Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = quinols

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1683 KiB  
Article
Photochemical Redox Reactions of 2,6-Dichlorophenolindophenol and Its Use to Detect Photoreduced Quinones
by Meredith G. Warsen, Soren Zimmer, Katherine Phan and Lisa M. Landino
Photochem 2025, 5(3), 19; https://doi.org/10.3390/photochem5030019 - 23 Jul 2025
Viewed by 242
Abstract
Photosynthesis in plants and the electron transport chain in mitochondria are examples of life-sustaining electron transfer processes. The benzoquinones plastoquinone and ubiquinone are key components of these pathways that cycle through their oxidized and reduced forms. Previously, we reported direct photoreduction of biologically [...] Read more.
Photosynthesis in plants and the electron transport chain in mitochondria are examples of life-sustaining electron transfer processes. The benzoquinones plastoquinone and ubiquinone are key components of these pathways that cycle through their oxidized and reduced forms. Previously, we reported direct photoreduction of biologically relevant quinones mediated by photosensitizers, red light and electron donors. Herein we examined direct photoreduction of the quinone imine 2,6-dichlorophenolindophenol (DCPIP) using red light, methylene blue as the photosensitizer and ethylenediaminetetraacetic acid (EDTA) as the electron donor. Photoreduction of DCPIP by methylene blue and EDTA was very pH-dependent, with three-fold enhanced rates at pH 6.9 vs. pH 7.4. Photochemical redox cycling of DCPIP produced hydrogen peroxide via singlet oxygen-dependent reoxidation of reduced DCPIP. Histidine enhanced photoreduction by scavenging singlet oxygen, whereas increased molecular oxygen exposure slowed DCPIP photoreduction. Attempts to photoreduce DCPIP with pheophorbide A, a chlorophyll metabolite, and triethanolamine as the electron donor in 20% dimethylformamide were unsuccessful. Photoreduced benzoquinones including 2,3-dimethoxy-5-methyl-p-benzoquinone (CoQ0), methoxy-benzoquinone and methyl-benzoquinone were used to examine electron transfer to DCPIP. For photoreduced CoQ0 and methoxy-benzoquinone, electron transfer to DCPIP was rapid and complete, whereas for reduced methyl benzoquinone, it was incomplete due to differences in reduction potential. Nonetheless, electron transfer from photoreduced quinols to DCPIP is a rapid and sensitive method to investigate quinone photoreduction by chlorophyll metabolites. Full article
Show Figures

Figure 1

31 pages, 3410 KiB  
Article
Novel 8-Hydroxyquinoline-Derived V(IV)O, Ni(II), and Fe(III) Complexes: Synthesis, Characterization, and In Vitro Cytotoxicity Against Tumor Cells
by Joana Lopes, Leonor Côrte-Real, Íris Neto, Alice Alborghetti, Maël Dejoux, Nora V. May, Xavier Fontrodona, Isabel Romero, Alexandra M. M. Antunes, Catarina Pinto Reis, Maria Manuela Gaspar and Isabel Correia
Inorganics 2025, 13(5), 150; https://doi.org/10.3390/inorganics13050150 - 6 May 2025
Viewed by 1104
Abstract
We report the synthesis and characterization of five novel metal complexes. Three of them are vanadium complexes with the general formula [VO(Ln)2], where Ln are Schiff bases derived from the condensation of 2-carbaldehyde-8-hydroxyquinoline with either 4-(2-aminoethyl)morpholine (L [...] Read more.
We report the synthesis and characterization of five novel metal complexes. Three of them are vanadium complexes with the general formula [VO(Ln)2], where Ln are Schiff bases derived from the condensation of 2-carbaldehyde-8-hydroxyquinoline with either 4-(2-aminoethyl)morpholine (L1), 3-morpholinopropylamine (L2) or 1-(2-aminoethyl)piperidine (L3). The two other metal complexes are [Ni(L1)2] and [Fe(L1)2]Cl. They were characterized by analytical, spectroscopic (Fourier transform infrared, UV-visible absorption), and mass spectrometric techniques as well as by single-crystal X-ray diffraction (for all [VO(Ln)2] complexes and [Ni(L1)2]). While, in the crystal structure, the V(IV)O complexes show distorted square–pyramidal geometry with the ligands bound as bidentate through quinolate NO donors, the Ni(II) complex shows octahedral geometry with two ligand molecules coordinated through NNO donors. Stability studies in aqueous media revealed that the vanadium complexes are not stable, undergoing oxidation to VO2(L), which was corroborated by 51V NMR and MS. This behavior is also observed in organic media, though at a significantly slower rate. The Ni complex exhibited small spectral changes over time in aqueous media. Nonetheless, all compounds show enhanced stability in the presence of bovine serum albumin (BSA). Fluorescence studies carried out for the Ni(II) and Fe(III) complexes indicate reversible binding to albumin. The cytotoxicity of the L1 metal complexes was assessed on melanoma (B16F10 and A375) and colon cancer (CT-26 and HCT-116) cell lines, with 5-fluorouracil (5-FU) as a reference drug. The V- and Ni complexes showed the lowest IC50 values (<10 μM) in either A375 or HCT-116 cells after 48 h of incubation, while the Fe(III) complex presented minimal antiproliferative effects. The complexes were generally more cytotoxic to human than murine cancer cells. Synergistic in vitro studies with 5-FU revealed antagonism in most cases, except in A375 cells, where an additive effect was observed for the combination with the V-complex. Overall, these compounds show promising potential for cancer treatment, mostly for melanoma. Full article
Show Figures

