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Abstract: The terminal oxidases of bacterial aerobic respiratory chains are redox-active electrogenic
enzymes that catalyze the four-electron reduction of O2 to 2H2O taking out electrons from quinol
or cytochrome c. Living bacteria often deal with carbon monoxide (CO) which can act as both a
signaling molecule and a poison. Bacterial terminal oxidases contain hemes; therefore, they are
potential targets for CO. However, our knowledge of this issue is limited and contradictory. Here, we
investigated the effect of CO on the cell growth and aerobic respiration of three different Escherichia
coli mutants, each expressing only one terminal quinol oxidase: cytochrome bd-I, cytochrome bd-II,
or cytochrome bo3. We found that following the addition of CO to bd-I-only cells, a minimal effect
on growth was observed, whereas the growth of both bd-II-only and bo3-only strains was severely
impaired. Consistently, the degree of resistance of aerobic respiration of bd-I-only cells to CO is high,
as opposed to high CO sensitivity displayed by bd-II-only and bo3-only cells consuming O2. Such a
difference between the oxidases in sensitivity to CO was also observed with isolated membranes of
the mutants. Accordingly, O2 consumption of wild-type cells showed relatively low CO sensitivity
under conditions favoring the expression of a bd-type oxidase.

Keywords: redox enzyme; terminal oxidase; cytochrome; heme; respiratory chain; enzyme inhibition;
molecular bioenergetics

1. Introduction

Carbon monoxide (CO) is a well-known gaseous molecule that has long been recog-
nized to mediate important physiological processes when produced in low amounts [1–22].
In eukaryotes, CO is formed endogenously as a byproduct upon the degradation of heme to
biliverdin and iron catalyzed by heme oxygenase [23]. In bacteria, this gaseous molecule is
generated by homologs of eukaryotic heme oxygenases and via alternative CO-producing
mechanisms [24]. Interestingly, CO is considered as a probable signaling molecule between
the host and the gut microbiome [24]. Some bacteria can also use CO as a source of en-
ergy and carbon [25]. High concentrations of CO are toxic, and some pathogenic bacteria
were reported to be susceptible either to CO produced by the host heme oxygenases or
to transition-metal-based CO-releasing molecules (CORMs) [26,27]. CORMs developed
to deliver physiologically relevant levels of CO experimentally or therapeutically [28,29]
showed an additive effect when combined with other antibiotics in certain microbes [26,27].
However, care should be taken as one of the most widely used CORMs, the water-soluble
Ru-containing CORM-3, was reported to exert cytotoxic effects due to a thiol-reactive Ru(II)
ion and releases little CO [30]. Thus, the development of novel effective CO-releasing drugs
is an urgent problem as the therapeutic use of CO has emerged as an antimicrobial strategy
in medicine. Bacterial proteins, which contain a pentacoordinate high-spin heme in the
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reduced state, should bind CO as a strong exogenous ligand, and this, in turn, should affect
their function. The terminal oxidases of bacterial respiratory chains have such a heme
in their active sites and therefore are among these proteins. These redox-active enzymes
belong to class EC 7 translocases. Terminal oxidases catalyze four-electron reduction of
O2 to 2H2O at the expense of oxidation of the respiratory substrate, either quinol or fer-
rocytochrome c. This redox reaction is coupled to the generation of proton-motive force
which serves as the driving force for ATP synthesis and other useful work. There are two
different groups of these enzymes found in bacteria: heme-copper oxidases, including
aa3-type cytochrome c oxidase and bo3-type quinol oxidase, and copper-lacking bd-type
quinol oxidases, also called cytochromes bd [31–51]. Heme-copper oxidases are true proton
pumps, whereas cytochromes bd generate proton-motive force solely due to the vector
transfer of protons along the intraprotein proton-conducting pathway, without a mech-
anism of proton pumping [47,52–54]. Escherichia coli is a ubiquitous member of the gut
microbiome of humans and warm-blooded animals. Like many other aerobic bacteria, it
contains the branched and flexible O2-dependent respiratory chain. In the chain, type I
and type II NADH dehydrogenases transfer electrons from NADH to ubiquinone-8 and/or
menaquinone-8. Ubiquinone-8 can also accept electrons from succinate via succinate de-
hydrogenase. Then, electrons from ubiquinol-8 and/or menaquinol-8 are transferred by
three terminal oxidases, cytochromes bo3, bd-I, and bd-II, to the final electron acceptor, O2,
to produce 2H2O [55–59].

