Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = quasi-analytical algorithm (QAA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 8126 KB  
Article
Spatio-Temporal Variability of Key Habitat Drivers in China’s Coastal Waters
by Shuhui Cao, Yingchao Dang, Xuan Ban, Yadong Zhou, Jiahuan Luo, Jiazhi Zhu and Fei Xiao
J. Mar. Sci. Eng. 2025, 13(10), 1874; https://doi.org/10.3390/jmse13101874 - 29 Sep 2025
Viewed by 272
Abstract
China’s coastal fisheries face challenges to their sustainability due to climate and human-induced pressures on key habitat drivers. This study provides an 18-year (2003–2020) assessment of six key ecological and data-available environmental factors (sea-surface temperature (SST), salinity, transparency, currents (eastward velocity, EV; northward [...] Read more.
China’s coastal fisheries face challenges to their sustainability due to climate and human-induced pressures on key habitat drivers. This study provides an 18-year (2003–2020) assessment of six key ecological and data-available environmental factors (sea-surface temperature (SST), salinity, transparency, currents (eastward velocity, EV; northward velocity, NV), and net primary productivity (NPP), selected for their ecological relevance and data availability, across the Bohai, Yellow, and East China Seas at a spatial resolution of 0.083°. Non-parametric trend tests and seasonal climatologies were applied using MODIS-Aqua and CMEMS data with a refined quasi-analytical algorithm (QAA-v6). The results show distinct gradients: SST ranging from 9 to 13 °C (Bohai Sea) to >20 °C (East China Sea); transparency ranging from <5 m (turbid coasts) to 29.20 m (offshore). Seasonal peaks occurred for SST (summer: 18.92 °C), transparency (summer: 12.54 m), and primary productivity (spring: 1289 mg/m2). Long-term trends reveal regional SST warming in the northern Yellow Sea (9.78% of the area), but cooling in the central East China Sea. Widespread increases in transparency were observed (65.14% of the area), though productivity declined significantly (27.3%). The drivers showed spatial coupling (e.g., SST–salinity r = 0.95), but the long-term trends were decoupled. This study provides a comprehensive and long-term assessment of multiple key habitat drivers across China’s coastal seas. The results provide an unprecedented empirical baseline and dynamic management tools for China’s changing coastal ecosystems. Full article
Show Figures

Figure 1

29 pages, 6458 KB  
Article
Performance Evaluation of Inherent Optical Property Algorithms and Identification of Potential Water Quality Indicators Using GCOM-C Data in Eutrophic Lake Kasumigaura, Japan
by Misganaw Choto, Hiroto Higa, Salem Ibrahim Salem, Eko Siswanto, Takayuki Suzuki and Martin Mäll
Remote Sens. 2025, 17(9), 1621; https://doi.org/10.3390/rs17091621 - 2 May 2025
Viewed by 888
Abstract
Lake Kasumigaura, one of Japan’s largest lakes, presents significant challenges for remote sensing due to its eutrophic conditions and complex optical properties. Although the Global Change Observation Mission-Climate (GCOM-C)/Second-generation Global Imager (SGLI)-derived inherent optical properties (IOPs) offer water quality monitoring potential, their performance [...] Read more.
Lake Kasumigaura, one of Japan’s largest lakes, presents significant challenges for remote sensing due to its eutrophic conditions and complex optical properties. Although the Global Change Observation Mission-Climate (GCOM-C)/Second-generation Global Imager (SGLI)-derived inherent optical properties (IOPs) offer water quality monitoring potential, their performance in such turbid inland waters remains inadequately validated. This study evaluated five established IOP retrieval algorithms, including the quasi-analytical algorithm (QAA_V6), Garver–Siegel–Maritorena (GSM), generalized IOP (GIOP-DC), Plymouth Marine Laboratory (PML), and linear matrix inversion (LMI), using measured remote sensing reflectance (Rrs) and corresponding IOPs between 2017–2018. The results demonstrated that the QAA had the highest performance for retrieving absorption of particles (ap) with a Pearson correlation (r) = 0.98, phytoplankton (aph) with r = 0.97, and non-algal particles (anap) with r = 0.85. In contrast, the GSM algorithm exhibited the best accuracy for estimating absorption by colored dissolved organic matter (aCDOM), with r = 0.87, along with the lowest mean absolute percentage error (MAPE) and root mean square error (RMSE). Additionally, a strong correlation (r = 0.81) was observed between SGLI satellite-derived remote-sensing reflectance (Rrs) and in situ measurements. Notably, a high correlation was observed between the aph (443 nm) and the chlorophyll a (Chl-a) concentration (r = 0.84), as well as between the backscattering coefficient (bbp) at 443 nm and inorganic suspended solids (r = 0.64), confirming that IOPs are reliable water quality assessment indicators. Furthermore, the use of IOPs as variables for estimating water quality parameters such as Chl-a and suspended solids showed better performance compared to empirical methods. Full article
(This article belongs to the Special Issue Remote Sensing Band Ratios for the Assessment of Water Quality)
Show Figures