Graphical abstract

17 pages, 3843 KiB  
Article
Metal Oxide Nanocatalysts for the Electrochemical Detection of Propofol
by David C. Ferrier, Janice Kiely and Richard Luxton
Micromachines 2025, 16(2), 120; https://doi.org/10.3390/mi16020120 - 22 Jan 2025
Viewed by 1197
Abstract
Propofol is one of the most widely used intravenous drugs for anaesthesia and sedation and is one of the most commonly used drugs in intensive care units for the sedation of mechanically ventilated patients. The correct dosage of propofol is of high importance, [...] Read more.
Propofol is one of the most widely used intravenous drugs for anaesthesia and sedation and is one of the most commonly used drugs in intensive care units for the sedation of mechanically ventilated patients. The correct dosage of propofol is of high importance, but there is currently a lack of suitable point-of-care techniques for determining blood propofol concentrations. Here, we present a cytochrome P450 2B6/carbon nanotube/graphene oxide/metal oxide nanocomposite sensor for discrete measurement of propofol concentration. Propofol is converted into a quinol/quinone redox couple by the enzyme and the nanocomposite enables sensitive and rapid detection. The metal oxide nanoparticles are synthesised via green synthesis and a variety of metal oxides and mixed metal oxides are investigated to determine the optimal nanocatalyst. Converting propofol into the redox couple allows for the measurement to take place over different potential ranges, enabling interference from common sources such as paracetamol and uric acid to be avoided. It was found that nanocomposites containing copper titanium oxide nanoparticles offered the best overall performance and electrodes functionalised with such nanocomposites demonstrated a limit of detection in bovine serum of 0.5 µg/mL and demonstrated a linear response over the therapeutic range of propofol with a sensitivity of 4.58 nA/μg/mL/mm2. Full article
(This article belongs to the Special Issue Metal Nanoparticles: Preparing and Advanced Applications)
Show Figures

Figure 1

20 pages, 6997 KiB  
Article
Martini 3 Coarse-Grained Model for the Cofactors Involved in Photosynthesis
by Maria Gabriella Chiariello, Rubi Zarmiento-Garcia and Siewert-Jan Marrink
Int. J. Mol. Sci. 2024, 25(14), 7947; https://doi.org/10.3390/ijms25147947 - 20 Jul 2024
Cited by 3 | Viewed by 3328
Abstract
As a critical step in advancing the simulation of photosynthetic complexes, we present the Martini 3 coarse-grained (CG) models of key cofactors associated with light harvesting (LHCII) proteins and the photosystem II (PSII) core complex. Our work focuses on the parametrization of beta-carotene, [...] Read more.
As a critical step in advancing the simulation of photosynthetic complexes, we present the Martini 3 coarse-grained (CG) models of key cofactors associated with light harvesting (LHCII) proteins and the photosystem II (PSII) core complex. Our work focuses on the parametrization of beta-carotene, plastoquinone/quinol, violaxanthin, lutein, neoxanthin, chlorophyll A, chlorophyll B, and heme. We derived the CG parameters to match the all-atom reference simulations, while structural and thermodynamic properties of the cofactors were compared to experimental values when available. To further assess the reliability of the parameterization, we tested the behavior of these cofactors within their physiological environments, specifically in a lipid bilayer and bound to photosynthetic complexes. The results demonstrate that our CG models maintain the essential features required for realistic simulations. This work lays the groundwork for detailed simulations of the PSII-LHCII super-complex, providing a robust parameter set for future studies. Full article
Show Figures