In E. coli, the bo3, bd-I, and bd-II oxidases are encoded by the cyoABCDE, cydABX, and
appCBX operons, respectively. With the use of a rigorous chemostat methodology and
powerful modeling tools, it was shown that the cyoABCDE operon was maximally induced
under fully aerobic conditions [60]. The cydABX operon was maximally expressed at 56%
aerobiosis [61]. The appCBX operon was maximally expressed at 0% aerobiosis. Spectro-
scopic assays of oxidase levels confirmed these conclusions [60,62]. Thus, at high aeration,
cytochrome bo3 is preferentially expressed, whereas a shift from aerobic to microaerobic
conditions activates the expression of the bd-type cytochromes [55]. The atomic structures
of the three cytochromes were reported [43,44,63–67]. Cytochrome bo3, composed of four
subunits, carries the ubiquinol-binding site and three metal redox groups, a low-spin heme
b, a high-spin heme o3, and CuB. Heme b accepts electrons from ubiquinol; heme o3 and
CuB compose a binuclear site for O2 reduction [55]. Cytochromes bd-I and bd-II consist of
four and three subunits, respectively. Both bd enzymes contain the ubiquinol/menaquinol-
binding site (called the Q-loop) and three hemes, a low-spin b558, a high-spin b595, and a
high-spin d, but no copper ion. Heme b558 is the immediate electron acceptor for ubiquinol
and/or menaquinol. Heme d serves as the O2-reducing site. The functional role of heme b595
is not clear yet, but at least apparently it transfers electrons from heme b558 to heme d [55].

It is worth mentioning that cytochrome c and chlorophyll a were reported to be suit-
able redox mediators for the development of enzymatic biofuel cell systems [68]. In these
systems, electron transfer from glucose oxidase to the electrode was facilitated through
cytochrome c and chlorophyll a adsorbed on the electrode [68]. In this regard, the appli-
cability of cytochrome d and cytochrome o3 for charge transfer from/to bacteria and in
biofuel cells could also be evaluated.

A protective role of cytochrome bd-I against nitric oxide [69–71], peroxynitrite [72], and
ammonia [73] was reported. Cytochrome bd-I likely provides NO resistance in E. coli for two
reasons. The first reason is the extraordinarily high rate of NO dissociation from heme d2+:
the koff values were reported to be 0.133 s−1 [69] and 0.163 s−1 [70]. This is about 30 times
higher than that for NO dissociation from heme a3

2+ in the mitochondrial cytochrome c
oxidase [74] and can explain why following inhibition by NO the oxygen reductase activity
of the bd-I enzyme is restored much faster than that of the mitochondrial enzyme. The
second plausible reason is the ability of a bd oxidase to rapidly convert NO into NO2

– in
turnover, although that was reported only for cytochrome bd from Azotobacter vinelandii so
far [75]. The fact that the bd-I oxidase is not inhibited by peroxynitrite can be due to its ability
to catalytically scavenge peroxynitrite [72]. The reaction likely occurs on the heme d active
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site, and at least four possible reaction mechanisms have been suggested [76]. Cytochrome
bd-I is not only resistant to but also activated by ammonia under alkaline conditions [73]. In
this case, ammonia is suggested to react with a few catalytic intermediates of the enzyme.
In particular, NH3 can promote the formation of the peroxy state (P) from the oxidized
state (O). NH3 also possibly reacts with the one-electron-reduced state (O1) to produce the
ferryl state (F). In these reactions, NH3 presumably serves as a two-electron donor being
oxidized to NH2OH [73].

Both bd-type oxidases also contribute to E. coli resistance to cyanide [77], hydrogen
peroxide [78–80], and sulfide [77,81]. On the contrary, the activity of the bo3 oxidase
was shown to be highly sensitive to inhibition by cyanide, sulfide, nitric oxide, and
ammonia [70,73,77,81]. Thus, a bd-type terminal oxidase endows E. coli and possibly other
bacteria with resistance to the above-mentioned stressors and, being absent in eukaryotic
cells, can serve as a good therapeutic target [82].

Increased expression of cytochrome bd is in fact a likely mechanism for survival used
by the pathogenic microorganisms in the presence of reactive oxygen and nitrogen species
generated by the host immune system to fight infection [59]. In view of the fact that
cytochrome bd-I exhibits tolerance to such reactive species, it is relevant to examine its
potential resistance also to CO, which has been reported to be important in host–pathogen
relationships [83–86] and is a heme ligand like NO. It has to be noted that data on the
effect of CO on the function of bacterial terminal oxidases are limited and contradictory.
Of the three E. coli oxidases, cytochrome bo3 was shown to be the least sensitive to in-
hibition by CO if the enzymes were purified and detergent-solubilized [87]. In contrast,
according to a recent short report [88], cytochrome bd-I is more resistant to inhibition by
CO than cytochrome bd-II and cytochrome bo3 if CO is added to E. coli cell suspensions, at
[O2] = 150 µM. Bayly et al. also studied the physiological response of Mycobacterium smeg-
matis to CO [83]. The respiratory chain of mycobacteria is known to contain two different
terminal oxidases: cytochrome bcc-aa3 supercomplex and cytochrome bd [89]. Bayly et al.
reported that in M. smegmatis cell cultures, the activity of cytochrome bd is resistant to CO
while cytochrome bcc-aa3 supercomplex is strongly inhibited by CO [83]. Furthermore, M.
smegmatis lacking the bd oxidase shows a significant growth defect in the presence of this
gas [83].

