes. This study presents the first health risk assessment of carcinogenic and non-carcinogenic risks associated with exposure to PM2.5 and PM10 bound heavy metals and polycyclic aromatic hydrocarbons (PAHs) based on air quality data collected during the years of 2016–2018 near Dubai International Airport and Abu Dhabi International Airport. The results reveal no significant carcinogenic risks for lead (Pb), cobalt (Co), nickel (Ni), and chromium (Cr). Additionally, AI-based regression analysis was applied to time-series dust monitoring data to enhance predictive capabilities in environmental monitoring systems. The estimated incremental lifetime cancer risk (ILCR) from PAH exposure exceeded the acceptable threshold (10−6) in several samples at both locations. The relationship between visibility and key environmental variables—PM1, PM2.5, PM10, total suspended particles (TSPs), wind speed, air pressure, and air temperature—was modeled using three machine learning algorithms: linear regression, support vector machine (SVM) with a radial basis function (RBF) kernel, and artificial neural networks (ANNs). Among these, SVM with an RBF kernel showed the highest accuracy in predicting visibility, effectively integrating meteorological data and particulate matter variables. These findings highlight the potential of machine learning models for environmental monitoring and the need for continued assessments of air quality and its health implications in the region. Full article
(This article belongs to the Special Issue Impact of AI on Business Sustainability and Efficiency)
Show Figures

Figure 1

28 pages, 11429 KiB  
Article
Trajectory Tracking of Unmanned Surface Vessels Based on Robust Neural Networks and Adaptive Control
by Ziming Wang, Chunliang Qiu, Zaopeng Dong, Shaobo Cheng, Long Zheng and Shunhuai Chen
J. Mar. Sci. Eng. 2025, 13(7), 1341; https://doi.org/10.3390/jmse13071341 - 13 Jul 2025
Viewed by 249
Abstract
In this paper, a robust neural adaptive controller is proposed for the trajectory tracking control problem of unmanned surface vessels (USVs), considering model uncertainty, time-varying environmental disturbance, and actuator saturation. First, measurement errors in acceleration signals are eliminated through filtering techniques and a [...] Read more.
In this paper, a robust neural adaptive controller is proposed for the trajectory tracking control problem of unmanned surface vessels (USVs), considering model uncertainty, time-varying environmental disturbance, and actuator saturation. First, measurement errors in acceleration signals are eliminated through filtering techniques and a series of auxiliary variables, and after linearly parameterizing the USV dynamic model, a parameter adaptive update law is developed based on Lyapunov’s second method to estimate unknown dynamic parameters in the USV dynamics model. This parameter adaptive update law enables online identification of all USV dynamic parameters during trajectory tracking while ensuring convergence of the estimation errors. Second, a radial basis function neural network (RBF-NN) is employed to approximate unmodeled dynamics in the USV system, and on this basis, a robust damping term is designed based on neural damping technology to compensate for environmental disturbances and unmodeled dynamics. Subsequently, a trajectory tracking controller with parameter adaptation law and robust damping term is proposed using Lyapunov theory and adaptive control techniques. In addition, finite-time auxiliary variables are also added to the controller to handle the actuator saturation problem. Signal delay compensators are designed to compensate for input signal delays in the control system, thereby enhancing controller reliability. The proposed controller ensures robustness in trajectory tracking under model uncertainties and time-varying environmental disturbances. Finally, the convergence of each signal of the closed-loop system is proved based on Lyapunov theory. And the effectiveness of the control system is verified by numerical simulation experiments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