Figure 1

14 pages, 3180 KiB  
Article
Insights into the Paulownia Shan tong (Fortunei × Tomentosa) Essential Oil and In Silico Analysis of Potential Biological Targets of Its Compounds
by Călin Jianu, Marius Mioc, Alexandra Mioc, Codruța Șoica, Alexandra Teodora Lukinich-Gruia, Gabriel Bujancă and Matilda Rădulescu
Foods 2024, 13(7), 1007; https://doi.org/10.3390/foods13071007 - 26 Mar 2024
Cited by 1 | Viewed by 1863
Abstract
The volatile composition of Paulownia Shan tong (Fortunei × Tomentosa) essential oil isolated by steam distillation (yielding 0.013% v/w) from flowers (forestry wastes) was investigated by gas chromatography–mass spectrometry. Thirty-one components were identified, with 3-acetoxy-7, 8-epoxylanostan-11-ol (38.16%), β-monoolein (14.4%), lycopene, [...] Read more.
The volatile composition of Paulownia Shan tong (Fortunei × Tomentosa) essential oil isolated by steam distillation (yielding 0.013% v/w) from flowers (forestry wastes) was investigated by gas chromatography–mass spectrometry. Thirty-one components were identified, with 3-acetoxy-7, 8-epoxylanostan-11-ol (38.16%), β-monoolein (14.4%), lycopene, 1,2-dihydro-1-hydroxy- (10.21%), and 9,12-octadecadienoic acid, 2-phenyl-1,3-dioxan-5-yl ester (9.21%) as main compounds. In addition, molecular docking was employed to identify potential protein targets for the 31 quantified essential oil components. Inhibition of these targets is typically associated with antibacterial or antioxidant properties. Molecular docking revealed that six of these components, namely, 13-heptadecyn-1-ol, ascabiol, geranylgeraniol, anethole, and quinol dimethyl ether, outperformed the native ligand (hypoxanthine) of xanthine oxidase in terms of theoretical binding affinity, therefore implying a significant in silico inhibitory potential against xanthine oxidase. These findings suggest that the essential oil extracted from Paulownia Shan tong flowers could be valuable for developing protein-targeted antioxidant compounds with applications in the food, pharmaceutical, and cosmetic industries. Full article
Show Figures

Figure 1

20 pages, 3984 KiB  
Article
Membrane-Bound Redox Enzyme Cytochrome bd-I Promotes Carbon Monoxide-Resistant Escherichia coli Growth and Respiration
by Martina R. Nastasi, Vitaliy B. Borisov and Elena Forte
Int. J. Mol. Sci. 2024, 25(2), 1277; https://doi.org/10.3390/ijms25021277 - 20 Jan 2024
Cited by 4 | Viewed by 1932
Abstract
The terminal oxidases of bacterial aerobic respiratory chains are redox-active electrogenic enzymes that catalyze the four-electron reduction of O2 to 2H2O taking out electrons from quinol or cytochrome c. Living bacteria often deal with carbon monoxide (CO) which can [...] Read more.
The terminal oxidases of bacterial aerobic respiratory chains are redox-active electrogenic enzymes that catalyze the four-electron reduction of O2 to 2H2O taking out electrons from quinol or cytochrome c. Living bacteria often deal with carbon monoxide (CO) which can act as both a signaling molecule and a poison. Bacterial terminal oxidases contain hemes; therefore, they are potential targets for CO. However, our knowledge of this issue is limited and contradictory. Here, we investigated the effect of CO on the cell growth and aerobic respiration of three different Escherichia coli mutants, each expressing only one terminal quinol oxidase: cytochrome bd-I, cytochrome bd-II, or cytochrome bo3. We found that following the addition of CO to bd-I-only cells, a minimal effect on growth was observed, whereas the growth of both bd-II-only and bo3-only strains was severely impaired. Consistently, the degree of resistance of aerobic respiration of bd-I-only cells to CO is high, as opposed to high CO sensitivity displayed by bd-II-only and bo3-only cells consuming O2. Such a difference between the oxidases in sensitivity to CO was also observed with isolated membranes of the mutants. Accordingly, O2 consumption of wild-type cells showed relatively low CO sensitivity under conditions favoring the expression of a bd-type oxidase. Full article
Show Figures