In this work, we studied the effect of CO on aerobic respiration sustained by bo3,
bd-I, or bd-II oxidases in cell cultures of E. coli respiratory mutants by varying the O2
concentration at which CO was added, and we examined the ability of these cytochromes
to sustain bacterial growth in the presence of CO. We also tested the CO inhibition of O2
consumption of both isolated membranes of the mutants and wild-type cells grown under
conditions favoring the expression of either cytochrome bo3 or a bd-type oxidase.

2. Results
2.1. Effect of CO on E. coli Aerobic Respiration

We examined the effect of CO on the aerobic respiration of E. coli cells of the three
different mutant strains. The aerobic respiratory chain of each mutant contains only one
terminal quinol oxidase: cytochrome bd-I, cytochrome bd-II, or cytochrome bo3. In each
mutant, aerobic cellular respiration was supplied by endogenous electron-donor respiratory
substrates; therefore, the use of an exogenous reducing system was not required. Figure 1A
shows that 96.3 µM CO added at [O2] = 100 µM inhibits O2 consumption by bd-I-only
E. coli cells to a small extent of 11.6 ± 1.1%. Under these experimental conditions, the CO
inhibitory effect on the aerobic respiration of bd-II-only and bo3-only E. coli cells is much
greater, 43.3 ± 7.6% and 44.3 ± 1.5%, respectively (Figure 1B,C).
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Figure 1. Typical O2 consumption traces showing the effect of CO on E. coli aerobic respiration in cell
suspensions of mutant strains expressing cytochrome bd-I (A), cytochrome bd-II (B), or cytochrome bo3

(C) as the sole terminal oxidase. Here, 96.3 µM CO was added at [O2] = 100 µM. The O2 consumption
rates (nM O2/s) measured prior to and following the addition of CO are shown adjacent to each trace.
Concentrations of bd-I, bd-II, and bo3 oxidases were 75, 52, and 47 nM, respectively.

We compared the inhibition of respiration of the three mutants by increasing [CO]
added at three different O2 concentrations, 50, 100, and 200 µM (Figures 2–4). In the case of
bd-I-only cells, at [O2] = 50, 100, and 200 µM, the maximum inhibition percentage at a maxi-
mum concentration of added CO, 196.3 µM, appeared to be 39.6 ± 4.5%, 18.0 ± 7.8%, and
9.7 ± 4.9%, respectively (Figure 2). The respective values were 59.3 ± 11.5%, 50.0 ± 3.6%,
and 47.0 ± 6.0% for bd-II-only cells (Figure 3A–C) and 85.6 ± 3.7%, 65.3 ± 17.2%, and
39.7 ± 11.5% for bo3-only cells (Figure 4A–C). Thus, at all O2 concentrations studied, in
E. coli cell suspensions, cytochrome bd-I turned out to be much more resistant to inhibition
by CO than cytochrome bd-II or cytochrome bo3. One can see that in each mutant, the degree
of inhibition decreases with increasing [O2]. This suggests competitive enzyme inhibition;
i.e., in all three terminal oxidases, CO competes with the substrate, O2, for binding to the
enzyme’s active site under turnover conditions.
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Figure 2. CO inhibition of aerobic respiration of cell suspensions of E. coli mutant strain expressing
cytochrome bd-I as the sole terminal oxidase at different O2 concentrations. Measurements were
performed at increasing [CO] added at [O2] = 50 µM (A), 100 µM (B), and 200 µM (C). Concentrations
of bd-I oxidase in experiments in which CO was added at 50, 100, and 200 µM O2 were 66 ± 15,
64 ± 9, and 65 ± 10 nM, respectively. Values represent the mean (n = 3) ± standard deviation.
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Figure 3. CO inhibition of aerobic respiration of cell suspensions of E. coli mutant strain expressing
cytochrome bd-II as the sole terminal oxidase at different O2 concentrations. (A–C) Determination
of apparent IC50. Square symbols are experimental data points. Measurements were performed at
increasing [CO] added at [O2] = 50 µM (A), 100 µM (B), and 200 µM (C). (D) Determination of Ki.
It was estimated using the depicted IC50 values (circle symbols), assuming competitive inhibition.
The IC50 value obtained at [O2] = 150 µM (187.1 ± 11.1 µM CO) was taken from [88]. The apparent
Km(O2) value (2 µM) was taken from [90]. Concentrations of bd-II oxidase in experiments in which
CO was added at 50, 100, and 200 µM O2 were 53 ± 11, 51 ± 8, and 51 ± 11 nM, respectively. Values
represent the mean (n = 3) ± standard deviation.
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Figure 4. CO inhibition of aerobic respiration of cell suspensions of E. coli mutant strain expressing
cytochrome bo3 as the sole terminal oxidase at different O2 concentrations. (A–C) Determination of
apparent IC50. Rhombus symbols are experimental data points. Measurements were performed at
increasing [CO] added at [O2] = 50 µM (A), 100 µM (B), and 200 µM (C). (D) Determination of Ki.
It was estimated using the depicted IC50 values (circle symbols), assuming competitive inhibition.
The IC50 value obtained at [O2] = 150 µM (183.3 ± 13.5 µM CO) was taken from [52]. The apparent
Km(O2) value (6 µM) was taken from [70]. Concentrations of bo3 oxidase in experiments in which
CO was added at 50, 100, and 200 µM O2 were 58 ± 17, 56 ± 9, and 57 ± 9 nM, respectively. Values
represent the mean (n = 3) ± standard deviation.