26 pages, 2555 KiB  
Article
A Comparative Evaluation of Harmonic Analysis and Neural Networks for Sea Level Prediction in the Northern South China Sea
by Huiling Zhang, Na Cui, Kaining Yang, Qixian Qiu, Jun Zheng and Changqing Li
Sustainability 2025, 17(13), 6081; https://doi.org/10.3390/su17136081 - 2 Jul 2025
Viewed by 371
Abstract
Long-term sea level variations in the northern South China Sea (SCS) are known to significantly impact coastal ecosystems and socio-economic activities. To improve sea level prediction accuracy, four models—harmonic analysis and three artificial neural networks (ANNs), namely genetic algorithm-optimized back propagation (GA-BP), radial [...] Read more.
Long-term sea level variations in the northern South China Sea (SCS) are known to significantly impact coastal ecosystems and socio-economic activities. To improve sea level prediction accuracy, four models—harmonic analysis and three artificial neural networks (ANNs), namely genetic algorithm-optimized back propagation (GA-BP), radial basis function (RBF), and long short-term memory (LSTM)—are developed and compared using 52 years of observational data (1960–2004). Key evaluation metrics are presented to demonstrate the models’ effectiveness: for harmonic analysis, the root mean square error (RMSE) is reported as 14.73, the mean absolute error (MAE) is 12.61, the mean bias error (MBE) is 0.0, and the coefficient of determination (R2) is 0.84; for GA-BP, the RMSE is measured as 29.1371, the MAE is 24.9411, the MBE is 5.6809, and the R2 is 0.4003; for the RBF neural network, the RMSE is calculated as 27.1433, the MAE is 22.7533, the MBE is 2.1322, and the R2 is 0.4690; for LSTM, the RMSE is determined as 23.7929, the MAE is 19.7899, the MBE is 1.3700, and the R2 is 0.5872. The key findings include the following: (1) A significant sea level rise trend at 1.4 mm/year is observed in the northern SCS. (2) Harmonic analysis is shown to outperform all ANN models in both accuracy and robustness, with sea level variations effectively characterized by four principal and six secondary tidal constituents. (3) Despite their complexity, ANN models (including LSTM) are found to fail in surpassing the predictive capability of the traditional harmonic method. These results highlight the continued effectiveness of harmonic analysis for long-term sea level forecasting, offering critical insights for coastal hazard mitigation and sustainable development planning. Full article
Show Figures

Figure 1

18 pages, 49730 KiB  
Article
High-Resolution Daily XCH4 Prediction Using New Convolutional Neural Network Autoencoder Model and Remote Sensing Data
by Mohamad M. Awad and Saeid Homayouni
Atmosphere 2025, 16(7), 806; https://doi.org/10.3390/atmos16070806 - 1 Jul 2025
Viewed by 287
Abstract
Atmospheric methane (CH4) concentrations have increased to 2.5 times their pre-industrial levels, with a marked acceleration in recent decades. CH4 is responsible for approximately 30% of the global temperature rise since the Industrial Revolution. This growing concentration contributes to environmental [...] Read more.
Atmospheric methane (CH4) concentrations have increased to 2.5 times their pre-industrial levels, with a marked acceleration in recent decades. CH4 is responsible for approximately 30% of the global temperature rise since the Industrial Revolution. This growing concentration contributes to environmental degradation, including ocean acidification, accelerated climate change, and a rise in natural disasters. The column-averaged dry-air mole fraction of methane (XCH4) is a crucial indicator for assessing atmospheric CH4 levels. In this study, the Sentinel-5P TROPOMI instrument was employed to monitor, map, and estimate CH4 concentrations on both regional and global scales. However, TROPOMI data exhibits limitations such as spatial gaps and relatively coarse resolution, particularly at regional scales or over small areas. To mitigate these limitations, a novel Convolutional Neural Network Autoencoder (CNN-AE) model was developed. Validation was performed using the Total Carbon Column Observing Network (TCCON), providing a benchmark for evaluating the accuracy of various interpolation and prediction models. The CNN-AE model demonstrated the highest accuracy in regional-scale analysis, achieving a Mean Absolute Error (MAE) of 28.48 ppb and a Root Mean Square Error (RMSE) of 30.07 ppb. This was followed by the Random Forest (RF) regressor (MAE: 29.07 ppb; RMSE: 36.89 ppb), GridData Nearest Neighbor Interpolator (NNI) (MAE: 30.06 ppb; RMSE: 32.14 ppb), and the Radial Basis Function (RBF) Interpolator (MAE: 80.23 ppb; RMSE: 90.54 ppb). On a global scale, the CNN-AE again outperformed other methods, yielding the lowest MAE and RMSE (19.78 and 24.7 ppb, respectively), followed by RF (21.46 and 27.23 ppb), GridData NNI (25.3 and 32.62 ppb), and RBF (43.08 and 54.93 ppb). Full article
Show Figures