Graphical abstract

14 pages, 2410 KiB  
Article
A Potent PDK4 Inhibitor for Treatment of Heart Failure with Reduced Ejection Fraction
by Kenichi Aizawa, Akari Ikeda, Shota Tomida, Koki Hino, Yuuki Sugita, Tomoyasu Hirose, Toshiaki Sunazuka, Hiroshi Kido, Shigeyuki Yokoyama and Ryozo Nagai
Cells 2024, 13(1), 87; https://doi.org/10.3390/cells13010087 - 30 Dec 2023
Cited by 7 | Viewed by 3483
Abstract
Heart failure with reduced ejection fraction (HFrEF) is characterized not only by reduced left ventricular ejection fraction (EF) but is also combined with symptoms such as dyspnea, fatigue, and edema. Several pharmacological interventions have been established. However, a treatment targeting a novel pathophysiological [...] Read more.
Heart failure with reduced ejection fraction (HFrEF) is characterized not only by reduced left ventricular ejection fraction (EF) but is also combined with symptoms such as dyspnea, fatigue, and edema. Several pharmacological interventions have been established. However, a treatment targeting a novel pathophysiological mechanism is still needed. Evidence indicating that inhibition of pyruvate dehydrogenase kinase 4 (PDK4) may be cardioprotective has been accumulating. Thus, we focused on vitamin K3 and used its framework as a new PDK4 inhibitor skeleton to synthesize new PDK4 inhibitors that show higher activity than the existing PDK4 inhibitor, dichloroacetic acid, and tested their cardioprotective effects on a mouse heart failure model. Among these inhibitors, PDK4 inhibitor 8 improved EF the most, even though it did not reverse cardiac fibrosis or wall thickness. This novel, potent PDK4 inhibitor may improve EF of failing hearts by regulating bioenergetics via activation of the tricarboxylic acid cycle. Full article
Show Figures

Figure 1

18 pages, 15511 KiB  
Article
Modeling the Characteristic Residues of Chlorophyll f Synthase (ChlF) from Halomicronema hongdechloris to Determine Its Reaction Mechanism
by Min Chen, Artur Sawicki and Fanyue Wang
Microorganisms 2023, 11(9), 2305; https://doi.org/10.3390/microorganisms11092305 - 13 Sep 2023
Cited by 3 | Viewed by 1675
Abstract
Photosystem II (PSII) is a quinone-utilizing photosynthetic system that converts light energy into chemical energy and catalyzes water splitting. PsbA (D1) and PsbD (D2) are the core subunits of the reaction center that provide most of the ligands to redox-active cofactors and exhibit [...] Read more.
Photosystem II (PSII) is a quinone-utilizing photosynthetic system that converts light energy into chemical energy and catalyzes water splitting. PsbA (D1) and PsbD (D2) are the core subunits of the reaction center that provide most of the ligands to redox-active cofactors and exhibit photooxidoreductase activities that convert quinone and water into quinol and dioxygen. The performed analysis explored the putative uncoupled electron transfer pathways surrounding P680+ induced by far-red light (FRL) based on photosystem II (PSII) complexes containing substituted D1 subunits in Halomicronema hongdechloris. Chlorophyll f-synthase (ChlF) is a D1 protein paralog. Modeling PSII-ChlF complexes determined several key protein motifs of ChlF. The PSII complexes included a dysfunctional Mn4CaO5 cluster where ChlF replaced the D1 protein. We propose the mechanism of chlorophyll f synthesis from chlorophyll a via free radical chemistry in an oxygenated environment created by over-excited pheophytin a and an inactive water splitting reaction owing to an uncoupled Mn4CaO5 cluster in PSII-ChlF complexes. The role of ChlF in the formation of an inactive PSII reaction center is under debate, and putative mechanisms of chlorophyll f biosynthesis are discussed. Full article
(This article belongs to the Special Issue Phototrophic Bacteria 2.0)
Show Figures

