Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = quasi-elastic neutron scattering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3401 KiB  
Article
Modulation of Protein Dynamics by Glycerol in Water-Soluble Chlorophyll-Binding Protein (WSCP)
by Mina Hajizadeh, Maksym Golub, Inga Bektas, Leonid L. Rusevich, Jan P. Embs, Wiebke Lohstroh, Harald Paulsen and Jörg Pieper
Crystals 2025, 15(6), 569; https://doi.org/10.3390/cryst15060569 - 17 Jun 2025
Cited by 1 | Viewed by 272
Abstract
Proteins are inherently dynamic entities that rely on flexibility across multiple timescales to perform their biological functions. The surrounding environment plays a critical role in modulating protein dynamics by exerting plasticizing or stabilizing effects. In order to characterize the conformational dynamics of Water-Soluble [...] Read more.
Proteins are inherently dynamic entities that rely on flexibility across multiple timescales to perform their biological functions. The surrounding environment plays a critical role in modulating protein dynamics by exerting plasticizing or stabilizing effects. In order to characterize the conformational dynamics of Water-Soluble Chlorophyll-Binding Protein (WSCP), we measured Quasielastic Neutron Scattering (QENS) spectra over a wide temperature range between 100 and 300 K. The impact of glycerol, a common stabilizer, is investigated by comparing WSCP dissolved in a glycerol–water-containing buffer (WSCPW+G) with WSCP in a water-containing buffer (WSCPW). The results indicate that conformational protein dynamics are widely suppressed below 200 K but increase above this threshold, with the appearance of localized protein motions on the picosecond timescale. Glycerol appears to limit protein mobility between 280 and 300 K due to its high viscosity and hydrogen bonding in contrast to WSCP in water. Inelastic Neutron Scattering (INS) reveals the vibrational dynamics of WSCP with pronounced low-energy protein vibrations observed at about 2.5 and 6 meV. In the presence of glycerol, however, a stiffening of the vibrational motions which shifts the vibrational peaks to higher frequencies is observed. Full article
(This article belongs to the Section Biomolecular Crystals)
Show Figures

Figure 1

29 pages, 6836 KiB  
Review
Advanced Characterization of Solid-State Battery Materials Using Neutron Scattering Techniques
by Eric Novak, Luke Daemen and Niina Jalarvo
Materials 2024, 17(24), 6209; https://doi.org/10.3390/ma17246209 - 19 Dec 2024
Viewed by 1577
Abstract
Advanced batteries require advanced characterization techniques, and neutron scattering is one of the most powerful experimental methods available for studying next-generation battery materials. Neutron scattering offers a non-destructive method to probe the complex structural and chemical processes occurring in batteries during operation in [...] Read more.
Advanced batteries require advanced characterization techniques, and neutron scattering is one of the most powerful experimental methods available for studying next-generation battery materials. Neutron scattering offers a non-destructive method to probe the complex structural and chemical processes occurring in batteries during operation in truly in situ/in operando measurements with a high sensitivity to battery-relevant elements such as lithium. Neutrons have energies comparable to the energies of excitations in materials and wavelengths comparable to atomic distances in the solid state, thus giving access to study structural and dynamical properties of materials on an atomic scale. In this review, a broad overview of selected neutron scattering techniques is presented to illustrate how neutron scattering can be used to gain invaluable information of solid-state battery materials, with a focus on in situ/in operando methods. These techniques span multiple decades of length and time scales to uncover the complex processes taking place fundamentally on the atomic scale and to determine how these processes impact the macroscale properties and performance of functional battery systems. This review serves the solid-state battery research community by examining how the unique capabilities of neutron scattering can be applied to answer critical and unresolved questions of materials research in this field. A thorough and broad perspective is provided with numerous practical examples showing these techniques in action for battery research. Full article
(This article belongs to the Special Issue Local Structure Characterization for Complex Functional Materials)
Show Figures