Figure 1

18 pages, 4190 KiB  
Article
Intelligent Classification Method for Rail Defects in Magnetic Flux Leakage Testing Based on Feature Selection and Parameter Optimization
by Kailun Ji, Ping Wang and Yinliang Jia
Sensors 2025, 25(13), 3962; https://doi.org/10.3390/s25133962 - 26 Jun 2025
Viewed by 361
Abstract
This study addresses the critical challenge of insufficient classification accuracy for different defect signals in rail magnetic flux leakage (MFL) detection by proposing an enhanced intelligent classification framework based on particle swarm optimized radial basis function neural network (PSO-RBF). Three key innovations drive [...] Read more.
This study addresses the critical challenge of insufficient classification accuracy for different defect signals in rail magnetic flux leakage (MFL) detection by proposing an enhanced intelligent classification framework based on particle swarm optimized radial basis function neural network (PSO-RBF). Three key innovations drive this research: (1) A dynamic PSO algorithm incorporating adaptive learning factors and nonlinear inertia weight for precise RBF parameter optimization; (2) A hierarchical feature processing strategy combining mutual information selection with correlation-based dimensionality reduction; (3) Adaptive model architecture adjustment for small-sample scenarios. Experimental validation shows breakthrough performance: 87.5% accuracy on artificial defects (17.5% absolute improvement over conventional RBF), with macro-F1 = 0.817 and MCC = 0.733. For real-world limited samples (100 sets), adaptive optimization achieved 80% accuracy while boosting minority class (“spalling”) F1-score by 0.25 with 50% false alarm reduction. The optimized PSO-RBF demonstrates superior capability in extracting MFL signal patterns, particularly for discriminating abrasions, spalling, indentations, and shelling defects, setting a new benchmark for industrial rail inspection. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

43 pages, 10203 KiB  
Article
Neural Adaptive Nonlinear MIMO Control for Bipedal Walking Robot Locomotion in Hazardous and Complex Task Applications
by Belkacem Bekhiti, Jamshed Iqbal, Kamel Hariche and George F. Fragulis
Robotics 2025, 14(6), 84; https://doi.org/10.3390/robotics14060084 - 17 Jun 2025
Viewed by 546
Abstract
This paper introduces a robust neural adaptive MIMO control strategy to improve the stability and adaptability of bipedal locomotion amid uncertainties and external disturbances. The control combines nonlinear dynamic inversion, finite-time convergence, and radial basis function (RBF) neural networks for fast, accurate trajectory [...] Read more.
This paper introduces a robust neural adaptive MIMO control strategy to improve the stability and adaptability of bipedal locomotion amid uncertainties and external disturbances. The control combines nonlinear dynamic inversion, finite-time convergence, and radial basis function (RBF) neural networks for fast, accurate trajectory tracking. The main novelty of the presented control strategy lies in unifying instantaneous feedback, real-time learning, and dynamic adaptation within a multivariable feedback framework, delivering superior robustness, precision, and real-time performance under extreme conditions. The control scheme is implemented on a 5-DOF underactuated RABBIT robot using a dSPACEDS1103 platform with a sampling rate of t=1.5 ms (667 Hz). The experimental results show excellent performance with the following: The robot achieved stable cyclic gaits while keeping the tracking error within e=±0.04 rad under nominal conditions. Under severe uncertainties of trunk mass variations mtrunk=+100%, limb inertia changes Ilimb=±30%, and actuator torque saturation at τ=±150 Nm, the robot maintains stable limit cycles with smooth control. The performance of the proposed controller is compared with classical nonlinear decoupling, non-adaptive finite-time, neural-fuzzy learning, and deep learning controls. The results demonstrate that the proposed method outperforms the four benchmark strategies, achieving the lowest errors and fastest convergence with the following: IAE=1.36, ITAE=2.43, ISE=0.68, tss=1.24 s, and Mp=2.21%. These results demonstrate evidence of high stability, rapid convergence, and robustness to disturbances and foot-slip. Full article
(This article belongs to the Section Humanoid and Human Robotics)
Show Figures