Figure 1

16 pages, 1093 KiB  
Article
Antimicrobial Efficacy and HPLC Analysis of Polyphenolic Compounds in a Whole-Plant Extract of Eryngium campestre
by Abdulaziz A. Al-Askar, Shimaa Bashir, Abdallah E. Mohamed, Omaima A. Sharaf, Rokaia Nabil, Yiming Su, Ahmed Abdelkhalek and Said I. Behiry
Separations 2023, 10(6), 362; https://doi.org/10.3390/separations10060362 - 18 Jun 2023
Cited by 17 | Viewed by 3710
Abstract
Due to the constant increase in the number of plant diseases and the lack of available treatments, there has been a growing interest in plant extracts over the past few decades. Numerous studies suggest that plant extract molecules possess valuable antimicrobial activities, particularly [...] Read more.
Due to the constant increase in the number of plant diseases and the lack of available treatments, there has been a growing interest in plant extracts over the past few decades. Numerous studies suggest that plant extract molecules possess valuable antimicrobial activities, particularly against fungi and bacteria. This suggests that these biomaterials could potentially serve as attractive therapeutic options for the treatment of phytopathogen infections. In the present study, we investigated and analyzed the methanolic extract of Eryngium campestre L. whole plant extract using HPLC. The analysis revealed the presence of several polyphenolic constituents, with benzoic acid, catechol, quercetin, vanillic acid, resveratrol, naringenin, and quinol being the most abundant. The amounts of these constituents were determined to be 2135.53, 626.728, 579.048, 356.489, 323.41, 153.038, and 128.77 mg/kg, respectively. Furthermore, we isolated and identified different plant fungal and bacterial isolates from symptomatic potato plants, which were accessioned as Rhizoctonia solani (OQ880458), Fusarium oxysporum (OQ820156) and Fusarium solani (OQ891085), Ralstonia solanacearum (OQ878653), Dickeya solani (OQ878655), and Pectobacterium carotovorum (OQ878656). The antifungal activity of the extract was assessed using fungal growth inhibitions (FGI) at concentrations of 100, 200, and 300 µg/mL. The results showed that at the lowest concentration tested (100 µg/mL), the extract exhibited the highest effectiveness against R. solani with an FGI of 78.52%, while it was least effective against F. solani with an FGI of 61.85%. At the highest concentration tested, the extract demonstrated the highest effectiveness against R. solani and F. oxysporum, with FGIs of 88.89% and 77.04%, respectively. Additionally, the extract displayed a concentration-dependent inhibitory effect on all three bacterial pathogens. At the highest concentration tested (3000 µg/mL), the extract was able to inhibit the growth of all three bacterial pathogens, although the inhibition zone diameter varied. Among the bacterial pathogens, D. solani exhibited the highest sensitivity to the extract, as it showed the largest inhibition zone diameter at most of the extract concentrations. These findings highlight the potential of the E. campestre extract as a source of natural antimicrobial agents for controlling various plant pathogens. Consequently, it offers a safer alternative to the currently employed protective methods for plant disease management. Full article
(This article belongs to the Special Issue Application of Hyphenated Techniques in Natural Product Analysis)
Show Figures