Figure 1

19 pages, 7401 KB  
Article
A New Algorithm Based on the Phytoplankton Absorption Coefficient for Red Tide Monitoring in the East China Sea via a Geostationary Ocean Color Imager (GOCI)
by Xiaohui Xu, Yaqin Huang, Jian Chen and Zhi Zeng
Remote Sens. 2025, 17(5), 750; https://doi.org/10.3390/rs17050750 - 21 Feb 2025
Cited by 1 | Viewed by 835
Abstract
Rapid and accurate dynamic monitoring and quantitative analysis of red tide disasters are of significant practical importance to national economic development. Remote sensing technology is an effective means for monitoring red tides. This paper utilizes GOCI satellite data and employs a quasi-analytical algorithm [...] Read more.
Rapid and accurate dynamic monitoring and quantitative analysis of red tide disasters are of significant practical importance to national economic development. Remote sensing technology is an effective means for monitoring red tides. This paper utilizes GOCI satellite data and employs a quasi-analytical algorithm (QAA) to retrieve the spectral curves of phytoplankton absorption coefficients. On the basis of a detailed analysis of the differences in the spectral curves of the phytoplankton absorption coefficients between red tide and non-red tide waters, we establish a red tide identification algorithm for the East China Sea on the basis of phytoplankton absorption coefficients. The algorithm is applied to multiple red tide events in the East China Sea. The results indicate that this algorithm can effectively determine the occurrence locations of red tides and extract relevant information about them. Full article
Show Figures

Graphical abstract

25 pages, 10179 KB  
Article
An Improved Physics-Based Dual-Band Model for Satellite-Derived Bathymetry Using SuperDove Imagery
by Chunlong He, Qigang Jiang and Peng Wang
Remote Sens. 2024, 16(20), 3801; https://doi.org/10.3390/rs16203801 - 12 Oct 2024
Cited by 3 | Viewed by 1590
Abstract
Shallow water bathymetry is critical for environmental monitoring and maritime security. Current widely used statistical models based on passive optical satellite remote sensing often rely on prior bathymetric data, limiting their application to regions lacking such information. In contrast, the physics-based dual-band log-linear [...] Read more.
Shallow water bathymetry is critical for environmental monitoring and maritime security. Current widely used statistical models based on passive optical satellite remote sensing often rely on prior bathymetric data, limiting their application to regions lacking such information. In contrast, the physics-based dual-band log-linear analytical model (P-DLA) can estimate shallow water bathymetry without in situ measurements, offering significant potential. However, the quasi-analytical algorithm (QAA) used in the P-DLA is sensitive to non-ideal pixels, resulting in unstable bathymetry estimation. To address this issue and evaluate the potential of SuperDove imagery for bathymetry estimation in regions without prior bathymetric data, this study proposes an improved physics-based dual-band model (IPDB). The IPDB replaces the QAA with a spectral optimization algorithm that integrates deep and shallow water sample pixels to estimate diffuse attenuation coefficients for the blue and green bands. This allows for more accurate estimation of shallow water bathymetry. The IPDB was tested on SuperDove images of Dongdao Island, Yongxing Island, and Yongle Atoll. The results showed that SuperDove images are capable of estimating shallow water bathymetry in regions without prior bathymetric data. The IPDB achieved Root Mean Square Error (RMSE) values below 1.7 m and R2 values above 0.89 in all three study areas, indicating strong performance in bathymetric estimation. Notably, the IPDB outperformed the standard P-DLA model in accuracy. Furthermore, this study outlines four sampling principles that, when followed, ensure that variations in the spatial distribution of sampling pixels do not significantly impact model performance. This study also showed that the blue–green band combination is optimal for the analytical expression of the physics-based dual-band model. Full article
(This article belongs to the Special Issue Advances in Remote Sensing of the Inland and Coastal Water Zones II)
Show Figures