Figure 1

28 pages, 7612 KiB  
Article
Machine Learning Models for Predicting Freeze–Thaw Damage of Concrete Under Subzero Temperature Curing Conditions
by Yanhua Zhao, Bo Yang, Kai Zhang, Aojun Guo, Yonghui Yu and Li Chen
Materials 2025, 18(12), 2856; https://doi.org/10.3390/ma18122856 - 17 Jun 2025
Viewed by 427
Abstract
In high-elevation or high-latitude permafrost areas, persistent subzero temperatures significantly impact the freeze–thaw durability of concrete structures. Traditional methods for studying the frost resistance of concrete in permafrost regions do not provide a complete picture for predicting properties, and new approaches are needed [...] Read more.
In high-elevation or high-latitude permafrost areas, persistent subzero temperatures significantly impact the freeze–thaw durability of concrete structures. Traditional methods for studying the frost resistance of concrete in permafrost regions do not provide a complete picture for predicting properties, and new approaches are needed using, for example, machine learning algorithms. This study utilizes four machine learning models—Support Vector Machine (SVM), extreme learning machine (ELM), long short-term memory (LSTM), and radial basis function neural network (RBFNN)—to predict freeze–thaw damage factors in concrete under low and subzero temperature conservation conditions. Building on the prediction results, the optimal model is refined to develop a new machine learning model: the Sparrow Search Algorithm-optimized Extreme Learning Machine (SSA-ELM). Furthermore, the SHapley Additive exPlanations (SHAP) value analysis method is employed to interpret this model, clarifying the relationship between factors affecting the freezing resistance of concrete and freeze–thaw damage factors. In conclusion, the empirical formula for concrete freeze–thaw damage is compared and validated against the prediction results from the SSA-ELM model. The study results indicate that the SSA-ELM model offers the most accurate predictions for concrete freeze–thaw resistance compared to the SVM, ELM, LSTM, and RBFNN models. SHAP value analysis quantitatively confirms that the number of freeze–thaw cycles is the most significant input parameter affecting the freeze–thaw damage coefficient of concrete. Comparative analysis shows that the accuracy of the SSA-ELMDE prediction set is improved by 15.46%, 9.19%, 21.79%, and 11.76%, respectively, compared with the prediction results of SVM, ELM, LSTM, and RBF. This parameter positively influences the prediction results for the freeze–thaw damage coefficient. Curing humidity has the least influence on the freeze–thaw damage factor of concrete. Comparing the prediction results with empirical formulas shows that the machine learning model provides more accurate predictions. This introduces a new approach for predicting the extent of freeze–thaw damage to concrete under low and subzero temperature conservation conditions. Full article
(This article belongs to the Special Issue Artificial Intelligence in Materials Science and Engineering)
Show Figures

Figure 1

15 pages, 2222 KiB  
Article
Energy-Efficient Prediction of Carbon Deposition in DRM Processes Through Optimized Neural Network Modeling
by Rui Fang, Tuo Zhou, Zhuangzhuang Xu, Xiannan Hu, Man Zhang and Hairui Yang
Energies 2025, 18(12), 3172; https://doi.org/10.3390/en18123172 - 17 Jun 2025
Viewed by 318
Abstract
Methane dry reforming (DRM) offers a promising route by converting two greenhouse gases into syngas, but catalyst deactivation through carbon deposition severely reduces energy efficiency. While neural networks offer potential for predicting carbon deposition and reducing experimental burdens, conventional random data partitioning in [...] Read more.
Methane dry reforming (DRM) offers a promising route by converting two greenhouse gases into syngas, but catalyst deactivation through carbon deposition severely reduces energy efficiency. While neural networks offer potential for predicting carbon deposition and reducing experimental burdens, conventional random data partitioning in small-sample regimes compromises model accuracy, stability, and generalizability. To overcome these limitations, we conducted a systematic comparison between backpropagation (BP) and radial basis function (RBF) neural network models. Throughout 10 model trials with random trainset splits, the RBF model demonstrated superior performance and was consequently selected for further optimization. Then, we developed a K-fold cross-validation framework to enhance model selection, resulting in an optimized RBF model (RBF-Imp). The final model achieved outstanding performance on unseen test data (MSE = 0.0018, R² = 0.9882), representing a 64% reduction in MSE and a 4.3% improvement in R² compared to the mean performance across 10 independent validations. These results demonstrated significant improvements in the prediction accuracy, model stability, and generalization capability of the small-sample data model, providing intelligent decision-making support for the removal of carbon deposition. Full article
Show Figures