Graphical abstract

18 pages, 2664 KiB  
Article
Coordination of the N-Terminal Heme in the Non-Classical Peroxidase from Escherichia coli
by Ricardo N. S. Oliveira, Sara R. M. M. de Aguiar and Sofia R. Pauleta
Molecules 2023, 28(12), 4598; https://doi.org/10.3390/molecules28124598 - 7 Jun 2023
Viewed by 2174
Abstract
The non-classical bacterial peroxidase from Escherichia coli, YhjA, is proposed to deal with peroxidative stress in the periplasm when the bacterium is exposed to anoxic environments, defending it from hydrogen peroxide and allowing it to thrive under those conditions. This enzyme has [...] Read more.
The non-classical bacterial peroxidase from Escherichia coli, YhjA, is proposed to deal with peroxidative stress in the periplasm when the bacterium is exposed to anoxic environments, defending it from hydrogen peroxide and allowing it to thrive under those conditions. This enzyme has a predicted transmembrane helix and is proposed to receive electrons from the quinol pool in an electron transfer pathway involving two hemes (NT and E) to accomplish the reduction of hydrogen peroxide in the periplasm at the third heme (P). Compared with classical bacterial peroxidases, these enzymes have an additional N-terminal domain binding the NT heme. In the absence of a structure of this protein, several residues (M82, M125 and H134) were mutated to identify the axial ligand of the NT heme. Spectroscopic data demonstrate differences only between the YhjA and YhjA M125A variant. In the YhjA M125A variant, the NT heme is high-spin with a lower reduction potential than in the wild-type. Thermostability was studied by circular dichroism, demonstrating that YhjA M125A is thermodynamically more unstable than YhjA, with a lower TM (43 °C vs. 50 °C). These data also corroborate the structural model of this enzyme. The axial ligand of the NT heme was validated to be M125, and mutation of this residue was proven to affect the spectroscopic, kinetic, and thermodynamic properties of YhjA. Full article
(This article belongs to the Special Issue Feature Papers in Chemical BiologyEdition of 2022-2023)
Show Figures

Figure 1

11 pages, 2368 KiB  
Article
Synthesis of meta-Aminophenol Derivatives via Cu-Catalyzed [1,3]-Rearrangement—Oxa-Michael Addition Cascade Reactions
by Itaru Nakamura, Mai Tachibana, Riku Konta, Hiroki Tashiro and Masahiro Terada
Molecules 2023, 28(10), 4251; https://doi.org/10.3390/molecules28104251 - 22 May 2023
Cited by 2 | Viewed by 2871
Abstract
Cu-catalyzed reactions of N-alkoxy-2-methylanilines and alcohols in the presence of catalytic amounts of IPrCuBr and AgSbF6 afforded the corresponding meta-aminophenol derivatives in good to high yields. These reactions proceed via a [1,3]-rearrangement, in which the alkoxy group migrates from the [...] Read more.
Cu-catalyzed reactions of N-alkoxy-2-methylanilines and alcohols in the presence of catalytic amounts of IPrCuBr and AgSbF6 afforded the corresponding meta-aminophenol derivatives in good to high yields. These reactions proceed via a [1,3]-rearrangement, in which the alkoxy group migrates from the nitrogen atom to the methyl-substituted ortho position, followed by an oxa-Michael reaction of the resulting ortho-quinol imine intermediate. Full article
(This article belongs to the Special Issue Advances on the Application of N-O Bond Compounds)
Show Figures

Figure 1

24 pages, 3006 KiB  
Article
Computational Modeling Analysis of Kinetics of Fumarate Reductase Activity and ROS Production during Reverse Electron Transfer in Mitochondrial Respiratory Complex II
by Nikolay I. Markevich and Lubov N. Markevich
Int. J. Mol. Sci. 2023, 24(9), 8291; https://doi.org/10.3390/ijms24098291 - 5 May 2023
Cited by 3 | Viewed by 1741
Abstract
Reverse electron transfer in mitochondrial complex II (CII) plays an important role in hypoxia/anoxia, in particular, in ischemia, when the blood supply to an organ is disrupted and oxygen is not available. A computational model of CII was developed in this work to [...] Read more.
Reverse electron transfer in mitochondrial complex II (CII) plays an important role in hypoxia/anoxia, in particular, in ischemia, when the blood supply to an organ is disrupted and oxygen is not available. A computational model of CII was developed in this work to facilitate the quantitative analysis of the kinetics of quinol-fumarate reduction as well as ROS production during reverse electron transfer in CII. The model consists of 20 ordinary differential equations and 7 moiety conservation equations. The parameter values were determined at which the kinetics of electron transfer in CII in both forward and reverse directions would be explained simultaneously. The possibility of the existence of the “tunnel diode” behavior in the reverse electron transfer in CII, where the driving force is QH2, was tested. It was found that any high concentrations of QH2 and fumarate are insufficient for the appearance of a tunnel effect. The results of computer modeling show that the maximum rate of succinate production cannot provide a high concentration of succinate in ischemia. Furthermore, computational modeling results predict a very low rate of ROS production, about 50 pmol/min/mg mitochondrial protein, which is considerably less than 1000 pmol/min/mg protein observed in CII in forward direction. Full article
(This article belongs to the Special Issue Molecular Research in Protein Degradation)
Show Figures