Figure 1

23 pages, 5168 KB  
Article
Optical Characterization of Coastal Waters with Atmospheric Correction Errors: Insights from SGLI and AERONET-OC
by Hiroto Higa, Masataka Muto, Salem Ibrahim Salem, Hiroshi Kobayashi, Joji Ishizaka, Kazunori Ogata, Mitsuhiro Toratani, Kuniaki Takahashi, Fabrice Maupin and Stephane Victori
Remote Sens. 2024, 16(19), 3626; https://doi.org/10.3390/rs16193626 - 28 Sep 2024
Cited by 3 | Viewed by 1822
Abstract
This study identifies the characteristics of water regions with negative normalized water-leaving radiance (nLw(λ)) values in the satellite observations of the Second-generation Global Imager (SGLI) sensor aboard the Global Change Observation Mission–Climate (GCOM-C) satellite. SGLI Level-2 [...] Read more.
This study identifies the characteristics of water regions with negative normalized water-leaving radiance (nLw(λ)) values in the satellite observations of the Second-generation Global Imager (SGLI) sensor aboard the Global Change Observation Mission–Climate (GCOM-C) satellite. SGLI Level-2 data, along with atmospheric and in-water optical properties measured by the sun photometers in the AErosol RObotic NETwork-Ocean Color (AERONET-OC) from 26 sites globally, are utilized in this study. The focus is particularly on Tokyo Bay and the Ariake Sea, semi-enclosed water regions in Japan where previous research has pointed out the occurrence of negative nLw(λ) values due to atmospheric correction with SGLI. The study examines the temporal changes in atmospheric and in-water optical properties in these two regions, and identifies the characteristics of regions prone to negative nLw(λ) values due to atmospheric correction by comparing the optical properties of these regions with those of 24 other AERONET-OC sites. The time series results of nLw(λ) and the single-scattering albedo (ω(λ)) obtained by the sun photometers at the two sites in Tokyo Bay and Ariake Sea, along with SGLI nLw(λ), indicate the occurrence of negative values in SGLI nLw(λ) in blue band regions, which are mainly attributed to the inflow of absorptive aerosols. However, these negative values are not entirely explained by ω(λ) at 443 nm alone. Additionally, a comparison of in situ nLw(λ) measurements in Tokyo Bay and the Ariake Sea with nLw(λ) values obtained from 24 other AERONET-OC sites, as well as the inherent optical properties (IOPs) estimated through the Quasi-Analytical Algorithm version 5 (QAA_v5), identified five sites—Gulf of Riga, Long Island Sound, Lake Vanern, the Tokyo Bay, and Ariake Sea—as regions where negative nLw(λ) values are more likely to occur. These regions also tend to have lower nLw(λ)  values at shorter wavelengths. Furthermore, relatively high light absorption by phytoplankton and colored dissolved organic matter, plus non-algal particles, was confirmed in these regions. This occurs because atmospheric correction processing excessively subtracts aerosol light scattering due to the influence of aerosol absorption, increasing the probability of the occurrence of negative nLw(λ) values. Based on the analysis of atmospheric and in-water optical measurements derived from AERONET-OC in this study, it was found that negative nLw(λ)  values due to atmospheric correction are more likely to occur in water regions characterized by both the presence of absorptive aerosols in the atmosphere and high light absorption by in-water substances. Full article
Show Figures