Figure 1

22 pages, 4598 KiB  
Review
The Unusual Functional Role of Protein Flexibility in Photosynthetic Light Harvesting: Protein Dynamics Studied Using Neutron Scattering
by Maksym Golub and Jörg Pieper
Crystals 2024, 14(8), 743; https://doi.org/10.3390/cryst14080743 - 21 Aug 2024
Cited by 1 | Viewed by 1513
Abstract
In addition to investigations of the three-dimensional protein structure, information on the dynamical properties of proteins is indispensable for an understanding of protein function in general. Correlations between protein dynamics and function are typically anticipated when both molecular mobility and function are concurrently [...] Read more.
In addition to investigations of the three-dimensional protein structure, information on the dynamical properties of proteins is indispensable for an understanding of protein function in general. Correlations between protein dynamics and function are typically anticipated when both molecular mobility and function are concurrently affected under specific temperatures or hydration conditions. In contrast, excitation energy transfer within the major photosynthetic light-harvesting complex II (LHC II) presents an atypical case, as it remains fully operational even at cryogenic temperatures, primarily depending on the interactions between electronic states and involving harmonic protein vibrations only. This review summarizes recent work on vibrational and conformational protein dynamics of LHC II and directly relates these findings to its light-harvesting function. In addition, we give a comprehensive introduction into the use of neutron spectroscopy and molecular dynamics simulations to investigate the protein dynamics of photosynthetic protein complexes in solution, which is information complementary to that obtained by protein crystallography. Full article
(This article belongs to the Section Biomolecular Crystals)
Show Figures

Figure 1

15 pages, 3992 KiB  
Article
The Dynamical Properties of Three Different Variants of the Orange Carotenoid Protein: A Quasielastic Neutron Scattering Study
by Mina Hajizadeh, Maksym Golub, Marcus Moldenhauer, Wiebke Lohstroh, Thomas Friedrich and Jörg Pieper
Crystals 2024, 14(4), 361; https://doi.org/10.3390/cryst14040361 - 11 Apr 2024
Cited by 1 | Viewed by 1506
Abstract
Besides a well-adapted structure, proteins often require a specific dynamical flexibility to undergo conformational changes in order to carry out their function. The latter dynamics can be directly measured by quasielastic neutron scattering as demonstrated here for three variants of the orange carotenoid [...] Read more.
Besides a well-adapted structure, proteins often require a specific dynamical flexibility to undergo conformational changes in order to carry out their function. The latter dynamics can be directly measured by quasielastic neutron scattering as demonstrated here for three variants of the orange carotenoid protein (OCP), which plays a pivotal role in the protection of the cyanobacterial photosynthetic apparatus against photodamage. We investigate the dynamics of the structurally compact, dark-adapted wild type of OCP (OCPwt) in comparison with that of two mutant forms. The latter two mutants differ preferentially in their structures. The orange mutant OCP-W288A is assumed to have a compact structure and to preferentially bind the pigment echinenone, while the pink mutant OCP-W288A appears to represent the more elongated structure of the red active state of OCP binding the carotenoid canthaxanthin, respectively. The study reveals three major findings: (a) the dynamics of the red active state of OCP is significantly enhanced due to a larger number of protein residues being exposed to the solvent at the surface of the protein; (b) the dynamics of all OCP forms appear to be suppressed upon the freezing of the solvent, which is most likely due to an ice-induced aggregation of the proteins; and (c) the wild type and the compact mutant exhibit different dynamics attributed to a missing H-bond between the pigment and protein, resulting a destabilization of the surrounding protein. Full article
(This article belongs to the Special Issue Protein Crystallography: The State of the Art)
Show Figures