Graphical abstract

15 pages, 976 KiB  
Article
The Antibacterial Activity of Rhazya stricta Extracts against Klebsiella pneumoniae Isolated from Some Soil Invertebrates at High Altitudes
by Mohamed M. Hassan, Bander Albogami, Tarombera Mwabvu, Mohamed F. Awad, Roqayah H. Kadi, Alaa A. Mohamed, Jamal A. Al-Orabi, Montaser M. Hassan and Mohsen Mohamed Elsharkawy
Molecules 2023, 28(8), 3613; https://doi.org/10.3390/molecules28083613 - 21 Apr 2023
Cited by 6 | Viewed by 2731
Abstract
Klebsiella is a common dangerous pathogen for humans and animals and is widely present in the digestive system. The genus Klebsiella is ubiquitous, as it is endemic to surface water, soil, and sewage. In this study, 70 samples were obtained from soil-dwelling invertebrates [...] Read more.
Klebsiella is a common dangerous pathogen for humans and animals and is widely present in the digestive system. The genus Klebsiella is ubiquitous, as it is endemic to surface water, soil, and sewage. In this study, 70 samples were obtained from soil-dwelling invertebrates from September 2021 to March 2022 from Taif and Shafa in different altitudinal regions of Saudi Arabia. Fifteen of these samples were identified as Klebsiella spp. The Klebsiella isolates were genetically identified as Klebsiella pneumoniae using rDNA sequencing. The antimicrobial susceptibility of the Klebsiella isolates was determined. Amplification of virulence genes was performed using PCR. In this study, 16S rDNA sequencing showed a similarity from 98% to 100% with related K. pneumonia from the NCBI database, and the sequences were deposited in the NCBI GenBank under accession numbers ON077036 to ON077050. The growth inhibition properties of ethanolic and methanolic extracts of the medicinal plant Rhazya stricta’s leaves against K. pneumoniae strains using the minimum inhibitory concentration (MIC) method and disc diffusion were evaluated. In addition, the biofilm inhibitory potential of these extracts was investigated using crystal violet. HPLC analysis identified 19 components divided into 6 flavonoids, 11 phenolic acids, stilbene (resveratrol), and quinol, and revealed variations in the number of components and their quantities between extracts. Both extracts demonstrated interesting antibacterial properties against K. pneumoniae isolates. The 2 extracts also showed strong biofilm inhibitory activities, with percentages of inhibition extending from 81.5% to 98.7% and from 35.1% to 85.8% for the ethanolic and methanolic extracts, respectively. Rhazya stricta leaf extract revealed powerful antibacterial and antibiofilm activities against K. pneumoniae isolates and could be a good candidate for the treatment or prevention of K. pneumonia-related infections. Full article
Show Figures