As the inhibition of respiration of bd-II-only and bo3-only E. coli mutants by CO was
significant, we were able to obtain the apparent half-maximal inhibitory concentration
values, IC50, for CO added at different O2 concentrations. At [O2] = 50, 100, and 200 µM, the
respective IC50 values were 88.6 ± 9.3, 170.4 ± 15.0, and 230.2 ± 12.0 µM CO for bd-II-only
cells (Figure 3A–C) and 66.5 ± 10.0, 130.6 ± 14.0, and 330.1 ± 19.6 µM CO for bo3-only cells
(Figure 4A–C). In view of the insignificant inhibition, it was not possible to obtain IC50 for
bd-I-only cells.

With the IC50 values at different O2 concentrations, we were in a position to estimate
the inhibition constants (Ki) for CO in the case of bd-II-only and bo3-only E. coli cells. To
achieve this goal, the IC50 values acquired at different [O2] values were plotted as a function
of [O2]/Km(O2). The data were fitted to the appropriate equation assuming a competitive
mode of inhibition [91]. For analysis purposes, the previously reported Km(O2) values,
2 µM (for cytochrome bd-II [90]) and 6 µM (for cytochrome bo3 [70]), were used. As a result
of this analysis, we obtained the following Ki values for CO: 2.5 ± 0.2 µM for bd-II-only
cells (Figure 3D) and 8.4 ± 0.7 µM for bo3-only cells (Figure 4D).

We also investigated the effect of CO on the aerobic respiration of wild-type E. coli cells.
Transcriptomic studies on wild-type E. coli cultured at different O2 availabilities, coupled
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with biochemical determination of respiratory oxidase expression [60,61], showed that
both the transcript abundance of cyoA and cydA and the expression of the corresponding
bo3 and bd cytochromes are observed under fully aerobic and microaerobic conditions,
respectively. Consistently, a change in oxidase expression from cytochrome bo3 to the
bd-type cytochromes was reported to occur with cell growth, following a progressive
reduction in O2 availability in the medium [77]. In agreement with Forte et al. [77], when
studying cells in an early growth phase of the culture (OD600 < 0.8), most of the respiration
(50–70%) is sensitive to 50 µM sulfide, pointing to a prevalent expression of cytochrome bo3.
Conversely, in a late growth phase of the culture (OD600 > 2.5), when O2 is limiting, sulfide
has little effect on respiration, indicating a prevalent expression of the bd-type cytochromes.
Accordingly, O2 consumption of wild-type cells that were harvested at high OD600 (the
prevalent expression of a bd-type oxidase) and low OD600 (the prevalent expression of
cytochrome bo3) showed low and high sensitivity to CO, respectively (Figure 5).
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Figure 5. Traces of O2 consumption of cell suspensions showing the effect of CO on aerobic respiration
of the E. coli wild-type (wt) strain MG1655 at high OD (blue line) and low OD (red line), indicating
the prevalent expression of the bd oxidases and cytochrome bo3, respectively. Here, 96.3 µM CO was
added at [O2] = 100 µM. The O2 consumption rates (nM O2/s) measured prior to and following
the addition of CO are shown adjacent to each trace. Additions: 1 mL of cells at 0.48 OD (red line),
0.2 mL of cells at 3 OD (blue line). Inset: Percent activity after CO addition to respiring wild-type
cells. Asterisks denote statistically significant differences between wild-type cells grown at high and
low OD (**, p < 0,01; t-test).

In addition, we tested the CO inhibition of O2 consumption of membranes isolated
from mutants. As with cell cultures, CO effectively inhibits the O2 reductase activity of both
bd-II- and bo3-containing membranes, whereas the activity of bd-I-containing membranes is
relatively resistant to inhibition by CO (Figure 6).

The addition of N2 to respiring cells and membranes did not significantly alter the O2
consumption rate, indicating that the observed inhibitory effect on wild-type cells at low OD
values as well as on bd-II and bo3 mutant strains is due to CO (Supplementary Figures S1 and S2).
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2.2. Effect of CO on E. coli Cell Growth