Figure 1

27 pages, 1076 KiB  
Article
Computation of X-ray and Neutron Scattering Patterns to Benchmark Atomistic Simulations against Experiments
by Arnab Majumdar, Martin Müller and Sebastian Busch
Int. J. Mol. Sci. 2024, 25(3), 1547; https://doi.org/10.3390/ijms25031547 - 26 Jan 2024
Cited by 1 | Viewed by 2090
Abstract
Molecular Dynamics simulations study material structure and dynamics at the atomic level. X-ray and neutron scattering experiments probe exactly the same time- and length scales as the simulations. In order to benchmark simulations against measured scattering data, a program is required that computes [...] Read more.
Molecular Dynamics simulations study material structure and dynamics at the atomic level. X-ray and neutron scattering experiments probe exactly the same time- and length scales as the simulations. In order to benchmark simulations against measured scattering data, a program is required that computes scattering patterns from simulations with good single-core performance and support for parallelization. In this work, the existing program Sassena is used as a potent solution to this requirement for a range of scattering methods, covering pico- to nanosecond dynamics, as well as the structure from some Ångströms to hundreds of nanometers. In the case of nanometer-level structures, the finite size of the simulation box, which is referred to as the finite size effect, has to be factored into the computations for which a method is described and implemented into Sassena. Additionally, the single-core and parallelization performance of Sassena is investigated, and several improvements are introduced. Full article
(This article belongs to the Special Issue Research on Molecular Dynamics: 2nd Edition)
Show Figures

Figure 1

11 pages, 383 KiB  
Article
Identifying the Spin-Incoherent Contribution to Quasielastic Neutron Scattering with a Cold Triple-Axis Spectrometer
by Andrew G. Manning, Shinichiro Yano, Sojeong Kim, Won Bo Lee, Soo-Hyung Choi and Nicolas R. de Souza
Quantum Beam Sci. 2023, 7(4), 35; https://doi.org/10.3390/qubs7040035 - 13 Nov 2023
Cited by 3 | Viewed by 2006
Abstract
Polarisation analysis for neutron scattering experiments is a powerful tool suitable for a wide variety of studies, including soft-matter samples which have no bulk magnetic behaviour and/or a significant hydrogen content. Here, we describe a method to leverage the versatility and spin-polarisation capabilities [...] Read more.
Polarisation analysis for neutron scattering experiments is a powerful tool suitable for a wide variety of studies, including soft-matter samples which have no bulk magnetic behaviour and/or a significant hydrogen content. Here, we describe a method to leverage the versatility and spin-polarisation capabilities of a cold triple-axis spectrometer to perform a measurement to separate coherent and incoherent neutron scattering for a non-magnetic sample in the quasielastic neutron scattering (QENS) regime. Such measurements are complementary to unpolarised QENS measurements, which may typically be performed on a backscattering or time-of-flight spectrometer instrument where polarisation analysis can be significantly more difficult to achieve, and utilise the strengths of each type of instrument. Full article
(This article belongs to the Special Issue Quantum Beam Science: Feature Papers 2023)
Show Figures

Figure 1

11 pages, 6232 KiB  
Article
Quasielastic Neutron Scattering Study on Thermal Gelation in Aqueous Solution of Agarose
by Noriko Onoda-Yamamuro, Yasuhiro Inamura and Osamu Yamamuro
Gels 2023, 9(11), 879; https://doi.org/10.3390/gels9110879 - 6 Nov 2023
Cited by 3 | Viewed by 1721
Abstract
The dynamics of water and agarose molecules in an agarose aqueous solution has been studied by means of quasielastic neutron scattering (QENS). The dynamic structure factor S (Q,E) of the agarose aqueous solution was fitted well to the sum [...] Read more.
The dynamics of water and agarose molecules in an agarose aqueous solution has been studied by means of quasielastic neutron scattering (QENS). The dynamic structure factor S (Q,E) of the agarose aqueous solution was fitted well to the sum of the Lorentz and delta function. The former is attributed to the diffusive motion of water molecules and the latter to the local vibrational motion of agarose molecules. The self-diffusion coefficient D of water molecules was obtained from the Q-dependence of the width of the Lorentz function, while the mean square displacement <u2> of agarose molecules was obtained from the Q-dependence of the intensity of the delta term. In the cooling direction, both D and <u2> decreased with decreasing temperature and showed discontinuous changes around the thermal gelation temperature (around 314 K). In the heating direction, however, D and <u2> did not show the obvious change below 343 K, indicating a large hysteresis effect. The present results of <u2> and D revealed that the thermal gelation suppresses the motion of the polymer and accelerates the diffusion of water molecules. The activation energy Ea of the diffusion of water in the sol state is the same as that of bulk water, but the Ea in the gel state is clearly smaller than that of bulk water. Full article
(This article belongs to the Special Issue Recent Advances in Food Gels)
Show Figures