Figure 1

18 pages, 11579 KB  
Article
Exploring the Most Effective Information for Satellite-Derived Bathymetry Models in Different Water Qualities
by Zhen Liu, Hao Liu, Yue Ma, Xin Ma, Jian Yang, Yang Jiang and Shaohui Li
Remote Sens. 2024, 16(13), 2371; https://doi.org/10.3390/rs16132371 - 28 Jun 2024
Cited by 3 | Viewed by 2366
Abstract
Satellite-derived bathymetry (SDB) is an effective means of obtaining global shallow water depths. However, the effect of inherent optical properties (IOPs) on the accuracy of SDB under different water quality conditions has not been clearly clarified. To enhance the accuracy of machine learning [...] Read more.
Satellite-derived bathymetry (SDB) is an effective means of obtaining global shallow water depths. However, the effect of inherent optical properties (IOPs) on the accuracy of SDB under different water quality conditions has not been clearly clarified. To enhance the accuracy of machine learning SDB models, this study aims to assess the performance improvement of integrating the quasi-analytical algorithm (QAA)-derived IOPs using the Sentinel-2 and ICESat-2 datasets. In different water quality experiments, the results indicate that four SDB models (the Gaussian process regression, neural networks, random forests, and support vector regression) incorporating QAA-IOP parameters equal to or outperform those solely based on the remote sensing reflectance (Rrs) datasets, especially in turbid waters. By analyzing information gains in SDB, the most effective inputs are identified and prioritized under different water qualities. The SDB method incorporating QAA-IOP can achieve an accuracy of 0.85 m, 0.48 m, and 0.74 m in three areas (Wenchang, Laizhou Bay, and the Qilian Islands) with different water quality. Also, we find that incorporating an excessive number of redundant bands into machine learning models not only increases the demand of computing resources but also leads to worse accuracy in SDB. In conclusion, the integration of QAA-IOPs offers promising improvements in obtaining bathymetry and the optimal feature selection should be carefully considered in diverse aquatic environments. Full article
Show Figures

Figure 1

14 pages, 15521 KB  
Article
An Extended Quasi−Analytical Algorithm for Retrieving Absorption Coefficient Using 510–620 nm Bands from OLCI and MERIS Satellite Data
by Liangliang Shi, Zhihua Mao, Yiwei Zhang, Zheng Wang and Qianguang Tu
Water 2024, 16(1), 67; https://doi.org/10.3390/w16010067 - 23 Dec 2023
Cited by 1 | Viewed by 1820
Abstract
This study focuses on deriving the total absorption coefficients based on field measurements and satellite data. An extended quasi−analytical algorithm (QAA−GRI) was developed based on the two in situ datasets collected from inland waters of Lake Qiandaohu (QDH) and oceanic waters of the [...] Read more.
This study focuses on deriving the total absorption coefficients based on field measurements and satellite data. An extended quasi−analytical algorithm (QAA−GRI) was developed based on the two in situ datasets collected from inland waters of Lake Qiandaohu (QDH) and oceanic waters of the East China Sea (ECS). The key model between absorption coefficients at 510 nm (a(510)) and green red index (GRI) was established using power function in the extended QAA−GRI algorithm. The results reveal that the extended QAA−GRI algorithm performs better than the original quasi−analytical algorithm (QAA−v5) and Garver–Siegel–Maritorena’s algorithm (GSM), and the red–green quasi−analytical algorithm (QAA−RGR), at least for the two in situ datasets from the ECS and QDH. For QAA−GRI, the averaged mean absolute percentage error (MAPE) value of retrieved versus in situ total absorption coefficients is approximately 20%. Subsequently, the extended QAA−GRI algorithm was applied to the OLCI satellite imagery, which is the new successor of MERIS with three specific bands (510, 560, and 620 nm). The implementation of the extended QAA−GRI algorithm on OLCI imagery yielded similar results comparable to that of the QAA−v5 in the ECS region. Furthermore, the application of the algorithm on seasonal and annual MERIS satellite imagery help clarify the combined influences from Yangtze River discharge and coastal currents on the distribution of total absorption in the ECS waters. This study suggests that the extended QAA−GRI algorithm is an alternative for retrieving total absorption coefficient, although it is not recommended for highly turbid waters. Full article
(This article belongs to the Special Issue Remote Sensing-Based Study on Surface Water Environment)
Show Figures