The observation that the degree of resistance of the O2 consumption process by bd-I-
only E. coli cells to CO is quite high, as opposed to the high sensitivity for the gas displayed
by bd-II-only and bo3-only cells, prompted us to examine whether cytochrome bd-I, beyond
enabling aerobic respiration, promotes E. coli cell growth in the presence of CO. In order
to determine the effect of CO on E. coli cell growth, we studied the growth of the three
different respiratory mutant strains in the presence of either ~20% CO or ~20% N2 as a
control. Following the addition of ~20% CO to the E. coli strain expressing cytochrome bd-I
as the only terminal oxidase at 60 min after the start of growth in air, a minimal effect on
cell growth was observed (Figure 7A). On the contrary, the growth of both bd-II-only and
bo3-only strains was severely impaired over the same time window after the addition of
~20% CO, compared to the control with ~20% N2 (Figure 7B,C). Thus, these data suggest
that, unlike cytochromes bd-II and bo3, the bd-I oxidase promotes E. coli growth in the
presence of CO.
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Figure 6. Traces of O2 consumption showing the effect of CO on aerobic respiration of isolated
membranes from E. coli mutant strains expressing cytochrome bd-I (A), cytochrome bd-II (B), or
cytochrome bo3 (C) as the sole terminal oxidase. (D) Percent of O2 reductase activity after CO
additions to respiring membranes. Asterisks denote statistically significant differences with respect to
bd-I activity (**, p < 0,01; t-test). Here, 96.3 µM CO was added at [O2] = 100 µM. The O2 consumption
rates (nM O2/s) measured prior to and following the addition of CO are shown adjacent to each
trace. Additions: 0.3 mg/mL of bd-I-containing isolated membranes (black line), 0.5 mg/mL of
bd-II-containing isolated membranes (blue line), 0.6 mg/mL of bo3-containing isolated membranes
(red line).
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Figure 7. Effect of CO on E. coli cell growth. Cell growth of E. coli mutant strains expressing
cytochrome bd-I (A), cytochrome bd-II (B), or cytochrome bo3 (C) as the sole terminal oxidase assayed
in the presence of either ~20% CO (‘closed symbols’) or ~20% N2 (‘open symbols’). The arrow shows
the time (60 min) at which cells were subjected to the gas flushing treatment for 30 s. Values represent
the mean (n = 3) ± standard deviation. Asterisks denote statistically significant differences between
CO- and N2-treated cells (*, p < 0,05; **, p < 0,01; t-test).

3. Discussion

We examined the effect of CO on the O2-dependent respiration of the E. coli respiratory
mutants containing one of the three terminal oxidases. The experiments were performed at
different concentrations of the enzyme substrate, O2. In all mutants tested, the inhibitory
action of CO decreased with increasing [O2]. The fact that the degree of inhibition decreases
as the substrate concentration increases clearly suggests that CO acts as a competitive
inhibitor for the enzyme-catalyzed O2 reduction reaction under steady-state conditions.
CO apparently competes with O2 for binding to a high-spin pentacoordinate ferrous heme
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in the enzyme’s active site. Previous spectroscopic studies showed that the redox-active
group that, in the reduced state, is able to bind both O2 and CO is heme d in the bd-type
oxidases and heme o3 in the bo3 oxidase [87,92,93]. For this reason, we think that in the
present enzyme-inhibition experiments with E. coli cells, heme d and heme o3 are targets
for CO in cytochromes bd-I/bd-II and cytochrome bo3, respectively.

We found that the bd-I oxidase is much less sensitive to CO than both the bd-II and bo3
oxidases, as confirmed by measuring the effect of CO on O2 consumption by both whole
cells and isolated membranes of the respiratory mutants. Accordingly, the O2 consumption
of wild-type cells displayed low CO sensitivity under conditions favoring the expression
of a bd-type oxidase and high CO sensitivity when cytochrome bo3 was predominantly
expressed. Consistently, cell growth proved to be almost unaffected by CO in an E. coli
mutant strain expressing solely cytochrome bd-I, but was drastically inhibited after the
addition of the gas to mutant strains expressing either cytochrome bo3 or cytochrome
bd-II as the only terminal oxidase. These results are in disagreement with an earlier study
according to which O2 consumption by the isolated cytochromes bd-I and bd-II is more
sensitive to inhibition by CO than that by the isolated bo3 oxidase [87]. The measurement
conditions, such as buffer, pH, and temperature, in [87] and in this work were the same,
but the difference was the environment for the enzyme (detergent in [87] versus natural
lipid bilayer in this study). Therefore, we assume that this inconsistency can be explained
by differences in the protein environment which affect enzyme sensitivity towards CO.
In this work, the oxidases were in vivo conditions, i.e., integrated into native bacterial
membranes, whereas in [87], the enzymes were isolated and incorporated into detergent
micelles. Indeed, more and more data are accumulating on how the lipid membrane
environment can significantly affect the structure, function, and dynamics of various
membrane proteins [94,95]. For instance, regarding terminal oxidases, it was shown that
the membrane environment modulates the ligand-binding characteristics of the E. coli
cytochrome bd-I [96]. According to another study, solubilization of the membrane-bound
bovine cytochrome c oxidase leads to an increase in the binding affinity of the enzyme
for cyanide by 100–1000 times [97]. In addition, it was reported that in E. coli membranes,
the bd-I oxidase is apparently in a supercomplex with other membrane-bound respiratory
enzymes [56]. Such protein–protein interactions could also modulate the sensitivity of
cytochrome bd-I to CO.