Graphical abstract

13 pages, 2792 KiB  
Article
Dynamics–Function Correlation in Photosystem II: Molecular Dynamics in Solution
by Maksym Golub, Miriam Koppel, Piret Pikma, Bernhard Frick and Jörg Pieper
Crystals 2023, 13(10), 1441; https://doi.org/10.3390/cryst13101441 - 28 Sep 2023
Cited by 3 | Viewed by 1208
Abstract
A detailed comprehension of protein function requires information on the spatial structure of the protein, which is often gathered from X-ray crystallography. However, conformational dynamics often also plays an important functional role in proteins and can be directly investigated by complementary quasielastic neutron [...] Read more.
A detailed comprehension of protein function requires information on the spatial structure of the protein, which is often gathered from X-ray crystallography. However, conformational dynamics often also plays an important functional role in proteins and can be directly investigated by complementary quasielastic neutron scattering. A classic example for dynamics–function correlations is Photosystem II, which is a multimeric pigment–protein complex responsible for catalyzing the light-induced photosynthetic water splitting into protons and oxygen. Several functional subprocesses of photosynthetic electron transfer and water splitting are strongly dependent on temperature and hydration, two factors also known to affect protein dynamics. Photosystem II is often investigated in the form of membrane fragments, where the protein complex remains embedded into its native lipid environment. However, experiments on protein function are often carried out in solution state, while direct investigations of molecular dynamics by quasielastic neutron scattering are mainly performed using specifically hydrated membrane fragments only. The present study provides the first quasielastic neutron scattering investigation of the molecular dynamics of Photosystem II membrane fragments (PSIImf) in solution over a wide temperature range from 50 to 300 K. At physiological temperatures above the melting point of water, we observed that the dynamics of PSIImf are significantly activated, leading to larger atomic mean square displacement values compared to those of specifically hydrated membrane stacks. The QENS data can be described by two dynamical components: a fast one, most probably corresponding to methyl group rotation; and a slower one, representing localized conformational dynamics. The latter component could be fitted by a jump-diffusion model at 300 K. The dynamics observed characterize the level of flexibility necessary for the proper PS II functionality under physiological conditions. In contrast, we observe a severe restriction of molecular dynamics upon freezing of the solvent below ~276 K. We associate this unexpected suppression of dynamics with a substantial aggregation of PSIImf caused by ice formation. Full article
(This article belongs to the Special Issue New Advances in Protein Crystallography)
Show Figures

Figure 1

17 pages, 12363 KiB  
Article
Differences in Water Dynamics between the Hydrated Chitin and Hydrated Chitosan Determined by Quasi-Elastic Neutron Scattering
by Yuki Hirota, Taiki Tominaga, Takashi Kawabata, Yukinobu Kawakita and Yasumitsu Matsuo
Bioengineering 2023, 10(5), 622; https://doi.org/10.3390/bioengineering10050622 - 22 May 2023
Cited by 4 | Viewed by 2057
Abstract
Recently, it was reported that chitin and chitosan exhibited high-proton conductivity and function as an electrolyte in fuel cells. In particular, it is noteworthy that proton conductivity in the hydrated chitin becomes 30 times higher than that in the hydrated chitosan. Since higher [...] Read more.
Recently, it was reported that chitin and chitosan exhibited high-proton conductivity and function as an electrolyte in fuel cells. In particular, it is noteworthy that proton conductivity in the hydrated chitin becomes 30 times higher than that in the hydrated chitosan. Since higher proton conductivity is necessary for the fuel cell electrolyte, it is significantly important to clarify the key factor for the realization of higher proton conduction from a microscopic viewpoint for the future development of fuel cells. Therefore, we have measured proton dynamics in the hydrated chitin using quasi-elastic neutron scattering (QENS) from the microscopic viewpoint and compared the proton conduction mechanism between hydrated chitin and chitosan. QENS results exhibited that a part of hydrogen atoms and hydration water in chitin are mobile even at 238 K, and the mobile hydrogen atoms and their diffusion increase with increasing temperature. It was found that the diffusion constant of mobile protons is two times larger and that the residence time is two times faster in chitin than that in chitosan. In addition, it is revealed from the experimental results that the transition process of dissociable hydrogen atoms between chitin and chitosan is different. To realize proton conduction in the hydrated chitosan, the hydrogen atoms of the hydronium ions (H3O+) should be transferred to another hydration water. By contrast, in hydrated chitin, the hydrogen atoms can transfer directly to the proton acceptors of neighboring chitin. It is deduced that higher proton conductivity in the hydrated chitin compared with that in the hydrated chitosan is yielded by the difference of diffusion constant and the residence time by hydrogen-atom dynamics and the location and number of proton acceptors. Full article
(This article belongs to the Section Biochemical Engineering)
Show Figures