Figure 1

18 pages, 8811 KB  
Article
Coastal Water Clarity in Shenzhen: Assessment of Observations from Sentinel-2
by Yelong Zhao, Jinsong Chen, Xiaoli Li, Hongzhong Li and Longlong Zhao
Water 2023, 15(23), 4102; https://doi.org/10.3390/w15234102 - 27 Nov 2023
Cited by 1 | Viewed by 2505
Abstract
Shenzhen is a crucial city in the Guangdong–Hong Kong–Macao Greater Bay Area (GBA). With high-intensity land development and rapid population growth, the ocean has become an essential space for expansion, leading to significant variations in water quality in the coastal area of Shenzhen. [...] Read more.
Shenzhen is a crucial city in the Guangdong–Hong Kong–Macao Greater Bay Area (GBA). With high-intensity land development and rapid population growth, the ocean has become an essential space for expansion, leading to significant variations in water quality in the coastal area of Shenzhen. Water clarity (Zsd) is a key indicator for evaluating water quality. We applied the quasi-analytical algorithm (QAA) to Sentinel-2 data and retrieved the Zsd of the coastal area of Shenzhen. By adjusting the red band for distinguishing water types, we avoided underestimating Zsd for clear water. This study pioneered the production of a 10 m Zsd product for the coastal area of Shenzhen from 2016 to 2021. The results showed that the coastal area of Shenzhen exhibited a spatial distribution pattern with low Zsd in the west and high in the east, with Pearl River Estuary (PRE: 0.41–0.67 m) and Shenzhen Bay (SZB: 0.30–0.58 m) being lower than Dapeng Bay (DPB: 2.7–2.9 m) and Daya Bay (DYB: 2.5–2.9 m). We analyzed the seasonal and interannual variations and driving factors of the four areas, where PRE and SZB showed similar variation patterns, while DPB and DYB showed similar variation patterns. PRE and SZB are important estuaries in southern China, significantly affected by anthropogenic activities. DPB and DYB are important marine aquaculture areas, mainly affected by natural factors (wind speed, precipitation, and sea level). The Zsd of the coastal area of Shenzhen, along with the analysis of its results and driving factors, contributes to promoting local water resource protection and providing a reference for formulating relevant governance policies. It also provides a practical method for assessing and monitoring near-shore water quality. Full article
(This article belongs to the Special Issue Application of GRACE Observations in Water Cycle and Climate Change)
Show Figures

Figure 1

22 pages, 11112 KB  
Article
An Evaluation of Sun-Glint Correction Methods for UAV-Derived Secchi Depth Estimations in Inland Water Bodies
by Edvinas Tiškus, Martynas Bučas, Diana Vaičiūtė, Jonas Gintauskas and Irma Babrauskienė
Drones 2023, 7(9), 546; https://doi.org/10.3390/drones7090546 - 23 Aug 2023
Cited by 10 | Viewed by 3302
Abstract
This study investigates the application of unoccupied aerial vehicles (UAVs) equipped with a Micasense RedEdge-MX multispectral camera for the estimation of Secchi depth (SD) in inland water bodies. The research analyzed and compared five sun-glint correction methodologies—Hedley, Goodman, Lyzenga, Joyce, and threshold-removed glint—to [...] Read more.
This study investigates the application of unoccupied aerial vehicles (UAVs) equipped with a Micasense RedEdge-MX multispectral camera for the estimation of Secchi depth (SD) in inland water bodies. The research analyzed and compared five sun-glint correction methodologies—Hedley, Goodman, Lyzenga, Joyce, and threshold-removed glint—to model the SD values derived from UAV multispectral imagery, highlighting the role of reflectance accuracy and algorithmic precision in SD modeling. While Goodman’s method showed a higher correlation (0.92) with in situ SD measurements, Hedley’s method exhibited the smallest average deviation (0.65 m), suggesting its potential in water resource management, environmental monitoring, and ecological modeling. The study also underscored the quasi-analytical algorithm (QAA) potential in estimating SD due to its flexibility to process data from various sensors without requiring in situ measurements, offering scalability for large-scale water quality surveys. The accuracy of SD measures calculated using QAA was related to variability in water constituents of colored dissolved organic matter and the solar zenith angle. A practical workflow for SD acquisition using UAVs and multispectral data is proposed for monitoring inland water bodies. Full article
Show Figures