Figure 1

23 pages, 1475 KiB  
Article
Learning Online MEMS Calibration with Time-Varying and Memory-Efficient Gaussian Neural Topologies
by Danilo Pietro Pau, Simone Tognocchi and Marco Marcon
Sensors 2025, 25(12), 3679; https://doi.org/10.3390/s25123679 - 12 Jun 2025
Viewed by 2322
Abstract
This work devised an on-device learning approach to self-calibrate Micro-Electro-Mechanical Systems-based Inertial Measurement Units (MEMS-IMUs), integrating a digital signal processor (DSP), an accelerometer, and a gyroscope in the same package. The accelerometer and gyroscope stream their data in real time to the DSP, [...] Read more.
This work devised an on-device learning approach to self-calibrate Micro-Electro-Mechanical Systems-based Inertial Measurement Units (MEMS-IMUs), integrating a digital signal processor (DSP), an accelerometer, and a gyroscope in the same package. The accelerometer and gyroscope stream their data in real time to the DSP, which runs artificial intelligence (AI) workloads. The real-time sensor data are subject to errors, such as time-varying bias and thermal stress. To compensate for these drifts, the traditional calibration method based on a linear model is applicable, and unfortunately, it does not work with nonlinear errors. The algorithm devised by this study to reduce such errors adopts Radial Basis Function Neural Networks (RBF-NNs). This method does not rely on the classical adoption of the backpropagation algorithm. Due to its low complexity, it is deployable using kibyte memory and in software runs on the DSP, thus performing interleaved in-sensor learning and inference by itself. This avoids using any off-package computing processor. The learning process is performed periodically to achieve consistent sensor recalibration over time. The devised solution was implemented in both 32-bit floating-point data representation and 16-bit quantized integer version. Both of these were deployed into the Intelligent Sensor Processing Unit (ISPU), integrated into the LSM6DSO16IS Inertial Measurement Unit (IMU), which is a programmable 5–10 MHz DSP on which the programmer can compile and execute AI models. It integrates 32 KiB of program RAM and 8 KiB of data RAM. No permanent memory is integrated into the package. The two (fp32 and int16) RBF-NN models occupied less than 21 KiB out of the 40 available, working in real-time and independently in the sensor package. The models, respectively, compensated between 46% and 95% of the accelerometer measurement error and between 32% and 88% of the gyroscope measurement error. Finally, it has also been used for attitude estimation of a micro aerial vehicle (MAV), achieving an error of only 2.84°. Full article
(This article belongs to the Special Issue Sensors and IoT Technologies for the Smart Industry)
Show Figures

Graphical abstract

19 pages, 2851 KiB  
Article
Estimating Energy Consumption During Soil Cultivation Using Geophysical Scanning and Machine Learning Methods
by Jasper Tembeck Mbah, Katarzyna Pentoś, Krzysztof S. Pieczarka and Tomasz Wojciechowski
Agriculture 2025, 15(12), 1263; https://doi.org/10.3390/agriculture15121263 - 11 Jun 2025
Viewed by 1062
Abstract
The agricultural sector is one of the most significant sectors of the global economy, yet it is concurrently a highly energy-intensive industry. The issue of optimizing field operations in terms of energy consumption is therefore a key consideration for sustainable agriculture, and the [...] Read more.
The agricultural sector is one of the most significant sectors of the global economy, yet it is concurrently a highly energy-intensive industry. The issue of optimizing field operations in terms of energy consumption is therefore a key consideration for sustainable agriculture, and the solution to this issue leads to both environmental and financial benefits. The aim of this study was to estimate energy consumption during soil cultivation using geophysical scanning data and machine learning (ML) algorithms. This included determining the optimal set of independent variables and the most suitable ML method. Soil parameters such as electrical conductivity, magnetic susceptibility, and soil reflectance in infrared spectra were mapped using data from Geonics EM-38 and Veris 3100 scanners. These data, along with soil texture, served as inputs for predicting fuel consumption and field productivity. Three machine learning algorithms were tested: support vector machines (SVMs), multilayer perceptron (MLP), and radial basis function (RBF) neural networks. Among these, SVM achieved the best performance, showing a MAPE of 4% and a strong correlation (R = 0.97) between predicted and actual productivity values. For fuel consumption, the optimal method was MLP (MAPE = 4% and R = 0.63). The findings demonstrate the viability of geophysical scanning and machine learning for accurately predicting energy use in tillage operations. This approach supports more sustainable agriculture by enabling optimized fuel use and reducing environmental impact through data-driven field management. Further research is needed to obtain training data for different soil parameters and agrotechnical treatments in order to develop more universal models. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

Back to TopTop