We hypothesize that when the E. coli cytochromes are integrated into the native lipid
bilayer, the binding affinities of the enzymes for CO and O2 are such that CO binding to
heme d in the bd-I oxidase is outcompeted by O2 while the binding of the inhibitor to heme
d in the bd-II oxidase or to heme o3 in the bo3 oxidase is not. The resistance of cytochrome
bd-I to CO is in agreement with the extremely fast dissociation of CO from the oxidase
(koff = 6.0 ± 0.2 s−1 for the fully reduced form of the CO-bound enzyme [69]). Such a high
enzyme–ligand dissociation rate constant would indeed lead to the prompt restoration of
respiration. The variation between the terminal oxidases in the affinity for the ligands may
arise from differences in the structural organization of the O2-binding sites and their specific
environment. Consistently, among the factors that can regulate the binding affinity of heme
proteins for gaseous ligands are the chemical structure and geometry of the proximal axial
ligand of the heme and its distal amino acid residues [98]. Distal amino acid residues
may either stabilize the bound diatomic gaseous molecule via weak interactions, including
electrostatic effects, hydrogen bonds, van der Waals interactions, and the hydrophobic
effect, or, contrariwise, destabilize ligand binding by providing steric constraints [98,99].

It is of interest to mention global E. coli responses to CO. Transcription factor measure-
ments and modeling showed that gene expression is significantly perturbed by CO, with ma-
jor consequences for energy metabolism, iron homeostasis, and amino acid metabolism [86].
Genes encoding energy-transducing proteins are highly affected by CO via the global regu-
lators, ArcA and FNR. CO inhibition of respiration results in over-reduction of the quinone
pool; accumulation of the fermentation product, pyruvate; and enhanced expression of iron
acquisition genes. Regarding the respiratory terminal oxidases, the transcriptomic analysis
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of wild-type E. coli exposed to CO gas revealed that under aerobic conditions there is a
5- to 10-fold decrease in the expression of the cyoABCDE operon, encoding cytochrome
bo3. In contrast, there is a 4-fold increase in the expression of the cydABX operon, encoding
cytochrome bd-I. Changes in the expression of the appCBX operon, encoding cytochrome
bd-II oxidase, are slight [86]. The CO inhibition data reported here are consistent with the
transcriptional response to CO in wild-type cells reported by Wareham et al. [86]. Indeed,
it seems reasonable that following CO gas addition, the CO-sensitive bo3 oxidase is down-
regulated and the CO-insensitive bd-I oxidase is upregulated. The bd-II oxidase normally is
not expressed under aerobic conditions, and there is no need for its upregulation after CO
treatment since the enzyme is sensitive to CO.

The difference in susceptibility to CO inhibition between cytochromes bd-I and bo3 is
indeed not unexpected since they belong to different superfamilies of terminal oxidases
and, as reported before, also differ in resistance to other stressors, such as cyanide, sulfide,
nitric oxide, and ammonia [70,73,77,81]. However, the fact that cytochrome bd-I is much
more resistant to CO than cytochrome bd-II in respiring E. coli cells is surprising. In order to
explain this phenomenon, the following structural differences between the two bd enzymes
have to be noted. First, the two proteins differ in the number of subunits. The bd-I oxidase
is composed of four subunits, namely CydA, CydB, CydX, and CydY, whereas the bd-II
oxidase contains one fewer subunit, being composed of AppC, AppB, and AppX. Notably,
the extra subunit in cytochrome bd-I, CydY, shields the high-spin pentacoordinate heme
b595 from the lipid bilayer interface. This shielding prevents external ligands from accessing
this potential ligand-binding site [64,65]. Consistently, heme b595 resistance to external
ligand binding in cytochrome bd-I was previously identified in an MCD study [92]. Since
cytochrome bd-II has no CydY, direct access of gaseous molecules from the membrane lipid
environment is possible [66,67]. Therefore, in the bd-II oxidase, CO could possibly bind
to the reduced heme b595 under turnover conditions. This binding would, in turn, inhibit
the electron transfer from heme b558 to heme d that occurs through heme b595, leading to
the inhibition of the enzyme-catalyzed O2 consumption. Second, it was reported that in
the bd-II oxidase, the axial heme d ligand is His19 of the AppC subunit [66,67]. However,
there is no consensus on the nature of the axial ligand of heme d in the bd-I oxidase. It is
either His19 (of the CydA subunit, homolog to AppC) [64] or Glu99 of CydA [65]. Notably,
His19 and Glu99 are located on opposite sides of the plane of the porphyrin macrocycle. If
the axial heme d ligand in the bd-I and bd-II enzymes in bacterial cells is indeed different,
this may also underlie the difference in sensitivity of the two proteins to CO. The fact that
heme d in the bd-II oxidase has a much higher midpoint redox potential than that in the bd-I
oxidase (+440 vs. +258 mV) [28]) would be consistent with the different nature of its axial
ligand. Third, the bd-II protein incorporated into amphipols was shown to be mainly in the
form of a dimer, while the bd-I enzyme exists only as a monomer [66]. This difference might
also contribute to the observed difference in the sensitivity of these two bd oxidases to CO.
In this regard, it is also worth noting that Cupriavidus necator H16, like E. coli and some
other bacteria, has two different operons encoding cytochrome bd, cydA1B1 and cydA2B2.
Interestingly, the expression of only one of the two (cydA2B2) seems to enable cell growth
in the presence of CO under heterotrophic conditions [100]. The deletion of cydA2B2 had
a detrimental effect on CO resistance, and plasmid-based expression of cydA1B1 did not
improve CO tolerance [64]. These data are consistent with our observation that, of the
two bd oxidases in E. coli cells, only cytochrome bd-I promotes aerobic respiration and
growth in the presence of CO.