Figure 1

16 pages, 5889 KB  
Article
An Improved QAA-Based Method for Monitoring Water Clarity of Honghu Lake Using Landsat TM, ETM+ and OLI Data
by Miaomiao Chen, Fei Xiao, Zhou Wang, Qi Feng, Xuan Ban, Yadong Zhou and Zhengzheng Hu
Remote Sens. 2022, 14(15), 3798; https://doi.org/10.3390/rs14153798 - 6 Aug 2022
Cited by 13 | Viewed by 3025
Abstract
Secchi disk depth (ZSD) is used to quantify water clarity as an important water-quality parameter, and one of the most used mechanistic models for ZSD is the quasi-analytical algorithm (QAA), of which the latest version is QAA_v6. There are [...] Read more.
Secchi disk depth (ZSD) is used to quantify water clarity as an important water-quality parameter, and one of the most used mechanistic models for ZSD is the quasi-analytical algorithm (QAA), of which the latest version is QAA_v6. There are two models in QAA for clear and turbid waters (referred to as QAA_clear and QAA_turbid). QAA_v6 switches between the two models by setting a threshold value for the remote sensing reflectance (Rrs, sr−1) at the selected reference band of 656 nm. However, some researchers found that this reference band or the threshold value does not apply to many turbid inland lakes. In Honghu Lake, the Rrs (656) (Rrs at 656 nm) in the whole lake is less than 0.0015 sr−1; therefore, only QAA_turbid can be applied. Moreover, we found that QAA_clear resulted in overestimation while QAA_turbid resulted in significant underestimations. The waters of inland lakes usually continuously vary between clear and turbid water. We proposed a hypothesis that QAA_turbid and QAA_clear transition evenly, rather than being distinguished by one threshold value, and we developed a model that combined QAA_clear and QAA_turbid according to our assumption. This model simulated the process of continuous change in water clarity. The results showed that our model had a better performance with an RMSE that reduced from 0.5 to 0.28, an MAE that reduced from 0.43 to 0.21, and bias that reduced from −0.4 to −0.05 m compared with QAA_v6. We applied QAA_Honghu to Landsat TM, ETM+, and OLI data and obtained 205 ZSD maps with high spatial resolution in Honghu Lake. The results were consistent with the existing in situ measurements. From 1987–2020, the ZSD results of Honghu Lake showed an overall downward trend and a distinct seasonal pattern. Full article
(This article belongs to the Special Issue Optical Remote Sensing for Surface Water Parameters Retrieval)
Show Figures

Graphical abstract

13 pages, 5989 KB  
Technical Note
Assessment of Empirical and Semi-Analytical Algorithms Using MODIS-Aqua for Representing In-Situ Chromophoric Dissolved Organic Matter (CDOM) in the Bering, Chukchi, and Western Beaufort Seas of the Pacific Arctic Region
by Melishia I. Santiago and Karen E. Frey
Remote Sens. 2021, 13(18), 3673; https://doi.org/10.3390/rs13183673 - 14 Sep 2021
Cited by 9 | Viewed by 3211
Abstract
We analyzed a variety of satellite-based ocean color products derived using MODIS-Aqua to investigate the most accurate empirical and semi-analytical algorithms for representing in-situ chromophoric dissolved organic matter (CDOM) across a large latitudinal transect in the Bering, Chukchi, and western Beaufort Seas of [...] Read more.
We analyzed a variety of satellite-based ocean color products derived using MODIS-Aqua to investigate the most accurate empirical and semi-analytical algorithms for representing in-situ chromophoric dissolved organic matter (CDOM) across a large latitudinal transect in the Bering, Chukchi, and western Beaufort Seas of the Pacific Arctic region. In particular, we compared the performance of empirical (CDOM index) and several semi-analytical algorithms (quasi-analytical algorithm (QAA), Carder, Garver-Siegel-Maritorena (GSM), and GSM-A) with field measurements of CDOM absorption (aCDOM) at 412 nanometers (nm) and 443 nm. These algorithms were compared with in-situ CDOM measurements collected on cruises during July 2011, 2013, 2014, 2015, 2016, and 2017. Our findings show that the QAA a443 and GSM-A a443 algorithms are the most accurate and robust representation of in-situ conditions, and that the GSM-A a443 algorithm is the most accurate algorithm when considering all statistical metrics utilized here. Our further assessments indicate that geographic variables (distance to coast, latitude, and sampling transects) did not obviously relate to algorithm accuracy. In general, none of the algorithms investigated showed a statistically significant agreement with field measurements beyond an approximately ± 60 h offset, likely owing to the highly variable environmental conditions found across the Pacific Arctic region. As such, we suggest that satellite observations of CDOM in these Arctic regions should not be used to represent in-situ conditions beyond a ± 60 h timeframe. Full article
(This article belongs to the Special Issue Bio-Optical Oceanic Remote Sensing)
Show Figures