Figure 1

14 pages, 3150 KiB  
Article
Identification of a Ubiquinone–Ubiquinol Quinhydrone Complex in Bacterial Photosynthetic Membranes and Isolated Reaction Centers by Time-Resolved Infrared Spectroscopy
by Alberto Mezzetti, Jean-François Paul and Winfried Leibl
Int. J. Mol. Sci. 2023, 24(6), 5233; https://doi.org/10.3390/ijms24065233 - 9 Mar 2023
Cited by 3 | Viewed by 1930
Abstract
Ubiquinone redox chemistry is of fundamental importance in biochemistry, notably in bioenergetics. The bi-electronic reduction of ubiquinone to ubiquinol has been widely studied, including by Fourier transform infrared (FTIR) difference spectroscopy, in several systems. In this paper, we have recorded static and time-resolved [...] Read more.
Ubiquinone redox chemistry is of fundamental importance in biochemistry, notably in bioenergetics. The bi-electronic reduction of ubiquinone to ubiquinol has been widely studied, including by Fourier transform infrared (FTIR) difference spectroscopy, in several systems. In this paper, we have recorded static and time-resolved FTIR difference spectra reflecting light-induced ubiquinone reduction to ubiquinol in bacterial photosynthetic membranes and in detergent-isolated photosynthetic bacterial reaction centers. We found compelling evidence that in both systems under strong light illumination—and also in detergent-isolated reaction centers after two saturating flashes—a ubiquinone–ubiquinol charge-transfer quinhydrone complex, characterized by a characteristic band at ~1565 cm−1, can be formed. Quantum chemistry calculations confirmed that such a band is due to formation of a quinhydrone complex. We propose that the formation of such a complex takes place when Q and QH2 are forced, by spatial constraints, to share a common limited space as, for instance, in detergent micelles, or when an incoming quinone from the pool meets, in the channel for quinone/quinol exchange at the QB site, a quinol coming out. This latter situation can take place both in isolated and membrane bound reaction centers Possible consequences of the formation of this charge-transfer complex under physiological conditions are discussed. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Natural and Artificial Photosynthesis 2.0)
Show Figures

Figure 1

24 pages, 5186 KiB  
Article
Half-Sandwich Rhodium Complexes with Releasable N-Donor Monodentate Ligands: Solution Chemical Properties and the Possibility for Acidosis Activation
by János P. Mészáros, Wolfgang Kandioller, Gabriella Spengler, Alexander Prado-Roller, Bernhard K. Keppler and Éva A. Enyedy
Pharmaceutics 2023, 15(2), 356; https://doi.org/10.3390/pharmaceutics15020356 - 20 Jan 2023
Cited by 1 | Viewed by 3057
Abstract
Cancer chemotherapeutics usually have serious side effects. Targeting the special properties of cancer and activation of the anticancer drug in the tumor microenvironment in situ may decrease the intensity of the side effects and improve the efficacy of therapy. In this study, half-sandwich [...] Read more.
Cancer chemotherapeutics usually have serious side effects. Targeting the special properties of cancer and activation of the anticancer drug in the tumor microenvironment in situ may decrease the intensity of the side effects and improve the efficacy of therapy. In this study, half-sandwich Rh complexes are introduced, which may be activated at the acidic, extracellular pH of the tumor tissue. The synthesis and aqueous stability of mixed-ligand complexes with a general formula of [Rh(η5-Cp*)(N,N/O)(N)]2+/+ are reported, where (N,N/O) indicates bidentate 8-quinolate, ethylenediamine and 1,10-phenanthroline and (N) represents the releasable monodentate ligand with a nitrogen donor atom. UV-visible spectrophotometry, 1H NMR, and pH-potentiometry were used to determine the protonation constants of the monodentate ligands, the proton dissociation constants of the coordinated water molecules in the aqua complexes, and the formation constants of the mixed-ligand complexes. The obtained data were compared to those of the analogous Ru(η6-p-cymene) complexes. The developed mixed-ligand complexes were tested in drug-sensitive and resistant colon cancer cell lines (Colo205 and Colo320, respectively) and in four bacterial strains (Gram-positive and Gram-negative, drug-sensitive, and resistant) at different pH values (5–8). The mixed-ligand complexes with 1-methylimidazole displayed sufficient stability at pH 7.4, and their activation was found in cancer cells with decreasing pH; moreover, the mixed-ligand complexes demonstrated antimicrobial activity in Gram-positive and Gram-negative bacteria, including the resistant MRSA strain. This study proved the viability of incorporating releasable monodentate ligands into mixed-ligand half-sandwich complexes, which is supported by the biological assays. Full article
(This article belongs to the Special Issue Metallodrugs in Cancer Therapy: The Newest Candidates in the Field)
Show Figures

Figure 1

Back to TopTop