Graphical abstract

11 pages, 880 KiB  
Article
Translational Dynamics of Imidazolium-Based Ionic Liquids in Acetonitrile Solutions
by Franz Demmel and William S. Howells
Liquids 2023, 3(2), 203-213; https://doi.org/10.3390/liquids3020015 - 19 Apr 2023
Cited by 1 | Viewed by 1753
Abstract
The dynamics of pure ionic liquids and solutions with acetonitrile have been investigated through quasielastic neutron scattering (QENS). The translational diffusive motion of the 1-butyl-3-methyl-imidazolium cation was revealed as a function of concentration and temperature. The diffusion coefficients obtained are in reasonably good [...] Read more.
The dynamics of pure ionic liquids and solutions with acetonitrile have been investigated through quasielastic neutron scattering (QENS). The translational diffusive motion of the 1-butyl-3-methyl-imidazolium cation was revealed as a function of concentration and temperature. The diffusion coefficients obtained are in reasonably good agreement with molecular dynamics (MD) computer simulations based on a classical potential. The diffusive mobility of the cation dramatically increases when adding acetonitrile. This increase in diffusivity is directly related to a maximum in conductivity of these ionic liquid solutions and might pave the way for new design of electrolytes. The translational motions in pure ionic liquids are too slow to be resolved by our experiment. However, localized motion resembling rotation on a sphere of the measured proton signal could be identified in the pure ionic liquids. Full article
(This article belongs to the Section Molecular Liquids)
Show Figures

Figure 1

12 pages, 3283 KiB  
Article
Thermal Polymorphism in CsCB11H12
by Radovan Černý, Matteo Brighi, Hui Wu, Wei Zhou, Mirjana Dimitrievska, Fabrizio Murgia, Valerio Gulino, Petra E. de Jongh, Benjamin A. Trump and Terrence J. Udovic
Molecules 2023, 28(5), 2296; https://doi.org/10.3390/molecules28052296 - 1 Mar 2023
Cited by 3 | Viewed by 2977
Abstract
Thermal polymorphism in the alkali-metal salts incorporating the icosohedral monocarba-hydridoborate anion, CB11H12, results in intriguing dynamical properties leading to superionic conductivity for the lightest alkali-metal analogues, LiCB11H12 and NaCB11H12. As such, [...] Read more.
Thermal polymorphism in the alkali-metal salts incorporating the icosohedral monocarba-hydridoborate anion, CB11H12, results in intriguing dynamical properties leading to superionic conductivity for the lightest alkali-metal analogues, LiCB11H12 and NaCB11H12. As such, these two have been the focus of most recent CB11H12 related studies, with less attention paid to the heavier alkali-metal salts, such as CsCB11H12. Nonetheless, it is of fundamental importance to compare the nature of the structural arrangements and interactions across the entire alkali-metal series. Thermal polymorphism in CsCB11H12 was investigated using a combination of techniques: X-ray powder diffraction; differential scanning calorimetry; Raman, infrared, and neutron spectroscopies; and ab initio calculations. The unexpected temperature-dependent structural behavior of anhydrous CsCB11H12 can be potentially justified assuming the existence of two polymorphs with similar free energies at room temperature: (i) a previously reported, ordered R3 polymorph stabilized upon drying and transforming first to R3c symmetry near 313 K and then to a similarly packed but disordered I43d polymorph near 353 K and (ii) a disordered Fm3 polymorph that initially appears from the disordered I43d polymorph near 513 K along with another disordered high-temperature P63mc polymorph. Quasielastic neutron scattering results indicate that the CB11H12 anions in the disordered phase at 560 K are undergoing isotropic rotational diffusion, with a jump correlation frequency [1.19(9) × 1011 s−1] in line with those for the lighter-metal analogues. Full article
Show Figures