Graphical abstract

23 pages, 7792 KB  
Article
Underway Hyperspectral Bio-Optical Assessments of Phytoplankton Size Classes in the River-Influenced Northern Gulf of Mexico
by Neeharika Verma, Steven Lohrenz, Sumit Chakraborty and Cédric G. Fichot
Remote Sens. 2021, 13(17), 3346; https://doi.org/10.3390/rs13173346 - 24 Aug 2021
Cited by 5 | Viewed by 3197
Abstract
High inflows of freshwater from the Mississippi and Atchafalaya rivers into the northern Gulf of Mexico during spring contribute to strong physical and biogeochemical gradients which, in turn, influence phytoplankton community composition across the river plume–ocean mixing zone. Spectral features representative of bio-optical [...] Read more.
High inflows of freshwater from the Mississippi and Atchafalaya rivers into the northern Gulf of Mexico during spring contribute to strong physical and biogeochemical gradients which, in turn, influence phytoplankton community composition across the river plume–ocean mixing zone. Spectral features representative of bio-optical signatures of phytoplankton size classes (PSCs) were retrieved from underway, shipboard hyperspectral measurements of above-water remote sensing reflectance using the quasi-analytical algorithm (QAA_v6) and validated against in situ pigment data and spectrophotometric analyses of phytoplankton absorption. The results shed new light on sub-km scale variability in PSCs associated with dynamic and spatially heterogeneous environmental processes in river-influenced oceanic waters. Our findings highlight the existence of localized regions of dominant picophytoplankton communities associated with river plume fronts in both the Mississippi and Atchafalaya rivers in an area of the coastal margin that is otherwise characteristically dominated by larger microphytoplankton. This study demonstrates the applicability of underway hyperspectral observations for providing insights about small-scale physical-biological dynamics in optically complex coastal waters. Fine-scale observations of phytoplankton communities in surface waters as shown here and future satellite retrievals of hyperspectral data will provide a novel means of exploring relationships between physical processes of river plume–ocean mixing and frontal dynamics on phytoplankton community composition. Full article
(This article belongs to the Special Issue Bio-Optical Oceanic Remote Sensing)
Show Figures

Figure 1

22 pages, 7256 KB  
Article
Hybrid Inversion Algorithms for Retrieval of Absorption Subcomponents from Ocean Colour Remote Sensing Reflectance
by Srinivas Kolluru, Surya Prakash Tiwari and Shirishkumar S. Gedam
Remote Sens. 2021, 13(9), 1726; https://doi.org/10.3390/rs13091726 - 29 Apr 2021
Cited by 2 | Viewed by 3626
Abstract
Semi-analytical algorithms (SAAs) invert spectral remote sensing reflectance (Rrs(λ), sr1) to Inherent Optical Properties (IOPs) of an aquatic medium (λ is the wavelength). Existing SAAs implement different methodologies with a [...] Read more.
Semi-analytical algorithms (SAAs) invert spectral remote sensing reflectance (Rrs(λ), sr1) to Inherent Optical Properties (IOPs) of an aquatic medium (λ is the wavelength). Existing SAAs implement different methodologies with a range of spectral IOP models and inversion methods producing concentrations of non-water constituents. Absorption spectrum decomposition algorithms (ADAs) are a set of algorithms developed to partition anw(λ), m1 (i.e., the light absorption coefficient without pure water absorption), into absorption subcomponents of phytoplankton (aph(λ), m1) and coloured detrital matter (adg(λ), m1). Despite significant developments in ADAs, their applicability to remote sensing applications is rarely studied. The present study formulates hybrid inversion approaches that combine SAAs and ADAs to derive absorption subcomponents from Rrs(λ) and explores potential alternatives to operational SAAs. Using Rrs(λ) and concurrent absorption subcomponents from four datasets covering a wide range of optical properties, three operational SAAs, i.e., Garver–Siegel–Maritorena (GSM), Quasi-Analytical Algorithm (QAA), Generalized Inherent Optical Property (GIOP) model are evaluated in deriving anw(λ) from Rrs(λ). Among these three models, QAA and GIOP models derived anw(λ) with lower errors. Among six distinctive ADAs tested in the study, the Generalized Stacked Constraints Model (GSCM) and Zhang’s model-derived absorption subcomponents achieved lower average spectral mean absolute percentage errors (MAPE) in the range of 8–38%. Four hybrid models, GIOPGSCM, GIOPZhang, QAAGSCM and QAAZhang, formulated using the SAAs and ADAs, are compared for their absorption subcomponent retrieval performance from Rrs(λ). GIOPGSCM and GIOPZhang models derived absorption subcomponents have lower errors than GIOP and QAA. Potential uncertainties associated with datasets and dependency of algorithm performance on datasets were discussed. Full article
Show Figures