The possible molecular mechanisms of the inhibition of the catalytic activity of the
E. coli cytochromes bo3, bd-II, and bd-I by CO are shown in Figures 8–10, respectively (for
more detail, see the legends to the figures).
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d2+–CO complex, as suggested for cytochrome bd-II. However, at variance with cytochrome bd-II,
in the case of cytochrome bd-I, due to the unusually high off -rate [69], CO does not bind with high
affinity to heme d2+ and is rapidly ejected from the enzyme. As a result, CO does not affect its catalytic
activity much. Also, in cytochrome bd-I, heme b595

2+ does not bind CO to any significant extent [92].
These features thus presumably make cytochrome bd-I relatively insensitive to CO.

In this work, we have used mutant strains, and this may present limitations, as
mutations can potentially influence other processes in the cell that might go unnoticed
and remain unaccounted for. However, the data on the wild-type cells and membranes are
consistent with those obtained with the mutant strains. This gives us reason to believe that
our conclusions are correct. As we mentioned above, the addition of CO triggers short-term
alterations in the E. coli transcriptome [86], but a complete picture of the impact of CO on
bacterial bioenergetics is lacking. Further studies are needed to shed light on long-term
adaptation effects and fully uncover the extent of CO resistance in vivo.

4. Materials and Methods
4.1. Materials, E. coli Mutant Strains and Growth Conditions

The CO and N2 gases were purchased from Linde (Danbury, CT, USA) and Air Liquide
(Air Liquide Italia Spa, Milano, Italy), respectively. Other chemicals were purchased from
Merck KGaA (Darmstadt, Germany). A stock solution of CO or N2 was prepared by
equilibrating degassed water with the pure gas at 1 atm and room temperature, yielding
1 mM CO and 0.7 mM N2 in solution. E. coli respiratory mutant strains TBE025 (MG1655
∆cydB nuoB appB::kan), TBE026 (MG1655 ∆cydB nuoB cyoB::kan), and TBE037 (MG1655
∆appB nuoB cyoB::kan), which respectively express cytochrome bo3, cytochrome bd-II, or
cytochrome bd-I as the sole terminal oxidase, were used [77]. E. coli cultures were grown in
Luria–Bertani (LB) medium supplemented with 30 µg/mL kanamycin, at 37 ◦C and 200 rpm.
In the case of growth studies, after inoculation at an OD600 of 0.15 ± 0.03, the cells were
grown in 50 mL rubber-stoppered flasks in 16 mL of air-equilibrated LB at 37 ◦C for 60 min;
when OD600 reached 0.4 ± 0.08, they were bubbled for 30 s with either CO (pure gas at 1 atm
and room temperature) or N2 (pure gas at 1 atm and room temperature) as a control to yield
a final concentration of both gases of ~20%. The gas percentage was assessed by taking into
account the different O2 concentrations, present in equal volumes of LB equilibrated with
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air or flushed with CO/N2 for 30 s, and calculated according to the following equation:
Gas % = ([O2] air equilibrated − [O2] gas flushed)/[O2] air equilibrated × 100. [O2] air equilibrated
and [O2] gas flushed are the O2 concentration values measured in the degassed chamber of
a high-resolution respirometer (Oxygraph-2k, Oroboros Instruments GmbH, Innsbruck,
Austria) of non-fluxed and fluxed E. coli cultures with CO or N2, respectively. The growth
of the E. coli cultures was then monitored via a standard method using optical density
measurements in an Eppendorf BioSpectrometer basic at 600 nm every 30 min. When the
OD600 was above 1, cultures were diluted before reading.

4.2. Investigation of the Effect of CO on Respiration of Wild-Type E. coli Cells

To assess the effect of CO on the respiration of wild-type E. coli cells (strain MG1655),
we investigated aerobic cultures in which a change in oxidase expression from cytochrome
bo3 to the bd-type cytochromes is expected to occur during cell growth, following a pro-
gressive reduction in the availability of O2 in the medium, taking into account the striking
difference between the oxidases in sensitivity to sodium sulfide, according to Forte et al. [77].
When cells grown in Luria–Bertani (LB) medium are assayed in an early growth phase of the
culture (OD600 < 0.8), most of the respiration (50–70%) is sensitive to 50 µM sodium sulfide,
indicating a prevalent expression of cytochrome bo3. In contrast, in a late growth phase of
the culture (OD600 > 2.5), when oxygen is limiting, sodium sulfide causes only marginal
effects on respiration, indicating a prevalent expression of the bd-type cytochromes.