Graphical abstract

15 pages, 1337 KiB  
Review
Incoherent Neutron Scattering and Terahertz Time-Domain Spectroscopy on Protein and Hydration Water
by Hiroshi Nakagawa and Naoki Yamamoto
Life 2023, 13(2), 318; https://doi.org/10.3390/life13020318 - 23 Jan 2023
Cited by 3 | Viewed by 2379
Abstract
Incoherent inelastic and quasi-elastic neutron scattering (INS) and terahertz time-domain spectroscopy (THz-TDS) are spectroscopy methods that directly detect molecular dynamics, with an overlap in the measured energy regions of each method. Due to the different characteristics of their probes (i.e., neutron and light), [...] Read more.
Incoherent inelastic and quasi-elastic neutron scattering (INS) and terahertz time-domain spectroscopy (THz-TDS) are spectroscopy methods that directly detect molecular dynamics, with an overlap in the measured energy regions of each method. Due to the different characteristics of their probes (i.e., neutron and light), the information obtained and the sample conditions suitable for each method differ. In this review, we introduce the differences in the quantum beam properties of the two methods and their associated advantages and disadvantages in molecular spectroscopy. Neutrons are scattered via interaction with nuclei; one characteristic of neutron scattering is a large incoherent scattering cross-section of a hydrogen atom. INS records the auto-correlation functions of atomic positions. By using the difference in neutron scattering cross-sections of isotopes in multi-component systems, some molecules can be selectively observed. In contrast, THz-TDS observes the cross-correlation function of dipole moments. In water-containing biomolecular samples, the absorption of water molecules is particularly large. While INS requires large-scale experimental facilities, such as accelerators and nuclear reactors, THz-TDS can be performed at the laboratory level. In the analysis of water molecule dynamics, INS is primarily sensitive to translational diffusion motion, while THz-TDS observes rotational motion in the spectrum. The two techniques are complementary in many respects, and a combination of the two is very useful in analyzing the dynamics of biomolecules and hydration water. Full article
(This article belongs to the Special Issue Biomolecular Dynamics Explored by Incoherent Neutron Spectroscopy)
Show Figures

Figure 1

20 pages, 4225 KiB  
Article
Self-Diffusion in Confined Water: A Comparison between the Dynamics of Supercooled Water in Hydrophobic Carbon Nanotubes and Hydrophilic Porous Silica
by Michael Fardis, Marina Karagianni, Lydia Gkoura and George Papavassiliou
Int. J. Mol. Sci. 2022, 23(22), 14432; https://doi.org/10.3390/ijms232214432 - 20 Nov 2022
Cited by 3 | Viewed by 2269
Abstract
Confined liquids are model systems for the study of the metastable supercooled state, especially for bulk water, in which the onset of crystallization below 230 K hinders the application of experimental techniques. Nevertheless, in addition to suppressing crystallization, confinement at the nanoscale drastically [...] Read more.
Confined liquids are model systems for the study of the metastable supercooled state, especially for bulk water, in which the onset of crystallization below 230 K hinders the application of experimental techniques. Nevertheless, in addition to suppressing crystallization, confinement at the nanoscale drastically alters the properties of water. Evidently, the behavior of confined water depends critically on the nature of the confining environment and the interactions of confined water molecules with the confining matrix. A comparative study of the dynamics of water under hydrophobic and hydrophilic confinement could therefore help to clarify the underlying interactions. As we demonstrate in this work using a few representative results from the relevant literature, the accurate assessment of the translational mobility of water molecules, especially in the supercooled state, can unmistakably distinguish between the hydrophilic and hydrophobic nature of the confining environments. Among the numerous experimental methods currently available, we selected nuclear magnetic resonance (NMR) in a field gradient, which directly measures the macroscopic translational self-diffusion coefficient, and quasi-elastic neutron scattering (QENS), which can determine the microscopic translational dynamics of the water molecules. Dielectric relaxation, which probes the re-orientational degrees of freedom, are also discussed. Full article
(This article belongs to the Special Issue Modern NMR Characterization of Materials)
Show Figures