Graphical abstract

21 pages, 4184 KB  
Article
Particle Size Parameters of Particulate Matter Suspended in Coastal Waters and Their Use as Indicators of Typhoon Influence
by Yanxia Liu, Haijun Huang, Liwen Yan, Xiguang Yang, Haibo Bi and Zehua Zhang
Remote Sens. 2020, 12(16), 2581; https://doi.org/10.3390/rs12162581 - 11 Aug 2020
Cited by 7 | Viewed by 5153
Abstract
The power law particle size distribution (PSD) slope parameter is commonly used to characterize sediment fluxes, resuspension, aggregates, and settling rates in coastal and estuarine waters. However, particle size distribution metrics are also very useful for understanding sediment source and dynamic processes. In [...] Read more.
The power law particle size distribution (PSD) slope parameter is commonly used to characterize sediment fluxes, resuspension, aggregates, and settling rates in coastal and estuarine waters. However, particle size distribution metrics are also very useful for understanding sediment source and dynamic processes. In this study, a method was proposed to employ the particle size parameters commonly used in sedimentary geology (average particle size (ø), sorting, skewness, and kurtosis) as indicators of changes in sediment dynamic processes, and MODIS images were used to estimate these parameters. The particle size parameters were estimated using a Mie scattering model, Quasi-Analytical Algorithm (QAA) analysis algorithm, and least squares QR decomposition (LSQR) solution method based on the relationship between the power law distribution of the suspended particles and their optical scattering properties. The estimates were verified by field measurements in the Yellow Sea and Bohai Sea regions of China. This method provided good estimates of the average particle size (ø), sorting, and kurtosis. A greater number of wavebands (39) was associated with more accurate particle size distribution curves. Furthermore, the method was used to monitor changes in suspended particulate matter in the vicinity of the Heini Bay of China before and after the passage of a strong storm in August 2011. The particle size parameters represented the influence of a strong typhoon on the distribution of the near-shore sediment and, together with the PSD slope, comprehensively reflected the changes in the near-shore suspended particulate matter. This method not only established the relationship between remote sensing monitoring and the historical sediment record, it also extends the power law model to the application of sediment source and dynamic processes in coastal waters. Full article
Show Figures

Graphical abstract

21 pages, 4214 KB  
Article
MODIS-Based Remote Estimation of Absorption Coefficients of an Inland Turbid Lake in China
by Qiao Chu, Yuchao Zhang, Ronghua Ma, Minqi Hu and Yuanyuan Jing
Remote Sens. 2020, 12(12), 1940; https://doi.org/10.3390/rs12121940 - 16 Jun 2020
Cited by 10 | Viewed by 3655
Abstract
Optical complexity and various properties of Case 2 waters make it essential to derive inherent optical properties (IOPs) through an appropriate method. Based on field measured data of Lake Chaohu between 2009 and 2018, the quasi-analytical algorithm (QAA) was modified for the particular [...] Read more.
Optical complexity and various properties of Case 2 waters make it essential to derive inherent optical properties (IOPs) through an appropriate method. Based on field measured data of Lake Chaohu between 2009 and 2018, the quasi-analytical algorithm (QAA) was modified for the particular scenario of that lake to derive absorption coefficients based on the moderate-resolution imaging spectroradiometer (MODIS) bands. By changing the reference wavelength to longer ones and building a relationship between the value of spectral power for particle backscattering coefficient (Y), suspended particulate matter (SPM), and above-surface remote-sensing reflectance (Rrs), we improved the accuracy of the retrieval of total absorption coefficients. The absorption coefficients of gelbstoff and non-algal particulates (adg) and absorption coefficients of phytoplankton (aph) in Lake Chaohu were also derived by changing important parameters according to Lake Chaohu. The derived aph tend to be bigger than measured aph in this study, while derived adg tend to be smaller than measured data. We also used the corrected MODIS surface reflectance product (MOD09/MYD09) to calculate the aph(443), aph(645), and aph(678) by the model proposed in this study. It shows that in summer and autumn, aph tended to be higher in the northwestern part of Lake Chaohu, and were relatively lower in the spring and winter, which is similar to previous studies. Overall, our study provides an algorithm that is effectively used in the case of Lake Chaohu and applicable to the data obtained by MODIS, which can be used for further study to investigate the change law of absorption coefficients in long time series by applying MODIS data. Full article
(This article belongs to the Special Issue Applications of Remote Sensing in Limnology)
Show Figures

Graphical abstract

Back to TopTop