4.3. Isolation of Membranes from E. coli Respiratory Mutants

To isolate membranes from E. coli respiratory mutants expressing only one terminal
quinol oxidase (cytochrome bd-I or cytochrome bd-II or cytochrome bo3), cell cultures were
grown in LB medium until an OD600 of about 2 was reached. The cells were then pelleted by
centrifugation at 10,000 rpm for 10 min and washed twice in 20 mM TRIS pH 8.3 containing
0.5 mM EDTA and 5 mM MgSO4. The cells were resuspended in the same buffer containing
1 mg/mL lysozyme and incubated for two hours on ice. A spatula tip of DNAse and
RNase was then added, and the cells were lysed by sonication. Cell debris was removed
by centrifugation at 15,000 rpm for 10 min. Membrane fractions were collected and stored
at −80 ◦C. The protein content was determined using the Bradford method, using the
Bradford reagent (Sigma) with bovine serum albumin as standard.

4.4. Oxygraphic Measurements

Oxygraphic measurements were performed at 25 ◦C in 50 mM K/phosphate pH 7.0, us-
ing a high-resolution respirometer (Oxygraph-2k, Oroboros Instruments GmbH, Innsbruck,
Austria) equipped with two 1.5-mL chambers. The O2 consumption of E. coli cells was
followed with endogenous reductants. In the case of isolated membranes, O2 consumption
was measured in the presence of 2.5 mM dithiothreitol (DTT) and 2.5 µM 2,3-dimethoxy-5-
methyl-6-(3-methyl-2-butenyl)-1,4-benzoquinone (Q1), an artificial reducing couple specific
for quinol oxidases. The catalytic O2-consuming activity was obtained by subtracting the
non-enzymatic O2 consumption (Q1/DTT autoxidation in the absence of the membranes)
from the O2 consumption rate measured after the addition of membranes.

4.5. Spectroscopic Measurements

UV–visible absorption spectra were recorded to estimate the amount of each terminal
oxidase present in cell suspensions. For this purpose, an Agilent Cary 60 UV-Vis or a Varian
Cary 300 Bio UV-Visible spectrophotometer was used. The amount of oxidase present
in each strain was estimated from the dithionite-reduced-minus-ferricyanyde-oxidized
difference absorption spectrum of sonicated cells using ∆ε561–580 of 21 mM−1 cm−1 (bd-I
and bd-II) [92] and 16.3 mM−1 cm−1 (bo3) [88].
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4.6. Data Analysis

Data analysis was carried out using software packages Origin v7.0 (OriginLab Cor-
poration, Northampton, MA, USA) and GIM (Scientific Graphic Interactive Management
System developed by A.L. Drachev in Lomonosov Moscow State University). The per-
centage inhibition of O2 consumption of cell suspensions (i%) was calculated using the
equation i% = ((V0 − V0,i)/V0)·100, where V0 and V0,i are the initial rates in the ab-
sence and in the presence of the inhibitor (CO), respectively. The apparent IC50 val-
ues of cytochromes bd-II and bo3 for CO were estimated by plotting i% as a function
of CO concentration added ([CO]0). The data were fitted to the standard hyperbolic
equation i% = imax%·[CO]0/(IC50 + [CO]0) using a built-in approximation function (‘Hy-
perbola function’) in ‘Advanced Fitting tool’ in the Origin program. The imax% param-
eter is a theoretical maximum percent inhibition. The inhibition constants (Ki) of cy-
tochromes bd-II and bo3 for CO were estimated by plotting, as a function of [O2]/Km(O2),
the IC50 values measured at different O2 concentrations and fitting the data to the equa-
tion IC50 = (Ki·[O2]/Km(O2)) + Ki [91], assuming O2 competitive inhibition. The apparent
Km(O2) values 2 µM (for cytochrome bd-II) and 6 µM (for cytochrome bo3) were taken
from [90] and [70], respectively.

Statistical analyses were performed using an unpaired t-test for comparisons between
two strains or conditions.

5. Conclusions

In this study, we show that of the two E. coli bd-type oxidases, only bd-I promotes
growth in the presence of toxic concentrations of CO, giving the bacterium resistance to the
gas. Our results are relevant for clarifying the discrepancies present in the literature on the
effect of CO on the O2 consumption of E. coli oxidases and expanding the knowledge of
cytochromes bd, a protein family of increasing interest due to their unique functional and
structural features and their importance to pathogens. These findings are also important
in the field of microbial physiology as they contribute to a better understanding of how
different terminal complexes participate in the respiratory chain under various growth
conditions. Moreover, they may provide a basis for biotechnological applications in which
an increased bacterial resistance to CO is needed [100]. Finally, we believe that these
findings could have a biomedical significance. These data should be taken into account
when next-generation antimicrobials, whose mechanism of action is based on the release
of CO that blocks the aerobic respiration and growth of pathogenic bacteria, are studied
for potential use in medicine. Therapeutic CO delivery in humans and animals by such
CO-releasing molecules would most likely be less efficient if the target pathogen possesses
a terminal oxidase similar to the E. coli bd-I enzyme.
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