Figure 1

17 pages, 8598 KiB  
Article
Hydrogen Dynamics in Hydrated Chitosan by Quasi-Elastic Neutron Scattering
by Yuki Hirota, Taiki Tominaga, Takashi Kawabata, Yukinobu Kawakita and Yasumitsu Matsuo
Bioengineering 2022, 9(10), 599; https://doi.org/10.3390/bioengineering9100599 - 21 Oct 2022
Cited by 4 | Viewed by 2422
Abstract
Chitosan, an environmentally friendly and highly bio-producible material, is a potential proton-conducting electrolyte for use in fuel cells. Thus, to microscopically elucidate proton transport in hydrated chitosan, we employed the quasi-elastic neutron scattering (QENS) technique. QENS analysis showed that the hydration water, which [...] Read more.
Chitosan, an environmentally friendly and highly bio-producible material, is a potential proton-conducting electrolyte for use in fuel cells. Thus, to microscopically elucidate proton transport in hydrated chitosan, we employed the quasi-elastic neutron scattering (QENS) technique. QENS analysis showed that the hydration water, which was mobile even at 238 K, moved significantly more slowly than the bulk water, in addition to exhibiting jump diffusion. Furthermore, upon increasing the temperature from 238 to 283 K, the diffusion constant of water increased from 1.33 × 10−6 to 1.34 × 10−5 cm2/s. It was also found that a portion of the hydrogen atoms in chitosan undergo a jump-diffusion motion similar to that of the hydrogen present in water. Moreover, QENS analysis revealed that the activation energy for the jump-diffusion of hydrogen in chitosan and in the hydration water was 0.30 eV, which is close to the value of 0.38 eV obtained from the temperature-dependent proton conductivity results. Overall, it was deduced that a portion of the hydrogen atoms in chitosan dissociate and protonate the interacting hydration water, resulting in the chitosan exhibiting proton conductivity. Full article
(This article belongs to the Section Biochemical Engineering)
Show Figures

Figure 1

22 pages, 10538 KiB  
Article
A Molecular Description of Hydrogel Forming Polymers for Cement-Based Printing Paste Applications
by Hajar Taheri-Afarani, Eugene Mamontov, William R. Carroll and Joseph J. Biernacki
Gels 2022, 8(9), 592; https://doi.org/10.3390/gels8090592 - 16 Sep 2022
Cited by 5 | Viewed by 2583
Abstract
This research endeavors to link the physical and chemical characteristics of select polymer hydrogels to differences in printability when used as printing aids in cement-based printing pastes. A variety of experimental probes including differential scanning calorimetry (DSC), NMR-diffusion ordered spectroscopy (DOSY), quasi-elastic neutron [...] Read more.
This research endeavors to link the physical and chemical characteristics of select polymer hydrogels to differences in printability when used as printing aids in cement-based printing pastes. A variety of experimental probes including differential scanning calorimetry (DSC), NMR-diffusion ordered spectroscopy (DOSY), quasi-elastic neutron scattering (QENS) using neutron backscattering spectroscopy, and X-ray powder diffraction (XRD), along with molecular dynamic simulations, were used. Conjectures based on objective measures of printability and physical and chemical-molecular characteristics of the polymer gels are emerging that should help target printing aid selection and design, and mix formulation. Molecular simulations were shown to link higher hydrogen bond probability and larger radius of gyration to higher viscosity gels. Furthermore, the higher viscosity gels also produced higher elastic properties, as measured by neutron backscattering spectroscopy. Full article
Show Figures

Figure 1

Back to TopTop